
ORIGINAL ARTICLE

An improved ant colony optimization algorithm with strengthened
pheromone updating mechanism for constraint satisfaction
problem

Qin Zhang1 • Changsheng Zhang1

Received: 5 November 2016 / Accepted: 13 February 2017 / Published online: 28 February 2017

� The Natural Computing Applications Forum 2017

Abstract Constraint satisfaction problem (CSP) is a fun-

damental problem in the field of constraint programming.

To tackle this problem more efficiently, an improved ant

colony optimization algorithm is proposed. In order to

further improve the convergence speed under the premise

of not influencing the quality of the solution, a novel

strengthened pheromone updating mechanism is designed,

which strengthens pheromone on the edge which had never

appeared before, using the dynamic information in the

process of the optimal path optimization. The improved

algorithm is analyzed and tested on a set of CSP bench-

mark test cases. The experimental results show that the ant

colony optimization algorithm with strengthened pher-

omone updating mechanism performs better than the

compared algorithms both on the quality of solution

obtained and on the convergence speed.

Keywords Ant colony optimization � Constraint
satisfaction problem � Pheromone updating mechanism �
Swarm intelligence

1 Introduction

In the field of artificial intelligence, CSP [1] is one of the

key problems need to be tackled. Many practical problems

can be modeled as it, such as machine vision [2, 3],

scheduling, pattern recognition [4, 5] and resource alloca-

tion. This problem [19, 20] can be defined as a tripe\X, D,

C[such that X is a finite set of variables, X =\X1,

X2,……, Xn[; D is a function that combines each Xi [Di

with its domain, D =\D1, D2,……, Dn[; and C is a set of

constraints which restricts the set of values that the vari-

ables can simultaneously assume, C =\C1, C2,……, Cn[.

A constraint Cj is a relation–scope pair\Rsj, Sj[, where Rsj
is a relation of variable on Sj = scope (Cj). In other words,

Ri is a subset of the Cartesian product of a domain of

variable Si. Currently, the mainstream algorithms for

solving it mainly include three categories, i.e., backtrack-

ing algorithm [6], pure random walk (PRW) algorithm [7]

and swarm intelligence (SI) algorithm. In the group of SI

algorithm, the commonly used algorithms for CSPs mainly

include particle swarm optimization (PSO) algorithm

[8–10], genetic algorithm (GA) [11–14], artificial bee

colony (ABC) algorithm [15, 16], differential evolution

(DE) algorithm [17] and ant colony optimization (ACO)

algorithm. The scale of CSP is so large that computational

efficiency of backtracking algorithm will be significantly

reduced, and it will appear difficult to solve it in a rea-

sonable time. However, PRW algorithm can improve the

efficiency of solving the problem, but the quality of solu-

tion is unsatisfactory, which remains to be further

improved.

Complete algorithms can theoretically solve all combi-

natorial optimization problems perfectly. These algorithms

commonly solve CSPs in a complete and systematic way

until either the CSP is shown no solution or a solution is

found. Nevertheless, CSPs are generally NP hard. Although

some test instances might be lightly solved, it will not be

likely to find optimal solutions in a reasonable time for

many complex large-scale test instances in practice. For

this reason, incomplete algorithms are proposed to improve

this situation. An incomplete algorithm cannot ensure to

find a solution; neither can it determine when a problem

& Changsheng Zhang

zhangchangsheng@cse.neu.edu.cn

1 College of Computer Science and Engineering, Northeastern

University, Shenyang 110819, People’s Republic of China

123

Neural Comput & Applic (2018) 30:3209–3220

https://doi.org/10.1007/s00521-017-2912-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-2912-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-2912-0&domain=pdf
https://doi.org/10.1007/s00521-017-2912-0

has no solution generally. However, it can quickly find

approximately optimal solutions, although the optimal

solution is not necessary in practice, that is, complete

assignments that satisfy a considerable proportion of the

constraints, which is quite practical in real life. Incomplete

algorithms usually deploy methods stochastically, ant col-

ony optimization algorithm being one of the most typical

examples. ACO algorithm not only has the advantages of

high speed and high accuracy, but also can obtain good

near solutions which meet the requirements of the accu-

racy. ACO algorithm may be less efficient than the com-

pared algorithms on some simple CSP test instances, but

there will be a great advantage in the efficiency of solving a

comparatively complex CSP test instances. Especially,

when we do not know that the characteristics of the

instance or we should choose what kind of algorithm in

advance, this feature will become very meaningful. Fur-

thermore, we can easily achieve it and can greatly save

solution costs in solving large-scale CSPs.

