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Abstract Mobile phones are rapidly becoming the most

widespread and popular form of communication; thus, they

are also the most important attack target of malware. The

amount of malware in mobile phones is increasing exponen-

tially and poses a serious security threat. Google’s Android is

the most popular smart phone platforms in the world and the

mechanisms of permission declaration access control cannot

identify the malware. In this paper, we proposed an ensemble

machine learning system for the detection of malware on

Android devices. More specifically, four groups of features

including permissions, monitoring system events, sensitive

API and permission rate are extracted to characterize each

Android application (app). Then an ensemble random forest

classifier is learned to detect whether an app is potentially

malicious or not. The performance of our proposed method is

evaluated on the actual data set using tenfold cross-validation.

The experimental results demonstrate that the proposed

method can achieve a highly accuracy of 89.91%. For further

assessing the performance of our method, we compared it with

the state-of-the-art support vector machine classifier. Com-

parison results demonstrate that the proposed method is

extremely promising and could provide a cost-effective

alternative for Android malware detection.

Keywords Random forest � Malware detection � Android �
Support vector machine � Requested permissions

1 Introduction

Mobile phones or smart phones are accelerating the pro-

gress of mobile industry. The number of smart phone users

in recent years is also increasing exponentially. Modern

people enjoy a variety of convenient services, such as

mobile banking service, mobile client mall, network

search, social network service, through mobile phones

anywhere, anytime as long as they can access the network.

With the great convenience and swiftness provided by

smart phones, significant threats of security vulnerability

have also increasingly highlighted, which is mainly caused

by the ongoing emergence of malicious software (also

known as malware) on the mobile platforms [1]. Recently,

hackers are expanding their attacks from existing PCs to

smart phone terminals. As various types of significant user

information are scattered through smart mobile phone, such

as user preferences, user phone number and user’s current

location, there is a possibility of enduring parlous damages

by the threat of hacker attacks [2, 3].

A report [4] from Alcatel-Lucent’s Motive Security Lab

stated the percent of infected mobile phones observed on a

monthly basis since December 2012 which using data was

averaged from actual mobile deployments. This report

showed that the world’s mobile devices infected by mal-

ware had 16 million units in 2014, accounting for 0.68% of

all mobile devices. The malware infection rate in mobile

devices increased 25% in 2014, and the growth was 20% in

comparison with 2013, while the infection rate fell to 0.5%

in 2015, but at the end of the first quarter it rose again to the

0.75%; in the first half of 2015, the amount of Android
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malware samples increased more than doubled. It can be

seen from these reports that we are facing a huge challenge

in terms of malware detection for mobile terminal, espe-

cially for the Google Android platform, which has been

dominant in the market [5]. The main reason for the growth

of malware on Android platform is its open-source policy

as well as its tolerance for market app verification. Besides,

unofficial repositories are also allowed, where software

developers can upload apps, including cracked apps, Tro-

jan horses or malware repackaged into a normal app.

Unfortunately, recent studies have indicated that the

existing popular solutions for detecting malware are far

behind the growing popularity of mobile apps.

Up to now, most of the malware detection methods are

based on the traditional content signatures [6–9], and their

work patterns are to compare each app against the known

malware signatures in database. The major weakness of

this kind of approaches is that they can only detect the

identified instances of malware precisely, but it unable to

identify the metamorphic or unseen instances of malware

[10]. This traditional approaches never keep up with the

speed in which malware is created and evolved. These

methods are commonly referred to as static analysis

[11, 12]. Static analysis, as the name indicates, it is the

process of examining malware without executing apps. In

addition to signatures, permissions were also often adopted

to detect Android malware [13]. Generally speaking, static

analysis is an economical as well as a fast approach, but it

produces less information, thus limiting the extraction of

possible features from malware activities. Moreover, the

attackers have developed a variety of methods, such as

code confusion techniques, to escape inspection by static

analysis [14, 15].

Instead of using predefined signatures or requested

permissions and so on from static analysis for malware

detection, dynamic analysis [7, 16] also provides some

effective ways to detect malware by observing the dynamic

behavior and features of apps, such as to use characteristic

and behavior-based method [17–21]. Dynamic analysis

involves running the sample in order to analyze its exe-

cution traces to extract useful information and enrich the

feature set. Some behavioral traits, such as system calls

[22], permissions app requested, battery consumption and

premium SMS, can be captured using dynamic analysis

exist. Dynamic analysis is usually more complex than the

static analysis, and it often suffers from low detection rates

and requires more resources to reduce the number of false

positives reported. And analyzing the dynamic behavior of

app only reveals information about what the malware was

doing at that time [23]; besides, its cost and time con-

sumption are also amazing [24]. Egele et al. [25] offers a

complete overview of automated dynamic malware anal-

ysis technique. They are usually inclined to high false

positives because of lack of sufficient training. Thus, we

here introduce machine learning method to detect malware

in Android platform.

