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Abstract Computer-aided sleep monitoring system can

effectively reduce the burden of experts in analyzing the

large volume of electroencephalogram (EEG) recordings

corresponding to sleep stages. In this paper, a new tech-

nique for automated classification of sleep stages based on

iterative filtering of EEG signals is presented. In order to

perform sleep stages classification, the EEG signals are

decomposed using iterative filtering method. The modes

obtained from iterative filtering of EEG signal can be

considered as amplitude-modulated and frequency-modu-

lated (AM-FM) components. The discrete energy separa-

tion algorithm (DESA) is applied to the modes to

determine amplitude envelope and instantaneous frequency

functions. The extracted amplitude envelope and instanta-

neous frequency functions have been used to compute

Poincaré plot descriptors and statistical measures. The

Poincaré plot descriptors and statistical measures are

applied as input features for different classifiers in order to

classify sleep stages. The classifiers namely, naı̈ve Bayes,

k-nearest neighbor, multilayer perceptron, C4.5 decision

tree, and random forest are applied in order to classify the

EEG epochs corresponding to various sleep stages. The

experimental study has been performed on online available

Sleep-EDF database for two-class to six-class classification

of sleep stages based on EEG signals. The two-class to six-

class classification problems are formulated by taking dif-

ferent combinations of EEG signals corresponding to var-

ious sleep stages. The comparison of the results is

presented for different multi-class classification problems

with the other recently proposed methods. The results show

that the proposed method has provided better tenfold cross-

validation classification accuracy than other existing

methods.
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1 Introduction

Sleep analysis is an important area of research due to its

importance for the study of disorders related to sleep [25].

In a healthy human brain, several psychophysiological

states occur during sleep, referred as sleep stages [66].

Sleep-related disorders like sleep apnea, insomnia, and

narcolepsy affect the normal life of the patients; therefore,

effective diagnosis is very useful for such patients.

Rechtschaffen and Kales (R&K) developed a standard

criterion to manually score the sleep stages using the

electroencephalogram (EEG) signals [58]. Based on the

R&K standard, there are six sleep stages categorized in

four non-rapid eye movement (NREM) sleep stage 1 (S1),

NREM sleep stage 2 (S2), NREM sleep stage 3 (S3),

NREM sleep stage 4 (S4), followed by rapid eye movement

(REM) sleep stage and remaining stage as wakefulness or

awake (W) stage. Recently, American Academy of Sleep

Medicine (AASM) proposed a new criterion for scoring the

sleep stages. The AASM standard suggests merging the S3

and S4 stages into a single sleep stage. According to this

standard, the NREM stage comprises of only three sleep
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stages [27]. Manual sleep EEG scoring takes cumbersome

efforts to accomplish sleep EEG scoring due to the long

length of recordings acquired during night. Therefore,

computer-assisted automatic sleep scoring system can be

more efficient for diagnosis of sleep-related disorders using

EEG signals. Such type of system can be helpful for clin-

icians to speed up the process of diagnosis for the various

sleep-related abnormalities.

Recently, several techniques are proposed in the litera-

ture to accomplish the task of designing automatic sleep

scoring system based on polysomnographic (PSG) record-

ings [48]. The PSG recording is a collection of simulta-

neously recorded different physiological signals which

include EEG, electromyogram (EMG), electrooculogram

(EOG), electrocardiogram (ECG) etc. In Agarwal and

Gotman [5], an automatic sleep stages classification

method based on the segmentation and self-organization

(clustering) techniques is presented. The features extracted

from segmented PSG recordings are amplitude, dominant

rhythms, frequency-weighted energy, alpha-slow-wave

index etc., and the sleep stages classification is performed

using k-mean clustering algorithm. In another study, a

methodology based on adaptive neuro-fuzzy classifier is

presented for sleep stages classification from PSG recorded

from infants [24]. Krakovská and Mezeioá [39] analyzed

the PSG data recorded from 20 healthy subjects and total of

74 measures have been extracted for sleep scoring. The

sleep stages are classified based on the quadratic discrim-

inant analysis.

The above-mentioned methods for automated classifi-

cation of sleep stages are based on PSG which requires

recording of a number of physiological signals and suffers

from their own limitations. Several methodologies have

been developed which use only EEG signals for detection

of sleep stages. In Acharya et al. [3], for the sleep stages

detection, 29 nonlinear dynamic measures are computed

from EEG signals. The nonlinear dynamic features include

the higher order spectra (HOS) and the recurrence quan-

tification analysis (RQA)-based features. The HOS-based

features address the nonlinearity and deviation from

Gaussian nature present in the EEG signals [3]. Similarly,

RQA-based features are used to quantify the irregularity

present in the EEG signals. However, only significance of

the features is evaluated using analysis of variance

(ANOVA) test for the discrimination of the various sleep

stages without applying any classification technique.

Finally, the results are presented in terms of F value and

p value obtained from the ANOVA test. Liang et al. [43]

proposed a method which is based on multiscale entropy

and autoregressive model for automatic sleep scoring using

EEG signals. In this study, the authors only presented

results for the six-class classification. They obtained the

overall sensitivity (Sen) which is 76.9% for classification

of six classes (W, S1, S2, S3, S4, and REM). The energy

features are proposed for classification of five sleep stages

using single channel EEG signals [25]. In their study, in

order to perform classification, the recurrent neural net-

work classifier has been applied. They have only presented

results for the five-class (W, S1, S2, S3–S4, REM) classi-

fication problem. The average classification accuracy

obtained for five-class classification problem is 87.2%.

Imtiaz and Rodriguez-Villegas [28] proposed a feature

based on the spectral edge frequency (SEF) related to the

frequency band of 8–16 Hz and combined it with absolute

power and relative power features extracted from EEG

signals for REM stage detection. In this work, the authors

only performed the REM stage detection and the obtained

Sen for the REM sleep detection which is 83%. In Tsinalis

et al. [64], for the classification of the sleep stages, a staked

sparse autoencoder-based technique is presented. They

obtained the mean classification accuracy for individual

sleep stages as 84% with a range of 82–86%. The authors

performed the classification using cross-validation with

20-fold for computing the performance of the classifier.

They also addressed the problem of class imbalance using

the random sampling technique. However, they only con-

sidered the five-class classification problem in their study.

Time–frequency image of EEG signals obtained using

smoothed pseudo Wigner–Ville distribution is suggested

by Bajaj and Pachori [9] for sleep stages classification. The

obtained time–frequency images of EEG signals are seg-

mented according to the different EEG rhythms and fea-

tures are computed from the histogram of these segmented

images. Finally, multi-class support vector machine (SVM)

is used for sleep stages classification using EEG signals.

The method presented in Bajaj and Pachori [9] has been

studied only for six-class and five-class classification

problems.