Mizuno et al. [18] proposed elitist ants to solve CSPs

and added the theory of partial blockage. A valid part of the

solution was selected from the previous generation of

candidate solutions, so that CSPs can be effectively solved.

Solnon et al. [19] presented a novel incomplete approach,

which follows the classic ACO meta-heuristic algorithm to

solve static combinatorial optimization problems. In each

cycle, every ant constructs a complete assignment and then

pheromone trails are updated. Iterations continue until

either predetermined maximum number of cycles has been

reached or a solution is found. And this ACO algorithm

combined with local search (LS) [26] and preprocessing

step to improve performance of algorithm. Tarrant et al.

[20] presented six ACO algorithms for solving CSPs. They

also introduced compound decisions, cascaded decisions,

common variable ordering heuristics and carried out

experiments to compare them. Aratsu et al. [21] presented a

novel algorithm, the limited memory Ant-Solver, which

extends Ant-Solver. The ants in this algorithm have limited

memory, enabling them to recall partial assignments from

their previous iteration while building new ones. Gonzalez-

Pardo et al. [22] proposed a novel efficient graph-based

representation for solving CSPs by utilizing ACO algo-

rithm. And they also presented a new heuristic, which has

been designed to improve the current state of the art in the

application of ACO algorithms. Michalis et al. [23] pro-

posed a self-adaptive evaporation mechanism in which ants

are responsible to select an approximate evaporation rate

for CSPs. In the existing literature, while updating the

pheromone, the proposed algorithm did not take the vari-

ation information into account in the process of optimal

path optimization.

The ACO algorithm generates the iterative optimal

solution so far after several iterations, and then a better

iterative optimal solution was compared with it to deter-

mine the dynamic changes of information, that is, which

edges are newly explored. Furthermore, the variation

information can contribute to narrow the scope of the

search area and improve the search efficiency. Therefore, a

novel ACO algorithm with strengthened pheromone

updating mechanism is proposed, which makes full use of

dynamic change information in the process of the optimal

path optimization and strengthens pheromone on the edges

which had never appeared before. By adding such mech-

anism, the convergence speed of the improved algorithm

can be speeded up under the premise of not influencing the

quality of the solution in solving large-scale CSPs.

This paper is organized as follows. Section 2 shows the

basic ACO algorithm for solving CSPs. Section 3 describes

an improved ACO algorithm with strengthened pheromone

updating mechanism for CSP. Section 4 reports experi-

mental results on CSP benchmark test cases with the other

three compared algorithms. Section 5 draws conclusions

and discusses future work.

2 The basic ACO algorithm for CSPs

When solving CSPs [19, 20], we commonly model them as

searching for a minimum cost path in an undirected con-

straint graph. The graph associates each variable–value pair

\Xi, v[of the CSP with a vertex. There is an edge between

any pair of vertices corresponding to two different vari-

ables, which represents constraint relation between vari-

ables. All of the edges are not needed because a path

through the graph that contains \Xi, v[cannot contain

another label for variable xi as this would violate the def-

inition of an assignment. More specifically speaking, the

construction graph related to a CSP (X, D, C) is the undi-

rected graph G = (V, E) and therefore as follows:

V ¼ \Xi; v[jXi 2 X; v 2 DðXiÞf g ð1Þ

E ¼ ð\Xi; v[;\Xj;w[Þ 2 v2jXi 6¼ Xj

� �
ð2Þ

This method is consistent with the idea of using ACO

algorithm to search for the shortest path. Therefore, we

take advantage of this idea to find the solution path that

meets all constraints in the constraint graph. And this path

is the final minimum cost solution of CSP.

Ant-Solver based on Max–Min ant system (MMAS)

[24, 25] has been applied to CSPs, which includes five

steps: initializations, construction of assignment, updating

pheromone trails, evaluation of the solution, and deter-

mining whether the termination condition is satisfied. The

research of this paper is mainly focused on the section of

updating pheromone trails. If you want to know other

concrete operation steps, please refer to the literature [19].