Application of machine learning algorithms for Android

malware classification is an emerging area [24, 26–30].

Recently, a number of machine learning algorithms provide

some effective ways to dynamically extract malware pat-

terns, and the experimental results from previous studies

indicate that they can achieve outstanding detection rates

[12, 31]. In this paper, we propose HEMD, a highly effi-

cient method for detecting Android malware using the

machine learning method RF [32]. HEMD performs a

broad static analysis and gathers malware-related features

from Android Package (Apk) file. These features include

permissions, monitoring system events, sensitive APIs and

permission rate. For instance, a great percentage of current

malwares send premium SMS messages and thus request

the Android.permission.SEND_SMS permission and so on.

Consequently, the key features are extracted from such

malwares, which can be mapped to a specific set of features

associated with the corresponding permissions, monitoring

system events, sensitive APIs and permission rate. This

working mechanism enables HEMD to identify automati-

cally combinations and patterns of features which are the

indicatives for malwares by means of machine learning

methods. When performed on an actual data set using

tenfold cross-validation, HEMD can achieve a high accu-

racy of 89.91% which exhibits it is a credible method to

protect against malicious destructive activities. For further

assessing the performance of the proposed method, we

compared it with the state-of-the-art SVM classifier under

the same experimental conditions. Comparison results

prove that the proposed method is a glaring candidate for

detecting malicious activities.

The remainder of this paper is organized as follows:

Sect. 2 briefly describes the proposed method’s framework.

Section 3 introduces our materials and methodology. Sec-

tion 4 presents RF Classifier used in this paper. In Sect. 5,

we present experimental results from RF classifier and also

compare those with that of state-of-the-art SVM classifier.

Finally, we conclude our work in Sect. 6.

2 The proposed model’s framework

The framework of the HEMD proposed by this paper is

illustrated in Fig. 1. Our framework consists of several

components which offer adequate resources and mecha-

nisms to recognize Android malware. Specifically, the first

step is to execute the de-compilation module, in which all

Apk files are reversed to Androidmanifest.xml and some

Smali files through apktool [21, 33]. The second step is to

execute the feature extraction module. Some key features
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are extracted in this module in accordance with some

importantly and widely accepted measures, such as TF-IDF

and cosine similarity [34]. The third step is to carry out the

machine learning module, in which RF model is employed

to build the classifier.

In this study, 600 benign and 600 malware apps are

adopted as training data set and the other apps are used as

testing data set.

3 Materials and methodology

The most concerned features, as mentioned above, are per-

missions, monitoring system events, sensitive API and per-

mission rate, and these four groups of features are employed

to characterize the behaviors of Android apps in this paper.

3.1 Data sources

The data set we used consists of 2130 Android apps, of which

1065 apps are benign and 1065 apps are malware. The benign

apps are from official Android market and the malware apps

are from http://virusshare.com/, and we named this data set

as Hemdds. We perform our method on Hemdds data set and

compare our method with SVM based on this data set.

3.2 Key features representation

General speaking, the collected data by monitoring resources

in an Android environment play a very important role to

detect malware. This part explains the key features used in

the proposed method for detecting Android malware.

3.2.1 Permissions

The permission system is one of the most crucial security

mechanisms introduced in the Android platform. To

perform certain tasks on the mobile, such as mobile maps,

each app has to explicitly request permissions from the

user during the installation stage [7]. In order to better

reflect the characteristics of the Android malware, the

permissions requested by the training data set all were

collected. A list of top 9 permissions are selected as the

dangerous permissions in the proposed model in confor-

mity with the ratio r (r = frequency in malware/frequency

in benign software), which are shown in Table 1.

3.2.2 Monitoring system events

The Android app consists of four components: activity,

service, BroadcastReceiver, and content provider. These

components work individually, and each component

delivers messages (also known as intent) to other com-

ponents to allow cooperation. The BroadcastReceiver is

a class that does not have a user interface and which is

able to run silently in the background, and its respon-

sibility is to monitor broadcast events (e.g., intent) from

the system to wake up the appropriate activities. For this

Fig. 1 Framework of the

proposed model

Table 1 Extracted permission features

Nos. Permission name

1 android.permission.WRITE

2 android.permission.UPDATE_DEVICE_STATS

3 com.android.alarm.permission.SET_ALARM

4 android.permission.INSTALL_PACKAGES

5 com.android.browser.permission.WRITE_

HISTORY_BOOKMARKS

6 android.permission.WRITE_

SECURE_SETTINGS

7 com.android.browser.permission.READ_

HISTORY_BOOKMARKS

8 android.permission.RECEIVE_SMS

9 android.permission.SEND_SMS
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reason, malware monitoring system events by Broad-