An approach based on the horizontal visibility graph

(HVG) algorithm is presented by Zhu et al. [73] for sleep

stages analysis based on EEG signals. They used mean

degree and degree distribution features extracted from

single channel EEG signals with SVM as a classifier for

classification of sleep stages. The authors performed the

classification for six-class, five-class, four-class (W, S1–

S2, S3–S4, and REM), three-class (W, NREM, and REM),

and two-class (W, NREM-REM) classification problems.

The obtained classification accuracies for these classifica-

tion problems are 97.90, 92.60, 89.30, 88.90 and 87.50 %,

respectively. They divided the half of the epochs for

training and remaining half for the testing purpose.

Recently, Hassan and Bhuiyan [23] used complete

ensemble empirical mode decomposition with adaptive

noise (CEEMDAN) and bootstrap aggregating techniques

for automatic sleep staging based on EEG signals. They

computed the higher order statistical moments from
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intrinsic mode functions (IMFs) extracted by ensemble

empirical mode decomposition (EEMD) process and used

as features with the bootstrap aggregating algorithm for

classification of various sleep stages using EEG signals. In

this work, classification is performed for six-class to two-

class classification problems. The reported classification

accuracies for these classification problems are 99.48,

94.10, 92.14, 90.69 and 86.89%, respectively. A new

method [22] employed recently proposed tunable Q

wavelet transform (TQWT) for decomposing the sleep

EEG epochs. The spectral features computed from the

TQWT subbands have been used as an input to the random

forest classifier. They obtained the accuracies for six-class

to two-class classification problems as 97.50, 94.80, 92.11,

91.50 and 90.38%, respectively. Ronzhina et al. [59]

classified sleep EEG epochs corresponding to Pz–Oz

channel and presented results for various multi-class sleep

stages classification with different architectures of artificial

neural network (ANN) classifier. The obtained classifica-

tion accuracy values for six-class, four-class, three-class,

and two-class classification problems are 76.70, 81.55,

90.31 and 98.62%, respectively. In this study, tenfold

cross-validation is applied to compute the classification

accuracy for the stated classification problems. In another

method, the different sleep stages are classified using

autoregressive coefficients computed from the epochs of

the EEG signals [34]. They proposed a fast classification

method based on the partial least squares (PLS) regression

classifier. They analyzed the different length of epochs

using their methodology for classification of awake and

sleep stages. They performed tenfold cross-validation for

classification and presented patient-specific results.

The literature review presented in previous paragraphs

shows that most of the studies targeted their methodology

only for six-class and/or five-class classification prob-

lems. The other classification problems corresponding to

four-class, three-class, and two-class have not been

addressed. In several methods [22, 23], all the classifica-

tion problems are considered; however, they used the pre-

partitioned training and testing data. The classification

performance is not evaluated for any type of cross-vali-

dation. The single split of training and testing of data may

be biased for the data selected for training. On the other

hand, the cross-validation procedure is less sensitive for

the partitioning of the data. In addition, it can also be

observed from the literature review that there is still scope

for improving the classification performance for the var-

ious multi-class classification problems with cross-vali-

dation approach.

In this article, we present a method for automatic clas-

sification of sleep stages from EEG signals. Our objective

is to study the features extracted from the amplitude

envelope and instantaneous frequency functions of the

modes obtained using iterative filtering method for classi-

fication of sleep stages. The block diagram which outlines

the main steps of the proposed method is presented in

Fig. 1. Firstly, we applied the iterative filtering method

presented by Cicone et al. [15] which uses the smooth

filters with compact support for extraction of different

modes. Iterative filtering [15, 44] is an alternative algo-

rithm for the empirical mode decomposition (EMD)

method [26], and it can better handle the issues related to

the sifting process and cubic spline algorithm. In addition,

as compared to EMD method, iterative filtering method has

better stability [67]. Moreover, the iterative filtering

method is more suitable for horizontal comparison which

means the modes of the same index belonging to different

signals contain comparable information [67]. Furthermore,

the performance of the iterative filtering is yet to be

explored for sleep stages classification from EEG signals.

During the span of different sleep stages, the amplitude and

frequency contents of EEG signals change [20]; therefore,

obtaining the amplitude envelope and instantaneous fre-

quency functions from the modes obtained using iterative

filtering can lead to effective feature computation. The

discrete energy separation algorithm (DESA) [47] is

applied to extract amplitude envelope and instantaneous

frequency functions from the modes. For the purpose of

sleep stages classification, the features have been extracted

from the amplitude envelope and instantaneous frequency

functions computed from the different modes. The studied

features are Poincaré plot descriptors and higher order

statistical moments. Finally, naı̈ve Bayes, k-nearest

neighbor, C4.5 decision tree classifier, multilayer percep-

tron, and random forest classifiers are studied for classifi-

cation of different sleep stages. The proposed methodology
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Fig. 1 Block diagram of proposed methodology
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is evaluated for all the studied different multi-class clas-

sification problems. The tenfold cross-validation procedure

is employed to evaluate the classifiers’ performance for

these multi-class classification problems.

The organization of remaining paper is as follows:

Sect. 2 gives the brief description of the studied sleep EEG

dataset, iterative filtering method, DESA method, and

different classifiers applied for classification purpose. In

Sect. 3, results obtained using proposed methodology are

presented and discussed in Sect. 4. Finally, the conclusion

is presented in Sect. 5.

2 Dataset and methods

2.1 Dataset

The sleep EEG recordings which are used to evaluate the

proposed methodology have been taken from Sleep-EDF

database available online at PhysioNet website [19, 36].

The recordings obtained from eight subjects have been

used for performing the experimental study. The EEG

recordings used in this paper are denoted as SC4002E0,

SC4012E0, SC4102E0, SC4112E0, ST7022J0, ST7052J0,

ST7121J0, and ST7132J0. The first four recordings which

are indicated as SC were obtained from the healthy vol-

unteers. On the other hand, last four recordings which are

indicated as ST were obtained from the subjects having

mild difficulty in falling asleep [36, 73]. In this database,

each PSG recording has two EEG signals recorded from

Fpz–Cz and Pz–Oz channels, one EOG signal, one EMG

signal, and one oro-nasal respiration signal. The EEG

signals are sampled at the sampling rate of 100 Hz. In this

study, the signals recorded from Pz–Oz channel are

selected for evaluation of proposed methodology as it has

been used for evaluation of the previously developed

methodologies for detection of sleep stages [23, 43, 73].

The EEG sleep recordings were annotated by experts.

These annotations have been used in this work as a refer-

ence in order to verify obtained results from the proposed

methodology. The annotations have been given separately

in the hypnogram files which are available in the database.