3210 Neural Comput & Applic (2018) 30:3209–3220

123

Next, we will introduce the section of updating pher-

omone trails in detail. After each ant has constructed a

complete assignment, updating pheromone trails accord-

ing to pheromone updating formula: all pheromone trails

are decreased uniformly, so as to simulate evaporation

and allow all of the ants to forget unsatisfactory assign-

ments, and then the best ants of the iteration deposit

pheromone. Generally speaking, at the end of iteration,

the quantity of pheromone on each vertex is updated as

follows:

sðiÞ ð1� qÞ � sðiÞ þ
X

Ak2bestA
DsðA; iÞ ð3Þ

where q is the evaporation parameter such that

0 B q B 1�s(i) is the total amount of pheromone, and

bestA is the set of the best assignments constructed

during the iteration. If it is not on the optimal path, only

do pheromone evaporation, the increment is zero

according to Formula (4). Otherwise, if it is on the

optimal path, the cost function stores a certain amount of

pheromone.

DsðAk;\xi; v[Þ ¼
1

CostðAkÞ
if\xi; v[2 Ak

0 Otherwise

8
<

:
ð4Þ

The basic process of ACO algorithm for CSPs is shown in

Fig. 1.

3 ACO algorithm with strengthened pheromone
updating mechanism for CSPs

Through the analysis of pheromone updating mecha-

nism of Ant-Solver, it can be found that the pheromone

updating process is executed after each ant has con-

structed a complete assignment, which includes

pheromone evaporation and pheromone enhancement.

Pheromone evaporation is the process that pheromone

trails on each vertex or edge weakened automatically,

gradually. This evaporation process is mainly used to

avoid algorithm to fall into local optimum region

quickly, which contributes to enlarging the search

space. Pheromone enhancement process is an optional

part of ACO algorithm, which is called offline updat-

ing. This updating way updates the remaining infor-

mation informally after all of the m ants have visited n

vertices.

ACO algorithm in the existing literature on updating

pheromone just simply evaporates and enhances pher-

omone and do not analyze the evolution information of

iterative optimal path optimization. In addition, algorithm

would appear slow convergence speed in solving large-

scale CSPs. Furthermore, the search space of the basic ant

colony algorithm is too large, resulting in wasting of

resources. Therefore, we reduce the search space through

strengthened pheromone updating mechanism to improve

the search efficiency. This mechanism makes full use of

dynamic change information in the process of the optimal

path optimization and strengthens pheromone on the edge

which had never appeared before.

In this paper, we add a pheromone increment matrix on

the basis of the original pheromone matrix. The improved

algorithm maintains a pheromone increment matrix, that is,

all of the ants in the group share the pheromone increment

matrix. IOSolution is used to represent the iterative optimal

solution set. BIOSolution is used to represent the better

iterative optimal solution set. VInformation is used to

represent the variation information. Moreover, we add a

dynamic strengthened pheromone updating mechanism on

the basis of the existing pheromone updating mechanism.

After several iterations the algorithm generates the iterative

optimal solution so far; after this then a better iterative

optimal solution was compared with it to determine the

dynamic changes of information, that is, which edges are

newly explored. Next, we provide the information with

extra dynamic pheromone enhancement in the condition of

original pheromone updating and take the increment into

the pheromone increment matrix. The quantity of pher-

omone increment laid is inversely proportional to the better

optimal path cost; therefore, the more constraints are vio-

lated, and the less pheromone is stored. So it will increase

the probability subsequent ants to access the edges, to some

extent, improving the search efficiency and speeding up the

convergence speed of algorithm.