castReceiver is a quite popular solution for malware

developers [33, 35]. A typical example of a monitoring

system event involved in malware [37, 38] is BOOT_-

COMPLETED, which is used to trigger malware directly

after rebooting the smart phone. In order to better

characterize the malware, we collected all monitored

system events in malware and benign training set and

counted separately the frequencies they appeared in

these two sets of samples. After sorting the ratio

r (r = frequency in malware/frequency in benign soft-

ware, if the denominator is 0, it will be replaced by 1),

the top of 6 events are selected as key feature subsets to

identify whether one app is belong to malware or benign,

which are shown in Table 2.

3.2.3 Sensitive APIs

The Android platform offers a framework application pro-

gramming interface (API) that apps can use it to interact

with the Android system bottom. APIs have been demon-

strated to play an important role in malware detection by

previous studies [24, 36, 39, 40], and the API calls are

contained in the .dex classes. The tool apktool [33] is used as

the de-compiler in this research which parses .dex file to

Smali files, and the information of API calls can be obtained

in these Smali files. Combined with the points that users

more concerned about (e.g., SMS operation, equipment

information, contacts operation), the top of 12 sensitive API

are selected and part of them is shown in Table 3.

3.2.4 Permission rate

In this paper, the permission rate (prate) is defined as

formula (1):

prate ¼ pnum

ssize
ð1Þ

where pnum represents the total amount of permissions

requested by one app and ssize is the size of Smali file

(unit: MB) which generated by decompiled the app. The

use of permission rate as one feature to detect malware is

based on following reasons: First, the abuse of permissions

is common in malware; second, normally, the more per-

missions a benign app requests, the more functions it

provides, which mean the size of its Smali file will be also

big. Therefore, the permission rate of the malware is usu-

ally greater than the benign one, and the permission rate

can also become an effective feature of malware detection.

4 Random forest classifier

RF is a new classification and regression algorithm

developed by Leo Breiman [41] which uses decision tree as

base classifier. Each tree is built employing a bootstrap

sample of data, and the candidate features set in each

division is a random subset of the global features.

Accordingly, RF takes advantage of two powerful machine

learning techniques: bagging (bootstrap aggregation) [42]

and random features selection for tree building. Each of the

decision trees has a characteristic of low bias because it is

un-pruned and grown fully; meanwhile, the correlation of

individual trees is low due to the characteristics of bagging

and random features selection. Therefore, RF produces an

ensemble with low bias and low variance.

The final prediction result is derived from a set of pre-

diction results through combination strategy, and the

combination strategies commonly adopted include aver-

aging (simple averaging, weighted average) and voting

(majority voting, plurality voting and weighted voting).

Compared with the single decision tree classifier (e.g.,

CART, C4.5) [34, 43–45], RF takes a significant perfor-

mance increase. Although RF is not widely used in the

Android malware detection now, it takes following char-

acteristics that make it ideal for this target:

1. It is available when there are many more features than

observations.

2. It takes great estimated performance, in spite of a lot of

predictor variables may contain noise.

3. It is not prone to over-fitting.

4. It can handle a mixture of categorical and continuous

predictors.

Table 2 Extracted monitoring system events

Nos. Monitoring system events name

1 android.intent.action.DATA_SMS_RECEIVED

2 android.intent.action.BATTERY_CHANGED

3 android.intent.action.AIRPLANE_MODE

4 android.provider.Telephony.SMS_RECEIVED

5 com.google.android.c2dm.intent.RECEIVE

6 android.intent.action.QUICKBOOT_POWERON

Table 3 Part of selected sensitive API and URL

Type API and URL

SMS-related API calls sendTextMessage()

SMS-related API calls getMessageBody()

Get the international mobile station

identity (code) of mobile

getSubscriberId()

Get the cell phone number getLine1Number()

Get the location information getLastKnownLocation()

The operation of mobile phone

contacts

content://com.android.contacts
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5. It has the characteristics of high quality and free

implementations.

6. There is almost no need to continuously fine-tune

parameters to achieve superior performance. Com-

monly, L (the number of decision trees) and mtry (the

number of input features tried at each split) are the most

significant parameters, and these two parameters will be

seriously and carefully investigated in this research.