The sleep annotations are provided for every 30 s of epoch

for each EEG signal. According to R&K standard, each

epoch is annotated as one out of following eight classes:

Awake (W), S1, S2, S3, S4, REM, movement time (M) and

unknown state (U). The tenfold cross-validation [38] is

used for assessment of the classification performance of the

studied classifiers. The number of epochs for each analyzed

class is listed in Table 1. In Fig. 2, EEG epochs corre-

sponding to different sleep stages are depicted. It should be

noted that the epochs related to the M and U states are not

included in the experimental study. According to R&K

standard, the sleep cycles are distributed across six sleep

stages. The six-class classification case is clinically rele-

vant and frequently studied in various methods proposed in

the literature [23, 43, 73]. According to AASM standard, it

has been proposed to combine the S3 and S4 sleep stages

together to form a single class. Therefore, this newly pro-

posed standard suggests the importance of the five-class

classification problem. Hence, the five-class classification

is considered for sleep stages classification. The S1 and S2

stages can be combined into a single class as both are

called shallow sleep [23, 70], which leads to four-class

classification case. The awake, REM, and non-REM (S1,

S2, S3, and S4) sleep stages detection can be useful for

some clinical diagnosis of the sleep disorders like REM

sleep behavior disorder [29, 30]. Therefore, three-class

classification problem is also studied in this work. It can be

useful to differentiate the sleep recordings from those in

awake conditions; hence, the two-class classification is also

employed in the experiments.

2.2 Iterative filtering-based decomposition

Iterative filtering is an iterative approach for the decom-

position of the nonlinear and nonstationary sig-

nals [44, 68]. The obtained modes from the iterative

filtering satisfy the conditions of intrinsic mode functions

(IMFs) as mentioned in Huang et al. [26] and Cicone

et al. [15]. The iterative filtering uses low pass filters with

modified sifting process in order to obtain a mode [67].

The method of extracting modes using iterative filtering of

a signal can be explained briefly as follows [15]:

For a given signal g(t), an operator L which determines

moving average of g(t) can be defined as:

L½gðtÞ� ¼
Z þl

�l

gðt þ sÞhðsÞdt: ð1Þ

The function h(t) is a filter function, and l denotes the

mask length [15]. Another operator F, with initialization

g1 ¼ g, can be defined as: F1;nðgnÞ ¼ gn � Lð1Þn ðgnÞ ¼ gnþ1.

The operator F1;n captures the fluctuation part from gnðtÞ.

Table 1 Number of epochs considered for each sleep condition from

Sleep-EDF database

Sleep condition Total number of

selected epochs

Awake condition 8003

S1 sleep stage 604

S2 sleep stage 3621

S3 sleep stage 672

S4 sleep stage 627

REM sleep stage 1609

All conditions 15,136
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In order to extract the first mode M1, the F1;n is applied on

the signal as: M1 ¼ limn!1 F1;nðgnÞ. Here, filtering oper-

ator Lð1Þn has mask length ln for every iteration number

n and superscript denotes the first mode.

Further, to extract next mode, operator F can be applied

to remainder signal g-M1. This process of extracting modes

can be repeated until remainder has at most one local

extremum. For more detail information about the iterative

filtering and its algorithm, the paper by Cicone et al. [15]

can be referred.

In order to perform iterative filtering, we have used

the implementation proposed by Cicone et al. [15]. In

this work, the authors used Fokker–Planck equation to

design low pass filter with compact support. This filter

has an advantage of being smooth enough that it van-

ishes to zero at both ends. Consequently, these filters do

not produce artificial oscillations as in the case of double

average filters [15]. The MATLAB codes for imple-

mentation of the iterative filtering using Fokker–Plank

filters are available at http://www.mathworks.com/

matlabcentral/fileexchange/53405-iterative-filters. The

iterative filtering process consists of two loops, one as an

inner loop and other as an outer loop. The mask length

can be updated at each step of the inner loop. In the

implemented algorithm, the mask length ln is computed

for the first step and the same value is used for

remaining steps. The length of the mask can be com-

puted as [15]: ln ¼ 2bk N
jc, where N denotes the length of

the signal, j is the number of extreme points, k is a

constant with value 1.6, and b:c indicates greatest integer

operator. An EEG signal corresponding to awake stage

and its first seven modes (M1 �M7) obtained using

iterative filtering are shown in Fig. 3.

2.3 Discrete energy separation algorithm (DESA)

The variation in the amplitude and frequency parameters can

be useful for effective identification of different sleep stages

using EEG signals as amplitude and frequency characteristics

change across various sleep epochs [20]. These variations in

amplitude and frequency can reflect in various modes of EEG

signals and can be effectively captured by computing

amplitude envelope and instantaneous frequency functions.

The amplitude envelope and instantaneous frequency func-

tions of the modes can be separated using the Hilbert trans-

form (HT) and Teager energy operator (TEO) [56]. The HT is

applied globally on the whole signal. On the other hand, TEO

[32] is more suitable for local estimation of the amplitude

envelope and instantaneous frequency functions [11, 53]. In

addition, TEO is found useful for many signal processing

applications [33, 50, 51, 61, 72]. It is a nonlinear operator,

which can be computed for discrete-time signal I(n) based on

three samples as [32, 47, 53, 72]:

W½IðnÞ� ¼ I2ðnÞ � Iðnþ 1ÞIðn� 1Þ: ð2Þ

In our case, I(n) is a mode obtained from iterative fil-

tering method. The obtained mode can be considered as an

amplitude-modulated and frequency-modulated (AM-FM)

signal. The TEO can be used to estimate the amplitude

envelope and instantaneous frequency functions of an AM-

FM signal [47, 53, 72]. The algorithm developed to sepa-

rate the amplitude envelope and instantaneous frequency
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functions based on TEO is called discrete energy separa-

tion algorithm (DESA) [47]. The computational complex-

ity of DESA is less than Hilbert transform separation

algorithm [56]. Using DESA, following expressions can be

used to compute amplitude envelope and instantaneous

frequency functions [47]:

IFMðnÞ � arccos 1�W½HðnÞ� þW½Hðnþ 1Þ�
4W½IðnÞ�

� �
ð3Þ

IAMðnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W½IðnÞ�

1� 1� W½HðnÞ�þW½Hðnþ1Þ�
4W½IðnÞ�

� �2
� �

vuuut ð4Þ

where, H(n) is a time–domain difference signal of

I(n) given by HðnÞ ¼ IðnÞ � Iðn� 1Þ; W½:� denotes the

TEO; IFMðnÞ denotes instantaneous frequency function of

I(n); and IAMðnÞ indicates the amplitude envelope of I(n) at

sample n. The amplitude envelope IAMðnÞ and instanta-

neous frequency function IFMðnÞ computed using DESA

technique for modes shown in Fig. 3 are shown in Fig. 4.