IOSolution ¼ Ak 2 A1; . . .;AnbAntsf gf
¼ e1; e2; e3; e4; e5; e6; e7; e8.f g
CostminðAkÞj g ð5Þ

Algorithm Ant-Solver
1. input X,D,C

2. begin

3.Set parameters and Initialize pheromone trails

4. repeat

5. for each ant K do

6. Construct a complete assignment Ak

7. if Cost(Ak) < Cost(bestA) then

8. bestA ← Ak

9. end if

10. end for

11. Update pheromone on each component referenced by Eq.3 and Eq.4

12. until Cost (bestA) = 0 ∨ maximum number of fitness evaluations reached

13. return bestA

14. end

Fig. 1 Pseudo-code of Ant-Solver scheme

Neural Comput & Applic (2018) 30:3209–3220 3211

123

BIOSolution ¼ Ak 2 A1; . . .;AnbAntsf gf
¼ e1; e2; e3; e4; e5; e6; e9; e7; e8; e10.f g
CostsminðAkÞj g ð6Þ

VInformation ¼ Ek ¼ e9; e10.f gf g ð7Þ

where Ak is the optimal solution set. ei represents an edge

of the optimal solution set. Ek is the variation edges set. For

example, e9, e10 may be the variation edges by comparison,

which are newly explored.

The innovation of this paper is embodied in stage of

pheromone updating, improving original pheromone

updating formula (Eq. 3), as follows:

sðiÞ ð1� qÞsðiÞ þ
X

Ak2BestOfCucle
DsðA; iÞ þ DsibðA; iÞ

ð8Þ

where q is the evaporation parameter such that

0 B q B 1�s(i)is the total amount of pheromone, and

BestOfCycle is the set of the best assignments constructed

during the iteration. It is formally defined as shown in

Eq. (9). Dsib(A, i) is the additional enhanced pheromone

increment for newly explored edges. If the path is better

than the optimal path in the current iteration, add Dsib(A, i)
to pheromone updating formula; otherwise, update pher-

omone according to the original formula. The specific

value of Dsib(A, i) is shown in the following formula:

DsðAib
k ;\xi; v[Þ ¼

1

CostðAib
k Þ

if\xi; v[2 Aib
k

0 Otherwise

8
<

:

ð9Þ
BestOfCycle ¼ Ak 2 A1; . . .;AnbAntsf gjCostminðAkÞf g

ð10Þ

The concrete process of ACOU algorithm for CSP is shown

in Fig. 2.

A CSP (X, D, C), where X is the set of variables, n is the

number of variables in X, and q is the number of vertices in

construction graph.

q ¼
X

xi2X
DðxiÞj j ð11Þ

When constructing a complete assignment, calculations

of pheromone values in all the transition probability require

O (n*q) operations. After each cycle, pheromone updating

needs O (q2) pheromone evaporation and O (n2) to add

pheromone concentration of the visited edge or vertex.

Difference of time complexity is mainly based on that

whether the constraint is global constraint or binary con-

straint for the operation that has nothing to do with pher-

omone, such as the selection of variables, the calculation of

heuristic factor. The total time complexity is

TðnÞ ¼ OðNc � q2 � mÞ ð12Þ

where Nc is the number of iterations; m is the number of

ant in ant colony. Thus, the time complexity will increase

with increase in the size of CSP. The total space com-

plexity is

SðnÞ ¼ Oðq2Þ þ Oðq � mÞ ð13Þ

Time complexity and space complexity did not signifi-

cantly changing, when the improved ACO algorithm is

compared with the basic ACO algorithm.

4 Experimental results

4.1 Datasets of test case

In this paper, we choose Model A in random constraint

network (random instance, RAND) classic model to gen-

erate test cases. The generator of Model A [27] randomly

generates four groups of binary CSP test case dataset, i.e.,

Case1, Case2, Case3 and Case4. Each dataset contains six

specific test cases, which covers the constraint of low

complexity, high complexity or no solution. Any random

CSP instance can usually be defined as five components (m,

n, d, p1, p2), where m represents the number of constraints,

n represents the number of variables, d represents the

domain size of each variable, p1 is used to measure the

connectivity of constraint graph, and p2 is used to measure

the tightness of constraints. For binary CSPs, m can usually

be omitted; therefore, random CSP instance can usually be

defined as four components (n, d, p1 and p2).

The specific data of four datasets of test cases, Case1,

Case2, Case3 and Case4, are shown in Table 1.