The RF classifier used in this paper, as well as the

majority voting, is summarized as follows:

The RF classifier algorithm

1. Take L bootstrap samples from the Hemdds data set;

2. For each of the bootstrap samples, grow an un-pruned

classification tree, with the following modification: at each node,

select the optimal split from randomly sample mtry of the

features, instead of from all features. (Note: when mtry = tn, it

is equivalent to Bagging algorithm, where tn is the total amount

of features.)

3. The new app will be predicted by gathering the predictions of

the L trees with the majority voting method.

It is assumed that the training model including classifiers

fc1; c2; . . .; cTg and ci xð Þ is the output of classifier ci on the

sample x. In the classification task, every classifier ci will

predict an output from the class label set fo1; o2; . . .; oNg
(in this paper, the class label set is {malware, benign});

then, the majority voting method is introduced to combine

these outputs to get the final predict class. In order to

facilitate the discussion, the predict outputs of classifier ci
on the sample x are expressed as N-dimensional vector

c1
i ðxÞ; c2

i ðxÞ; . . .; cNi ðxÞ
� �

, where cki ðxÞ is the predict output

of classifier ci on the class label ok. The final prediction

classification result C xð Þ is defined as gformula (2):

C xð Þ ¼ ok; if
PT

i¼1

cki xð Þ[ 0:5
PN

l¼1

PT

i¼1

cli xð Þ
reject; otherwise

8
<

:
ð2Þ

5 Results and discussion

5.1 Select the parameters mtry and L in RF

In our method, the amount of features randomly sampled as

candidates at each split (mtry) and the number of decision trees

L in the RF will affect the performance of our model. Since a

large number of trees and an appropriate mtry will lead to

considerable computational cost and will affect the accuracy

of the proposed method, it is crucial to find the suitable pa-

rameters. Figure 2 shows the prediction results of different

parameters. According to Fig. 2a, keeping L to 500 and tuning

mtry from 0 to 28 at intervals of 1, we can find that when

setting the mtry = 11, an excellent result with accuracy of

90.05% can be obtained. When we set mtry to 11 and increase

the value ofL from 50 to 1000 at intervals of 50, the results are

shown in Fig. 2b. Figure 2b demonstrates that with the

increase inL, the accuracy rate gentle rise at the beginning, but

it soon tends to be stable. Considering the time cost and

accuracy of the algorithm, we eventually choose the most

appropriate parameters of mtry = 11 and L = 500.
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Fig. 2 a Percentage of prediction accuracy with increasing mtry; b percentage of prediction accuracy with increasing L
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5.2 Evaluation criteria

For the purpose of measuring the predictive performance of

the HEMD method proposed in this paper, some evaluation

criteria such as sensitivity, precision, accuracy, Matthews

correlation coefficient (MCC), area under curve (AUC) and

receiver operating characteristic curve (ROC) are intro-

duced. Their definitions are shown as the formula (3–6):

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
ð3Þ

Sensitivity ¼ TP

TP þ FN
ð4Þ

Precision ¼ TP

TP þ FP
ð5Þ

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞ

p

ð6Þ

where true positive (TP) is the amount of positive testing

samples correctly predicted as positive, false positive (FP)

is the amount of negative testing samples incorrectly pre-

dicted as positive, true negative (TN) is the amount of

negatives testing samples correctly predicted as negative,

false negative (FN) is the amount of negatives testing

samples wrongly predicted as positive and MCC is a cor-

relation coefficient that evaluate the quality of binary

classifications in machine learning. Besides, AUC and

ROC are often used together to evaluate the merits of

binary classifier. ROC is a comprehensive index reflecting

the sensitivity and specificity, and AUC is adopted together

because sometimes the ROC curve does not clearly indi-

cate which classifier is better.

5.3 Assessment of prediction ability

In the experiment, in order to test the stability of the

proposed model and avoid the over-fitting, the tenfold

cross-validation is utilized to measure the performance

of HEMD. Specifically, all samples are randomly divi-

ded into ten disjoint subsets of approximately equal size;

each takes one for the test set, the other nine copies for

the training set to form a model, thus formed ten groups

of test model.

The experimental results are shown in Table 4.

Focused on the Hemdds data, it can be noticed that the

average of accuracy and its standard deviation are 89.91

and 1.84%; the average of precision and its standard

deviation are 88.84 and 2.5%; the average of sensitivity

and its standard deviation are 91.22 and 2.67%. In par-

ticular, in the best case, the accuracy and the precision is

up to 92.96 and 93.4%. We yield the average of MCC

and its standard deviation which are 79.86 and 3.71%.

The ROC curves perform on Hemdds data set is shown

in Fig. 3, and the average of AUC and its standard

deviation achieved by the proposed method are 90.31

and 2.39%.