2.4 Feature extraction

Feature extraction is an important step for automatic

classification of different sleep stages using EEG signals.

This step extracts the characteristic patterns of EEG signals

corresponding to different sleep stages. In this work, we

have explored the features obtained from amplitude

envelope (IAM) and instantaneous frequency (IFM) func-

tions of the modes from iterative filtering method. Ten

different features from the IAM and IFM functions are

computed for each mode of the EEG epoch. The Poincaré

plot of the IAM and IFM functions is used for extracting

geometric descriptors [13, 55]. These descriptors are the

width of Poincaré plot, the length of Poincaré plot, the area

of Poincaré plot, acceleration, and deceleration. From a

given signal s(n), two vectors U and V are formed which

represent the points ðui; viÞ on Poincaré plot with

i ¼ 1; 2; . . .;N. The vector V is one sample delayed version

of U. Then following parameters can be defined

as [13, 55]:

D1
i ¼

jui � uc � vi þ vcjffiffiffi
2

p

and

D2
i ¼

jui � uc þ vi � vcjffiffiffi
2

p :

The point ðuc; vcÞ represents the centroid of the distri-

bution of N points on Poincaré plot.

The measures of asymmetry of Poincaré plot about the

line of identity are defined for RR interval signals in [55].

We also used these measures of asymmetry of Poincaré

plot as the features for sleep stages classification. In order

to compute these features, the following parameters are

used [55]:
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SDup ¼
1

N

XnU
i¼1

diU
	 
2 ð5Þ

SDdown ¼
1

N

XnD
i¼1

diD
	 
2 ð6Þ

and

SDI ¼ SDup þ SDdown: ð7Þ

The variables nU and nD represent the number of points

above and below the line of identity, respectively. The

parameters diU are the distance of ith point above the line of

identity. Similarly, the distance of ith point below the line

of identity is denoted by diD. Apart from five features

extracted from the Poincaré plot of IAM, we also computed

five statistical features as mean, variance, median, kurtosis,

and skewness [37] from the modes. For a signal of

M samples IAM ¼ fw1;w2;w3; . . .;wMg all these extracted

features computed for IAM are listed and defined in

Table 2. The features extracted from IAM are indexed as

F1–F10, respectively, and similarly, all ten features are

extracted from IFM and indexed by F11–F20, in exact same

order.

The variation in the extracted features from the iterative

filtering and EMD method is different. Table 3 reports the

range values in terms of confidence intervals [37] of the

mean of features extracted from iterative filtering and EMD

method. In Table 3, the 99% confidence interval [4] of the

features extracted from different features are presented. It

should be noted that in order to obtain the confidence

interval, the feature values less than 99 percentile of the

feature are considered. The values of a feature corre-

sponding to each class are fitted to the normal distribution.

The obtained normal distribution is used to compute the

confidence interval of the feature corresponding to each

class.

The suitability of the features computed from iterative

filtering method and EMD is examined using the statistical

test. The Kruskal–Wallis statistical test [40] is a nonpara-

metric test for multigroup data and a distribution-free

alternative to the one-way ANOVA test [63]. It results in

p value which measures the significance of Chi-squared

statistics [63]. In Villanueva et al. [65], the p value resulted

using Kruskal–Wallis statistical test is used for examining

the significance of the features for multi-class comparison

of mass spectrometry (MS)-based serum peptide profiling

data. The data were obtained from three types of cancer

patients and control group. Similarly, in the presented

0
50

100
A

m
pl

itu
de

 e
nv

el
op

e 0
50

100

0
50

100

0
50

100

0
50

100

0

50

0 500 1000 1500 2000 2500 3000
0

20
40

Samples

(a)

0

0.5

0

0.5

In
st

an
ta

ne
ou

s f
re

qu
en

cy

0

0.5

0

0.5

0

0.5

0

0.5

0 500 1000 1500 2000 2500 3000
0

0.5

Samples

(b)

Fig. 4 Results of DESA applied on the modes obtained from iterative

filtering of awake EEG signal: a amplitude envelope functions of

different modes (amplitude is in lV) and b instantaneous frequency

functions of different modes. Panels from top to bottom show plots

corresponding to modes from M1 to M7

Table 2 Features extracted from amplitude envelope of a mode

obtained from iterative filtering method

Notation Feature

F1 Width of Poincare plot [13, 55], SD1 ¼ 1
N

PN
i¼1ðD1

i Þ
2

F2 Length of Poincare plot [13, 55], SD2 ¼ 1
N

PN
i¼1 D2

i

	 
2
F3 Area of Poincare plot [13, 55], Areap ¼ p� SD1 � SD2

F4
Acceearation [55], Cup ¼

SD2
up

SD2
I

F5 Deceleration [55], Cdown ¼ SD2
down

SD2
I

F6 Mean, l ¼ 1
M

PM
j¼1 wj

F7 Variance, m2 ¼ 1
M

PM
j¼1ðwj � lÞ2

F8 Median

F9 Kurtosis ¼ 1
M

PM
j¼1

wj�l
m

	 
4
F10 Skewness ¼ 1

M

PM
j¼1

wj�l
m

	 
3
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work, the p values obtained using Kruskal–Wallis statis-

tical test for six different groups (sleep stages) are reported

in Table 3. It can be observed that the features obtained

using EMD have resulted in relatively higher p values.

Table 3 depicts the p values obtained from features com-

puted from the first mode and first IMF.

2.5 Classification

The features extracted from EEG signals of different

sleep stages are given as the input for different classi-

fiers, and their performances are compared in terms of

different performance parameters. The classifiers

employed in this work are briefly discussed in the fol-

lowing sections.

2.5.1 Naı̈ve Bayes

Naı̈ve Bayes [31] is frequently used classifier that has a

straightforward approach based on the application of

Bayes’ theorem. It provides simpler approach based on the

probabilistic knowledge in order to predict test instances

accurately. This algorithm assumes that the predictive

attributes are conditionally independent and there are no

hidden attributes which can affect the prediction

process [31].

2.5.2 k-nearest neighbor

The k-nearest neighbor is one of the simplest and widely

used classifier. It is one of the most straightforward

approaches among different instance-based learning

algorithms [69]. In this algorithm, similarity function like

Euclidian distance is used to compute the similarity

between training instances and the instances in classifi-

cation record [7]. A record is maintained in order to store

the classification performance and similarity results. In

order to classify an instance, similarity with k-nearest

neighbors are computed and the class corresponding to

the maximum number of votes is assigned as output class

of the instance.

2.5.3 C4.5 decision tree classifier

Among the tree-based classification algorithms, the C4.5 is

most widely used inductive inference tool [17, 57]. The

tree construction follows the top-down approach in which

tree construction starts from a training set or tuples [60]. A

tuple is the collection of attribute values and a class value.