Algorithm ACOU
1. input X,D,C

2. begin

3. Set parameters and initialize pheromone trails

4. repeat

5. for each ant K do

6. Construct a complete assignment Ak

7. if Cost(Ak) < Cost(BestOfCycle) then

8. BestOfCycle ← Ak

9. end if

10. end for

11. for each component i in graph do

12. τ(i) ← update pheromone generated by Eq.8 and Eq.9

13. If τ(i) < τmin then τ(i)← τmin

14. If τ(i) > τmax then τ(i)← τmax
15. end for

16. until Cost (BestOfCycle) = 0 ∨ maximum number of fitness evaluations reached

17. return BestOfCycle

18. end

Fig. 2 Pseudo-code of ACOU

3212 Neural Comput & Applic (2018) 30:3209–3220

123

The existing literature [20] provides another method

to test the tightness of constraints, optimizes parameters

for each random binary test case and then computes the

k value [28]. Among them, the range of the k value is [0,

?]. When k\ 1, test case is in the state of less con-

straints, which can be solved; when k\ 1, test case is in

the state of too much constraints, which is often difficult

to be solved.

4.2 Comparison with the related algorithms

This section mainly analyzes the advantages and disad-

vantages of four algorithms under various k values, from

three aspects about comparison based on convergence

analysis, the comparison of algorithms based on

descriptive statistics and the comparison of algorithms

based on hypothesis testing. The four algorithms are

ACOU algorithm, ACOS algorithm, ACOD algorithm

and PRW algorithm. The comparison based on conver-

gence analysis shows the convergence of different

algorithms with the increase in the number of iterations.

The comparison of algorithms based on descriptive

statistics clearly shows the running results of each

algorithm that includes the average cost, running time

and success rate, which can reflect the characteristics of

the algorithm intuitively. The comparison of the algo-

rithms based on hypothesis testing more accurately

analyzes the advantages and disadvantages of the four

algorithms by statistical analysis on the same test case.

All the experiments are carried out on the same com-

puter (3.40 GHz CPU and 16 GB RAM), and the pro-

gramming language is java. All the statistics are based

on 30 independent runs.

4.2.1 Comparison based on convergence analysis

Algorithm performance can be evaluated only in con-

vergence. Therefore, ACO algorithm with different

vertex selection strategy and pheromone updating strat-

egy is firstly analyzed and compared in convergence.

The convergence curve and convergence period of the

algorithm are observed, which can provide reference for

the later evaluation of algorithm performance. In the

two-dimensional coordinate system of the convergence

curve, the abscissa is the number of fitness evaluation

times, and the ordinate is the average cost of the algo-

rithm to search the global optimal solution under the

fitness evaluation times. According to the convergence

speed of ACO algorithm with different pheromone

update strategies, the intervals with different precision

are set to maximize match the convergence characteris-

tics of algorithm. In every periodic interval, the global

optimal solution of the algorithm is recorded in real time,

and the corresponding average cost value is calculated

according to the cost function. Then, the convergence

curve is drawn with the updated change point in the

value. The variation range of the average cost value is

less than 1 within 50 fitness evaluation times, which is

regarded as the state of convergence.

As shown in Fig. 3, four test cases, Test4, Test9, Test15

and Test19, which are representative of CSP benchmark

test cases, are selected to compare and analyze four algo-

rithms, respectively. From the above figure, we can see that

the convergence speed of ACO algorithm and PRW algo-

rithm is different for the same test case, but all of them

achieve the convergence in about 900 time’s number of

fitness evaluations. For the small-scale problems, Test4,

Test9, the four algorithms achieve convergence around 600

times number of fitness evaluations generally. For the

large-scale problems, Test15, Test19, three ACO algo-

rithms achieve the convergence mostly about 200 times

number of fitness evaluations.