Table 4 Prediction results

achieved by the proposed

method with using tenfold

cross-validation

Test set Sensitivity (%) Precision (%) Accuracy (%) MCC (%) AUC (%)

1 90.35 89.57 89.2 78.29 89.88

2 88.78 84.47 87.32 74.66 86.3

3 86.92 87.74 87.32 74.65 88.12

4 90.29 86.92 88.73 77.52 88.23

5 90.29 87.74 89.2 78.43 91.32

6 93.52 89.38 91.08 82.23 90.66

7 90.48 88.79 89.67 79.35 88.84

8 92.52 93.4 92.96 85.92 93.51

9 97.27 87.7 91.55 83.55 92.02

10 91.82 92.66 92.02 84.02 94.21

Average 91.22 ± 2.67 88.84 ± 2.5 89.91 ± 1.84 79.86 ± 3.71 90.31 ± 2.39
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Fig. 3 Receiver operating characteristic (ROC) curves for RF

classifier
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5.4 Comparison between random forest

and support vector machine

To evaluate the performance of the proposed method, we

compared it with the state-of-the-art SVM classifier under

the same experimental conditions. Table 5 shows the pre-

diction results achieved by the proposed method and SVM

classifier. It can be observed that the averages of sensi-

tivity, precision, accuracy, MCC, AUC and their standard

deviations for RF model are 91.22 ± 2.67, 88.84 ± 2.5,

89.91 ± 1.84, 79.86 ± 3.71 and 90.31 ± 2.39%, respec-

tively. The averages of sensitivity, precision, accuracy,

MCC, AUC and their standard deviations for SVM clas-

sifier are 86.18 ± 2.18, 84.13 ± 1.74, 84.93 ± 1.74,

69.95 ± 3.41 and 85.96 ± 1.9%, respectively.

Table 5 shows that the performance of the proposed

method can achieve significant improvement over the SVM

classifier. Specifically, the average accuracy achieved by

the proposed method is improved by 4.98% compared to

SVM. According to Fig. 3, it can be noticed that the result

of average AUC achieved by the proposed method is

90.31%. Figure 4 shows that the result of average AUC

achieved by SVM is 85.96%. This is due to the fact that

there may contain a great quantity of information in the

feature set, of course, noise data are common among them,

which will affect the accuracy of the classifier, so the SVM

did not perform well on this kind of feature set. Con-

versely, decision tree provides an explicit model describing

the relationship between features and predictions, thus

easing model interpretation. RF, as an ensemble of trees,

inherits the ability to select ‘important’ features. Addi-

tionally, a large number of decision trees and the use of the

majority voting that RF identified are extremely crucial for

classifying Android apps coincided with expectations. It

also can be seen that RF yields generalization error rate

that compares favorably to SVM algorithm, yet is more

robust to noise.

6 Conclusion

In this work, we propose a RF-based malware detection

scheme for Android platform, and use permissions, moni-

toring system events, sensitive API and permission rate

combinations as features to build a RF classifier, which can

automatically distinguish Android malicious or benign

apps. A significant advantage of our approach is that it can

acquire key features involved in each app through simple

and rapid static analysis method, and do not need to

involve any dynamical tracing (e.g., system calls and bat-

tery consumption). Moreover, because these four groups of

features are always available for each app, our approach

can be generalized to all mobile apps. Excellent experi-

mental results we achieved in actual data set demonstrate

that the proposed model can accurately predict the Android

malware. At the same time, we believe that our method has

broad application prospects in the user information security

area.

Table 5 Prediction results

achieved by SVM with using

tenfold cross-validation

Test set Sensitivity (%) Precision (%) Accuracy (%) MCC (%) AUC (%)

1 87.27 85.71 85.91 71.80 85.28

2 83.48 87.27 84.51 69 86.68

3 83.02 81.48 82.16 64.33 83.23

4 85.71 77.06 81.69 63.79 82.84

5 85.98 87.62 86.85 73.72 87.68

6 88.24 81.82 84.98 70.19 85.59

7 89.42 82.30 85.45 71.18 88.89

8 87.62 84.40 85.92 71.89 88.30

9 83.19 88.39 84.51 68.98 85.03

10 87.88 85.29 87.32 74.60 86.1

Average 86.18 ± 2.18 84.13 ± 3.31 84.93 ± 1.74 69.95 ± 3.41 85.96 ± 1.9

Proposed method 91.22 ± 2.67 88.84 ± 2.5 89.91 ± 1.84 79.86 ± 3.71 90.31 ± 2.39
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Fig. 4 Receiver operating characteristic (ROC) curves for SVM

classifier
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