An attribute may have continuous or discrete values;

however, class can have only discrete values. A decision

tree consists of decision node and leafs. At each decision

node, an attribute is specified which is tested for its abilityT
a
b
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to classify a training sample [17]. Initially, the root node is

associated with the whole training set, and the weight value

for each case is set to 1. In order to construct a decision

tree, the C4.5 algorithm employs divide and conquer

approach [17, 57]. The attribute with the highest informa-

tion gain is selected for the test at a node. Then, a child

node is created for each possible outcome of the class. This

process is repeated for each attribute associated with each

node to select the best attribute for the node.

2.5.4 Multilayer perceptron

The multilayer perceptron is a particular type of neural

network-based classifiers [45, 46]. This classifier employs

a multilayer feed-forward neural network with one or more

layers of nodes between the input and output layers. These

nodes at different layers are interconnected through the

weighted networks. Using different training algorithms, the

parameters (weights) of the networks are optimized. The

backpropagation algorithm [45] is commonly used for the

purpose of parameter optimization. It uses the gradient

search technique for minimizing a cost function. In this

algorithm, initially, small random weights are selected.

These weights are subsequently adjusted using class

information during training until weights converge and cost

function reduces to desirable limit [45].

2.5.5 Random forest

Random forest classifier [12] performs classification based

on the collective decisions made by different classification

trees. Each decision tree individually makes a decision

about the class, and in order to make the final decision, a

weight is assigned to each tree. Finally, to determine

overall classification output, the class decision from every

tree is considered. In order to build a tree, the random tree

method is employed [18]. In the random forest algorithm, a

random vector dn is assigned to the nth tree. For the gen-

erated vector dn, the distribution remains same as of pre-

vious random vectors but the random vector is produced

independently of previous random vectors. Based on the

training input data x and dn, a decision tree is grown which

results in a tree classifier Hðx; dnÞ [12]. The class is

determined on the basis of margin function denoted by

MG, which can be defined for a training set, randomly

drawn from random vector distribution Y, X as [12]:

MGðX; YÞ ¼ avnI½HnðXÞ ¼ Y � �max
j 6¼Y

avnI½HnðXÞ ¼ j�

ð8Þ

where HnðXÞ ¼ Hðx; dnÞ and I(.) denotes the indicator

function [12]. The operator avn indicates the average value.

The larger value of margin is an indicator of more

confidence in the classification. The generalization error

(GE) can be given by [12]:

GE ¼ PX;Y ½MGðX; YÞ\0� ð9Þ

where PX;Y indicates probability over X, Y space. Strength

and correlation are two parameters used to measure the

accuracy of individual classifier and dependency between

them. In this work, we have considered the set of the

number of trees as {10, 20, 50, 80, 100, 120, 150, 180, 200,

250, 280, 300, 350} to perform classification and an opti-

mum number of trees are decided for each case of multi-

class classification. We have employed the Waikato envi-

ronment for knowledge analysis (WEKA) [21] software

implementation of naı̈ve Bayes, k-nearest neighbor, C4.5

decision tree, multilayer perceptron, and random forest

classifier for classification of sleep stages using EEG

signals.

3 Results

In order to show the efficacy of the proposed methodology,

it is studied on the EEG signals obtained from Sleep-EDF

database. The number of epochs used for each class of data

in the experiment is presented in Table 1. In the experi-

mental study, the different sets of classes are used to for-

mulate the different multi-class classification problems as

listed in Table 4. The performance of the proposed

methodology is evaluated in each multi-class classification

case. Classification performance measures of these five

different cases of multi-class classification problems are

compared with the other existing methods.

In the Sleep-EDF dataset, PSG contains EEG signals

recorded from Fpz–Cz and Pz–Oz channels. The EEG

signals recorded from Pz–Oz channel are studied in this

work. The suggested features are computed from first

seven modes obtained from iterative filtering. We have

performed different experiments for the studied multi-

class classification problems designed from the available

dataset. The sleep stages classification performance of the

classifier is evaluated and presented in terms of accuracy

(Acc), Sen, specificity (Spe), and Kappa measures [8, 16].

Table 4 The formulation of different cases of multi-class classifi-

cation problems using different combinations of sleep stages

Multi-class classification problems Relevant sleep stages

Two-class W, Sleep (S1–S4, REM)

Three-class W, NREM (S1–S4), REM

Four-class W, (S1, S2), (S3, S4), REM

Five-class W, S1, S2, (S3, S4), REM

Six-class W, S1, S2, S3, S4, REM
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The Kruskal–Wallis statistical test is applied to reduce

the number of features used for the classification purpose.

The features resulting p\0:05 are selected for the classi-

fication purpose. In Table 3, p values are reported con-

sidering only six groups corresponding to the six classes of

sleep stages. Similarly, p values are also obtained for five

classes, four classes, three classes, and two classes. Then,

for each case p values are tested for the significance of the

features, and the features with p[ 0:05 are removed from

the feature set used for the classification purpose.

It is interesting to know that how many modes are

suitable for feature extraction process. For this purpose, we

start our experiment with the number of trees as 100 and

employ different sets corresponding to varying number of

modes for features extraction. The features extracted from

different sets of modes are analyzed for their classification

performance in each case of the multi-class classification

problem. The set of modes which gives the best perfor-

mance for 100 trees is used for the further experiment in

each case. The classification accuracy for each case is

given in Table 5. In Table 5, the qth mode extracted using

iterative filtering is denoted by Mq. For example, the first

mode is represented byM1. In a similar way, a set of modes

is denoted by Mx �My. For example, a set of mode 1 to

mode 7 is denoted by the M1 �M7. Then, the best clas-

sification accuracy is represented by bold entries in Table 5

corresponding to each multi-class classification case. The

set of modes corresponding to the bold entries is used for

further experiments. To show the effectiveness of the

iterative filtering over the EMD method, the classification

accuracies obtained for the different combination of IMFs

are also shown in Table 6. It can be clearly observed that

the classification accuracy values are less than those

obtained in the case of iterative filtering.