Table 1 Test cases generated by Model A

Dataset of test case Test case P2 k

Case1 (100, 4, 0.14, p2) Test1 0.14 0.754

Test2 0.16 0.869

Test3 0.18 0.992

Test4 0.20 1.115

Test5 0.22 1.242

Test6 0.24 1.372

Case2 (100, 8, 0.14, p2) Test7 0.20 0.743

Test8 0.22 0.828

Test9 0.24 0.914

Test10 0.26 1.003

Test12 0.28 1.094

Test11 0.30 1.188

Case3 (150, 4, 0.14, p2) Test13 0.10 0.792

Test14 0.12 0.961

Test15 0.14 1.134

Test16 0.16 1.311

Test17 0.18 1.493

Test18 0.20 1.679

Case4 (150, 8, 0.14, p2) Test19 0.14 0.754

Test20 0.16 0.874

Test21 0.18 0.995

Test22 0.20 1.119

Test23 0.22 1.246

Test24 0.24 1.376

Neural Comput & Applic (2018) 30:3209–3220 3213

123

It is not difficult to see from the figure that the ACOU

algorithm with dynamic pheromone updating mechanism

performs better in almost all kinds of test cases, and the

convergence position is better than other algorithms. For

the small-scale CSPs, Test4, Test9, the basic algorithm

MMAS by limiting the upper and lower bounds, while

avoiding local convergence, can quickly lock the optimal

solution range. For large-scale or no solution CSPs,

Test15, Test19, the ACO algorithm can rapidly find the

optimal solution with its unique pheromone updating

strategy and heuristic strategy, as well as the local search

[26]. The convergence speed is also obviously better

than the PRW algorithm. The updating strategy of

ACOD algorithm and ACOS algorithm shows a good

convergence speed and is similar to ACOU algorithm in

the early process. However, the convergence effect of

the two algorithms is not better than ACOU algorithm in

the later process.

4.2.2 Comparison of algorithms based on descriptive

statistics

The four algorithms of ACOU, ACOS, ACOD and PRW

run 30 times independently under 24 test cases, respec-

tively. This paper mainly describes the advantages and

disadvantages of the algorithm from the five statistic

angles: the average maximum cost, the average minimum

cost, the running time, the average fitness evaluation

Fig. 3 Convergence graphs of four algorithms

3214 Neural Comput & Applic (2018) 30:3209–3220

123

number and the success rate. Specific experimental statis-

tics are shown in Table 2.

From the above Table 2, we can intuitively see that the

ACO algorithm performs better than the PRW algorithm

in terms of average cost, average fitness evaluation

number and success rate. With the increase of the k value,

average cost and average fitness evaluation number are

gradually increased; however, the success rate is gradu-

ally reduced. Although ACOU algorithm is better than

ACOS algorithm in solving the problem small-scale

CSPs, such as Test1, Test2, the advantage is not obvious

when compared with the ACOD algorithm. For Test4 and

Test9, the scatter plot for convergence analysis shows

that the ACOU algorithm is not obviously different from

the ACOS algorithm in distribution of average cost;

however, the average maximum cost is improved in

Table 2. Therefore, it is shown that ACOU algorithm

performs not outstanding in solving small-scale CSPs. For

large-scale or no solution CSPs, ACOU algorithm shows

more convincing advantages than the other three

algorithms, ACOS algorithm, ACOD algorithm and PRW

algorithm, which not only narrows the distribution range

of cost value, but also reduces the average fitness evalu-

ation number accordingly. At the same time, the running

time is also improved, and to some extent, it promotes the

convergence speed of the algorithm.

In summary, the solving quality and convergence speed

of the three kinds of ACO algorithms are better than PRW

algorithm in all the 24 test cases, whether it is a small-scale

CSP or a large-scale or no solution CSP. What’s more, the

advantages of ACOU algorithm are not so prominent

compared with ACOS algorithm and ACOD algorithm for

the small-scale CSPs; however, for large-scale CSPs,

advantages of ACOU algorithm are more outstanding.

4.2.3 Comparison of algorithms based on nonparametric

statistical analysis

To demonstrate whether the algorithm is applicable to all

samples with a k value in the sample space, we adopt the

Table 2 Comparison of algorithms based on descriptive statistics

Test cases Test P2 Average maximum cost\average minimum cost\running time (ms)\average fitness evaluation number\success

rate

ACOU ACOS ACOD PRW

(100, 4, 0.14, p2) 1 0.14 2\0\126\22\100% 3\0\293\22\100% 2\0\622\32\100% 66\5\201\486\0%

2 0.16 2\0\189\30\100% 3\0\327\40\100% 3\0\658\36\100% 72\5\223\467\0%

3 0.18 3\0\223\35\100% 3\0\389\45\100% 3\0\699\38\100% 75\6\219\492\0%

4 0.20 5\0\285\225\0% 6\0\338\135\0% 8\1\458\186\70% 82\29\219\752\0%

5 0.22 39\25\387\456\0% 42\29\446\198\0% 39\29\559\243\0% 169\28\308\668\0%

6 0.24 39\25\476\552\0% 42\30\523\212\0% 39\27\627\286\0% 165\26\286\451\0%

(100, 8, 0.14, p2) 7 0.20 8\0\257\56\90% 10\1\341\65\70% 8\0\322\60\80% 139\14\265\669\0%