It is observed that the classification performance may

vary for the different number of trees used in the random

forest classifier. In order to select the appropriate number

of trees, the classification is performed with varying

number of trees. Therefore, for each case of multi-class

classification, the number of trees used for classification is

optimized based on the classification performance. The

variation in the classification accuracy with the different

number of trees is depicted in Figs. 5, 6, 7, 8 and 9. In

Fig. 5, variation in the classification accuracy with the

different number of trees is presented for the case of the

six-class classification problem. In this case, highest clas-

sification accuracy is 90.02% when the number of trees

used is 300. It can be observed from Fig. 6 that for the five-

class classification problem, the maximum classification

accuracy is 91.29% and the corresponding number of trees

is 250. Similarly, for four- and three-class classification

problems, the maximum classification accuracies obtained

are 92.23 and 94.65%, respectively, and the corresponding

number of trees are 300 and 180, respectively, as can be

seen in Figs. 7 and 8. In the same way, the classification

accuracy versus the number of trees plot, which is shown in

Table 5 Classification accuracy

(%) for features extracted from

different sets of modes extracted

using iterative filtering for

various cases of multi-class

classification problem

Modes used for features extraction Number of sleep stages for classification

Six stages Five stages Four stages Three stages Two stages

M1�M2 88.68 89.98 90.73 94.08 97.58

M1�M3 89.49 90.86 91.80 94.64 97.97

M1�M4 89.75 90.03 92.07 94.45 97.93

M1�M5 89.91 91.15 92.08 94.54 97.90

M1�M6 89.55 90.92 91.97 94.41 97.87

M1�M7 89.55 90.84 91.95 94.34 97.93

The number of trees considered is 100 in random forest classifier

Table 6 Classification accuracy

(%) for features extracted from

different sets of IMFs extracted

using EMD method for various

cases of multi-class

classification problem

Modes used for features extraction Number of sleep stages for classification

Six stages Five stages Four stages Three stages Two stages

IMF1�IMF2 85.46 86.77 87.77 92.46 97.27

IMF1�IMF3 87.11 88.62 89.43 93.74 97.40

IMF1�IMF4 88.25 89.81 90.64 93.76 97.81

IMF1�IMF5 88.61 90.16 90.91 93.71 97.88

IMF1�IMF6 88.39 89.97 91.19 93.51 97.56

IMF1�IMF7 88.35 90.05 90.62 93.54 97.54

The number of trees considered is 100 in random forest classifier
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Fig. 9, indicates that the maximum classification accuracy

is 98.02% for 250 trees.

The confusion matrix of five-class classification prob-

lem is presented in Table 7. It provides the Sen and Spe of

each individual class epochs. Similarly, confusion matrix

for the six-class classification is shown in Table 8. It can be

observed that from Tables 7 and 8 that the Sen values of

the REM sleep stage detection are significantly higher,
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Fig. 5 Variation of

classification accuracy as a

function of number of trees for

six-class classification problem

in random forest classifier
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Fig. 6 Variation of

classification accuracy as a

function of number of trees for

five-class classification case in

random forest classifier
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Fig. 7 Variation of

classification accuracy as a

function of number of trees for

four-class classification problem

in random forest classifier
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which shows good detection ability of the classifier for

REM sleep stage.

Tables 7 and 8 show that most of the S1 stage epochs

are recognized as the REM sleep stage. In other words,

they are harder to distinguish. In order to investigate the

performance of the proposed methodology, we further

trained the classifier to distinguish S1 from REM sleep

stages. Table 9 lists the obtained results and comparison

of results with the method proposed by Zhu et al. [73]. It

is found that when trained with proposed features, the

random forest classifier can discriminate between S1 and

REM sleep stages with an accuracy of 84.00%. This

accuracy is obtained when classifier trained with features
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Fig. 8 Variation of

classification accuracy as a

function of number of trees for

three-class classification case in

random forest classifier
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Fig. 9 Variation of

classification accuracy as a

function of number of trees for

two-class classification problem

in random forest classifier

Table 7 Confusion matrix with Sen and Spe for five-class classifi-

cation case

Automatic classification Sen (%) Spe (%)

W S1 S2 S3–S4 REM

Expert annotation

W 7944 11 12 6 30 99.30 95.90

S1 183 113 123 4 181 18.7 99.80

S2 48 4 3334 149 86 92.10 95.30

S3–S4 13 0 198 1088 0 83.80 98.9

REM 52 11 207 0 1339 83.2 97.80

Table 8 Confusion matrix with Sen and Spe for six-class classifi-

cation case

Automatic classification Sen (%) Spe (%)

W S1 S2 S3 S4 REM

Expert annotation

W 7942 13 14 1 6 27 99.2 95.9

S1 179 114 124 3 1 183 18.9 99.80

S2 50 6 3350 101 30 84 92.5 95.20

S3 11 0 209 352 100 0 52.4 98.70

S4 3 0 12 90 522 0 83.3 99.10

REM 52 13 198 0 0 1346 83.70 97.80
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extracted from first seven modes and 200 trees are con-

sidered for classification. The achieved classification

accuracy is better than that of reported by Zhu et al. [73]

for classification between S1 and REM stages. They

obtained the value of Kappa coefficient as 0.34 for clas-

sification of S1 and REM stages. In the case of proposed

methodology, the obtained value of Kappa coefficient is

0.54, which is better than that of achieved in Zhu

et al. [73].

The performance of the proposed features is investigated

for different classifiers. The classification accuracy

obtained from different classifiers is shown in Table 10.

The compared classifiers include the naı̈ve Bayes, k-nearest

neighbor, multilayer perceptron, C4.5 decision tree, and

random forest. The purpose of the comparison is to

investigate the suitability of different classifiers for studied

features. All the experiments are performed using WEKA

software for multi-class classification problems obtained

from different sleep stages. The naı̈ve Bayes is the simplest

classifier but resulted in poor classification accuracy as

compared to other classifiers. While experimenting with

the k-nearest neighbor classifier, the value of k is varied

from 1 to 20. The best accuracy achieved for each multi-

class classification problem is mentioned in Table 10. The

multilayer perceptron is a neural network-based classifier.

In the case of multilayer perceptron classifier, we per-

formed experiments with the different number of hidden

layers. Starting with one hidden layer, it is observed that on

increasing the number of hidden layers, the classification

performance improves; however, at the same time, time

consumption gets increased. Therefore, we chose ten hid-

den layers for experiments. In the case of the C4.5 classi-

fier, with default parameters its speed is better than that of

random forest classifier, however, it resulted in lower

classification accuracy than that of random forest classifier.

Finally, we obtained best classification performance with

random forest classifier as can be observed from Table 10.

The performance of the proposed methodology is com-

pared with the other recent state-of-art sleep scoring tech-

niques reported in the literature. The methods presented in

these studies are evaluated on the Sleep-EDF database.

Table 11 provides comparison of the classification accu-

racies achieved in different existing methods and the pro-

posed method. In Table 12, the Kappa values obtained

using proposed methodology are compared for each case of

multi-class classification with results of the methodology

presented by Zhu et al. [73].

4 Discussion

In this work, a technique for classification of sleep stages

by employing nonstationary signal analysis method is

developed based on single channel EEG signal. This

method can be useful for computer-aided sleep stage

detection. The DESA is used to capture the variation in the

Table 9 Comparison of the results obtained for classification

between S1 and REM sleep stages

Authors Classification accuracy (%) Kappa coefficient

Zhu et al. [73] 78.8 0.34

Proposed method 84.00 0.54

Table 10 Comparison of

various classifiers for studied

features

Classifier Two-class Three-class Four-class Five-class Six-class

Naı̈ve Bayes 89.01 75.46 75.29 74.18 71.80

k-nearest neighbor 95.91 90.49 87.13 85.10 83.56

Multilayer perceptron 96.84 93.04 89.12 88.72 87.13

C4.5 96.67 91.69 88.04 87.18 84.85

Random forest 98.02 94.60 92.16 91.13 89.74

Table 11 Comparison of results reported in other existing methods with proposed method

Authors Multi-class classification Epochs used for training/testing

Two-class Three-class Four-class Five-class Six-class

Ronzhina et al. [59] 98.62 90.31 81.55 – 76.70 Tenfold cross-validation

Zhu et al. [73] 97.90 92.60 89.30 88.90 87.50 7481/7482

Hassan and Bhuiyan [23] 99.48 94.10 92.14 90.69 86.89 7592/7596

Hassan and Bhuiyan [22] 97.50 94.80 92.11 91.50 90.38 7594/7594

Proposed methodology 98.02 94.66 92.29 91.13 90.02 Tenfold cross-validation
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amplitude and frequency of the modes obtained using

iterative filtering. The statistical parameters are employed

for identifying characteristics of the different sleep stages

from amplitude envelope and instantaneous frequency

functions of the modes. The significance of the features is

examined using Kruskal–Wallis statistical test. The ran-

dom forest classifier is employed with tenfold cross-val-

idation procedure. The selection of the suitable number of

modes in order to extract the features is addressed. The

procedure for selection of the appropriate number of

decision trees is given. In the following paragraphs, we

will discuss some of the important attributes of the

developed algorithm.

The EEG signal is nonlinear and nonstationary in nat-

ure [2, 49, 52]; therefore, in this work, the nonstationary

signal decomposition technique namely iterative filtering is

used to decompose the sleep EEG epochs. The main dif-

ference between the iterative filtering and EMD is that the

iterative filtering involves low pass filtering to extract

modes, whereas the EMD method uses spline interpolation

approach for obtaining components of the signals. The use

of low pass filtering in iterative filtering for determining

modes is a simpler in principle and makes it more suit-

able for real-time implementation as compared to EMD

method. In addition, iterative filtering is suitable for hori-

zontal comparison between modes of the data. The term

horizontal comparison means that different signals

belonging to the same class when decomposed in the same

number of modes, the modes of the same index contain

comparable information [67]. In other words, the modes of

the same index belonging to different signals can be

compared in terms of particular characteristic feature.

Moreover, iterative filtering is less sensitive for the small

perturbation as compared to EMD due to use of low pass

filters at each stage [67]. In EMD method, the small per-

turbation may result in the different set of IMFs [71].

However, in order to further compare iterative filtering

over EMD, we have also implemented the proposed algo-

rithm by replacing iterative filtering with EMD method.

Then, the different multi-class classification cases with

random forest classifier are compared. The presented

results show the better performance of iterative filtering-

based classification technique. These results support the

suitability of the iterative filtering in the proposed method.

It has been observed that different sleep stages can be

characterized by variation in frequency content and

amplitude [20]. For example, the S1 sleep stage can be

characterized by low voltage and the mixed frequency with

the highest amplitude in frequency range 2–7 Hz. Simi-

larly, the sleep stage S3 can have 2 Hz or slower oscilla-

tions with the amplitude of 75 mV. The motivation for the

application of the DESA is to capture these variations in

frequency and amplitude by decomposing the mode in

amplitude envelope and instantaneous frequency functions.

The obtained amplitude envelope and instantaneous fre-

quency functions of the mode can represent the variations

in frequency and amplitude for different sleep stages.

Further, these variations are quantified using various fea-

tures. The TEO can be defined for three consecutive

samples of a mode. This fact also makes iterative filtering

algorithm more suitable for decomposition because it can

better handle effects of perturbation. Therefore, the

amplitude envelope and instantaneous frequency functions

can be estimated more accurately.

To analyze the sleep physiology and pathophysiology,

the gold standard is the PSG recorded in the labora-

tory [35]. The sleep scoring using PSG is basically per-

formed in hospital settings or clinical laboratory

environment. At such places, the subject has to wait for a

considerable period of time due to long waiting list [41].

Moreover, the sleep recording may require the subject to

stay overnight in the hospital. It may affect the sleep

quality of the subject due to the unfamiliar environment in

the hospital or sleep clinic [6, 41]. In addition, the sleep

scoring at laboratory may be expensive, require expertise,

and it is tedious and time-consuming process [1]. There-

fore, there is an increasing interest for the home-based

sleep assessment systems [35]. There are several com-

mercially available software system for the sleep moni-

toring purpose. These sleep monitoring systems make the

decision based on different physiological signals. The

example of such sleep monitoring system is Zeo

device [35]. This system consists of the elastic headband

which has sensors for multiple channel recordings such as

EEG, EMG, and EOG signals. Therefore, the system

developed based on single EEG channel can provide a

convenient solution for home-based sleep scoring and

analysis with relative ease.

The methods developed using the multiple physiological

signals such as ECG, EEG, EMG present some difficult

challenges. The subject preparation requires a long-time

and complicated procedure for recording of multiple sig-

nals. For example, electrodes often need to be glued for

proper recording of the ECG signals. It may also include

Table 12 The Kappa statistics corresponding to highest accuracy

obtained in different multi-class classification cases

Multi-class

classification case

Kappa statistics

Zhu et al. [73] Proposed methodology

Two-class 0.96 0.96

Three-class 0.87 0.9066

Four-class 0.83 0.8745

Five-class 0.83 0.8619

Six-class 0.81 0.8429
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the abrasion of subject’s skin area for low impedance [62].

It often poses hindrance and inconvenience for the com-

mon activities such as body movements. However, this

work employs only single channel EEG recordings for the

identification of sleep stages and therefore, overcome these

limitations up to a large extent. Also during recordings of

multiple physiological signals, ECG, EOG, and EMG can

introduce artifacts in EEG signals [54]. This may require

preprocessing and artifact rejection using filtering proce-

dure or correlation analysis. Therefore, the use of single

channel EEG signal can reduce the significant time for

artifacts and noise reduction. The use of single channel-

based algorithm is an important advantage of the proposed

methodology because it needs less power consumption,

hence, makes it suitable for implementation as power

efficient device. It can also facilitate portable, wearable,

and feasible implementation of the device for sleep quality

evaluation [1].