8 0.22 12\1\329\113\80% 10\2\450\224\0% 12\2\612\514\0% 145\18\289\623\0%

9 0.24 15\4\556\452\0% 18\5\858\645\0% 16\4\858\685\0% 147\20\306\675\0%

10 0.26 25\5\626\668\0% 17\5\1120\852\0% 17\5\925\814\0% 159\25\312\623\0%

11 0.28 25\11\430\425\0% 25\14\458\157\0% 25\12\665\162\0% 185\30\349\518\0%

12 0.30 27\13\585\553\0% 28\15\656\332\0% 29\13\1120\886\0% 189\37\329\612\0%

(150, 4, 0.14, p2) 13 0.10 14\6\253\55\100% 15\7\256\68\60% 15\6\256\69\0% 184\23\314\683\0%

14 0.12 15\7\282\98\90% 16\8\345\112\50% 16\7\325\156\0% 175\18\309\629\0%

15 0.14 16\6\214\123\70% 16\6\288\156\40% 16\5\282\223\0% 176\20\311\635\0%

16 0.16 42\27\223\188\0% 45\28\298\223\0% 45\27\311\252\0% 152\19\363\595\0%

17 0.18 61\56\382\41\0% 64\57\466\75\0% 64\59\422\85\0% 268\75\404\610\0%

18 0.20 62\51\387\56\0% 65\52\456\118\0% 68\57\466\96\0% 285\77\\612\0%

(150, 8, 0.14, p2) 19 0.14 4\1\384\126\100% 6\1\453\128\90% 5\1\453\128\90% 192\13\500\700\0%

20 0.16 7\1\624\523\90% 8\1\695\1743\80% 10\2\678\919\80% 185\14\525\722\0%

21 0.18 10\1\689\486\40% 10\2\785\1125\45% 10\2\1125\919\40% 189\13\625\752\0%

22 0.20 34\24\376\428\0% 34\25\485\252\0% 32\24\406\100\0% 256\45\689\859\0%

23 0.22 45\30\262\417\0% 46\33\312\65\0% 44\31\423\228\0% 319\67\765\957\0%

24 0.24 48\35\292\435\0% 50\40\386\285\0% 46\38\455\235\0% 322\70\768\989\0%

The bold numbers are used to highlight the difference of the experimental results in the corresponding position

Neural Comput & Applic (2018) 30:3209–3220 3215

123

Table 3 Results of unilateral hypothesis testing

ACOU ACOS ACOD PRW

Test1

ACOU – 0.482 0.387 2.785e-12

ACOS 0.518 – 0.566 4.115e-12

ACOD 0.613 0.434 – 2.535e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 0.503 0.497 3.685e-12

Test2

ACOS 0.497 – 0.612 3.825e-12

ACOD 0.503 0.388 – 2.522e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 0.456 0.567 2.835e-12

Test3

ACOS 0.544 – [0.05 2.421e-12

ACOD 0.433 5.413e-12 – 2.335e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 0.523 4.456e-12 5.625e-12

Test4

ACOS 0.476 – 7.257e-12 4.521e-12

ACOD [0.05 [0.05 – 3.332e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 4.715e-12 5.631e-12 5.725e-12

Test5

ACOS [0.05 – 0.985 4.856e-12

ACOD [0.05 0.015 – 3.547e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 4.625e-12 5.232e-12 3.453e-12

Test6

ACOS [0.05 – [0.05 5.125e-12

ACOD [0.05 3.143e-12 – 6.425e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 7.254e-12 0.016 5.254e-12

Test7

ACOS [0.05 – [0.05 6.223e-12

ACOD 0.84 4.453e-12 – 7.155e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 5.114e-12 7.224e-12 4.253e-12

Test8

ACOS [0.05 – 0.018 4.241e-12

ACOD [0.05 0.982 – 6.223e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 1.224e-12 0.023 5.254e-12

Test9

ACOS [0.05 – [0.05 6.223e-12

ACOD 0.977 4.651e-12 – 7.155e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 0.982 0.983 5.254e-12