The detection of REM is important for the analysis of

REM sleep behavior disorder [30]. The deprivation of the

REM can be associated with other neurodegenerative dis-

orders like Parkinson’s disease and dementia [30]. The

characteristics of REM sleep stage is low voltage and

mixed frequency in EEG [20]. In PSG recordings, the REM

stage can be identified with the aid of EOG and chin EMG

signals [62]. The rapid eye movements that occur during

REM stage records in EOG. Similarly, the level of chin

muscles decreases during REM stage and can be observed

in chin EMG. However, it is found difficult to distinguish

REM from W and S1 sleep stages using automatic sleep

scoring [10, 54].

In Zhu et al. [73], the confusion matrix for five-class and

six-class classification cases shows Sen values for REM

sleep stage detection as 76.2 and 76.2%, respectively.

Similarly in Hassan and Bhuiyan [23], the confusion

matrix for five-class and six-class classification problem

shows Sen values for REM sleep stage which are 80.80 and

78.39%, respectively. In another study [22], reported the

Sen of REM sleep stage detection as 82.11 and 83.60% for

five-class and six-class classification problems, respec-

tively. It is evident from Tables 7 and 8 that the Sen of the

REM sleep stage detection obtained using proposed

method is better than former above-mentioned two studies

and equivalent to results of Hassan and Bhuiyan [22].

However, it should be noted that all three studies use nearly

50% data for training and remaining data for testing the

classifier. On the other hand, in the proposed study, the

tenfold cross-validation procedure is followed to obtained

classification performance. The Sen values for S1 detection

are better in the case of the methodologies presented

in [22, 23, 73]. The reason for the less Sen of the S1

detection can be attributed to the less number of epochs as

compared to awake and REM stages. The less Sen of S1

detection is also evident from the study presented in

Ronzhina et al. [59]. Therefore, the classification is also

performed separately for S1 and REM sleep stages. The

results obtained for the classification of S1 and REM

epochs also indicate the importance of proposed method-

ology in distinguishing the S1 and REM epochs.

The comparison of classification performance of dif-

ferent methods, in terms of classification accuracy, is pre-

sented in Table 11. It can be observed that the

classification accuracies for six-class to three-class classi-

fication problems obtained using proposed method are

better than that of the first three methods presented in

Table 11. In these multi-class classification problems, the

performance of the proposed method is equivalent to the

methods presented in Hassan and Bhuiyan [22]. Ronzhina

et al. [59] employed the cross-validation procedure; how-

ever, in other methods training and testing data are split

differently as mentioned in Table 11. Instead, the proposed

method employed tenfold cross-validation performance.

For two-class classification, results are slightly better in the

case of the study presented in Hassan and Bhuiyan [23] and

Ronzhina et al. [59]. We have used the same recordings as

studied by Zhu et al. [73] and Hassan and Bhuiyan [22],

and the proposed methodology shows better performance

than their methodology in terms of tenfold cross-validation

classification accuracy. In the proposed methodology, to

compute the classification performance, the classification

has been performed using tenfold cross-validation with

WEKA software. The interobserver bias in the classifica-

tion can be addressed based on the Kappa values [42]. In

Landis and Koch [42], the authors discussed the impor-

tance of the Kappa values with respect to the strength of

agreement among observers on the classification of the

individual class. The value of Kappa � 0:81 is considered

as an almost perfect agreement among different observers.

Kappa values, listed in Table 12, suggest the almost perfect

performance of the proposed methodology for each multi-

class classification problem. We have also performed the

comparison of proposed methodology in terms of Kappa

coefficient with those presented in Zhu et al. [73]. The

Kappa values show better performance of the proposed

methodology as the Kappa values are higher for last four

multi-class classification cases and in the two-class clas-

sification problem, the Kappa values are equal in case of

both studies.

In this work, the EEG signals recorded from the eight

subjects are considered for all the experiments. The EEG

epochs for a sleep stage taken from different subjects are

combined to be treated as a single class. The effect of

subject variability over different sleep stages is not ana-

lyzed in this work. In fact, the developed method is aimed

to detect the sleep stages without having any prior infor-

mation about the patient. Also, the approach of sleep stage
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detection adopted in the proposed methodology is consis-

tent with other studies carried out on the same database.

In future, a larger number of patients can be included for

further study of proposed method. The sleep constitutes the

different duration of various sleep stages. The duration of

the sleep also varies from subjects to subjects; therefore, the

number of epochs of various sleep stages varies too. It is

obvious from Table 1 that the number of epochs for dif-

ferent sleep stages is distributed unevenly. For example, the

number of epochs in S1, S3, and S4 is very less as compared

to epochs belong to awake. This leads to the class imbalance

problem in the sleep EEG classification. The problem of

class imbalance can be handled by resampling techniques

such as synthetic minority oversampling technique

(SMOTE) [14]. It should be noted that the performance of

the proposed method is significant as compared to the other

compared state-of-art methods. It is difficult to obtain per-

fect classification for all the studied multiclass classification

cases, may be due to class imbalance problem.

5 Conclusion

In this paper, iterative filtering-based decomposition is

studied for automated classification of sleep stages using

EEG signals. The TEO is used to extract the features from the

modes obtained by applying the iterative filtering technique.

In order to extract amplitude envelope and instantaneous

frequency functions, the DESA is employed which uses the

TEO. It is found that the features extracted from amplitude

envelope and instantaneous frequency functions of the

modes obtained using iterative filtering can efficiently dis-

criminate the various sleep stages from EEG signals. The

classification is performed using the five different classifiers

namely, naı̈ve Bayes, k-nearest neighbor, multilayer per-

ceptron, C4.5 decision tree, and random forest classifiers.

The performance of random forest classifier is found most

suitable for classification of sleep stages.We also presented a

strategy to find optimal choice of modes to extract features

for each case of multi-class classification. The performance

of the classifier is tested for the various number of decision

trees, and suitable choice for the number of decision trees is

reported for each case of the multi-class classification

problem. The results show that the proposed methodology

provides improved andmore robust performance. The results

were also compared with other existing methodologies for

two to six-class classification problems.We have also shown

the effectiveness of features for classification between the S1

andREMsleep stageswhich is found better than the previous

study. The proposed study only uses single channel EEG

signal-based strategy for sleep stages classification. The

strategy based on single channel EEG signals has several

advantages as compared to the strategy based on

multichannel or multiple physiological signals. The multi-

channel signal-based methodology may increase the com-

plexity of the algorithm and makes it complicated to

implement in wearable devices for automatic sleep quality

assessment. On the other hand, the multiple physiological

signal-based method may suffer through the complicated

process of subject preparation for signal acquisition. It also

requires many number of electrodes to be placed which

makes it unsuitable for a hassle-free process of recordings.

We conclude that with the obtained results and mentioned

advantages, the proposed methodology can be suitable for

designing automated sleep scoring devices.
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