Test10

ACOS 0.018 – 0.985 6.321e-12

3216 Neural Comput & Applic (2018) 30:3209–3220

123

Table 3 continued

ACOU ACOS ACOD PRW

ACOD 0.017 0.015 – 4.152e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 7.254e-12 6.223e-12 7.114e-12

Test11

ACOS [0.05 – [0.05 3.553e-12

ACOD [0.05 4.453e-12 – 6.124e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 7.254e-12 0.022 6.878e-12

Test12

ACOS [0.05 – [0.05 5.665e-12

ACOD 0.878 3.323e-12 – 4.535e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 6.985e-12 6.657e-12 7.254e-12

Test13

ACOS [0.05 – 5.223e-12 5.314e-12

ACOD [0.05 [0.05 – 6.223e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 4.525e-12 6.113e-12 6.221e-12

Test14

ACOS [0.05 – 5.875e-12 5.992e-12

ACOD [0.05 [0.05 – 4.772e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 7.125e-12 5.823e-12 4.231e-12

Test15

ACOS [0.05 – 4.135e-12 6.952e-12

ACOD [0.05 [0.05 – 2.742e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 6.124e-12 0.035 5.211e-12

Test16

ACOS [0.05 – [0.05 7.052e-12

ACOD 0.965 4.441e-12 – 4.542e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 4.234e-12 6.254e-12 5.741e-12

Test17

ACOS [0.05 – 6.532e-12 4.112e-12

ACOD [0.05 [0.05 – 4.482e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 5.233e-12 4.214e-12 5.981e-12

Test18

ACOS [0.05 – 3.222e-12 6.322e-12

ACOD [0.05 [0.05 – 5.511e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 0.025 0.752 6.514e-12

Test19

ACOS 0.975 – 0.285 4.372e-12

ACOD 0.248 0.715 – 5.344e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 5.223e-12 4.231e-12 6.451e-12

Neural Comput & Applic (2018) 30:3209–3220 3217

123

Fisher-independent unilateral hypothesis testing. Next, we

choose the average minimum cost that four algorithms run

30 times in 24 test cases. And then the hypothesis test was

performed at the confidence level of 0.05. If the result of

comparison between algorithms 1 and 2 is less than 0.05, it

means that the solution of algorithm 1 is better than the

solution of algorithm 2. Furthermore, algorithm 1 is

superior to algorithm 2 in solving this problem to some

extent. Specific experimental results are shown in Table 3.

From Table 3, we can clearly see that unilateral

hypothesis testing result is less than 0.05 when ACOU,

ACOD and ACOS are compared with PRW algorithm in

all 24 test cases, which indicates that the ACO algorithm is

better than PRW algorithm in solving the CSPs. The effect

of solving small-scale CSPs, ACO algorithm with

strengthened pheromone updating mechanism, is not

prominent. For example, ACOU algorithm is not appar-

ently better than ACOS algorithm and ACOD algorithm in

Test1 and Test2 and Test3. However, ACOU algorithm is

superior to ACOS algorithm and ACOD algorithm in

Test5, Test6, which is mainly because the small scale of

CSPs can quickly be resolved by the processing step and

local search. ACOU algorithm is significantly better than

ACOU algorithm and ACOD algorithm in solving large-

scale CSPs, such as Test23 and Test24, which are shown

that it is feasible to combine dynamic change information

of the iterative optimal path to enhance the extra pher-

omone of the newly explored edge.

In summary, in most cases, ACOU algorithm has shown

a more predominant performance, especially in solving

large-scale CSPs. However, it may not be optimal in some

extremely individual test cases. For example, in Test22,

ACOU algorithm is better than ACOS algorithm and is

inferior to ACOD algorithm yet. In Test10, ACOU algo-

rithm is inferior to ACOS algorithm and ACOD algorithm.

This may be caused by the stochastic characteristics of

random test cases.

Combined with the above convergence analysis and

comparisons of algorithms based on descriptive statistics,

we can conclude that in most cases, ACOU algorithm

performs better than compared algorithms.

5 Conclusion

In this paper, we firstly introduce constraint satisfaction

problem (CSP) and ant colony optimization (ACO) algo-

rithm. Next, four kinds of algorithms, ACOU algorithm,

Table 3 continued

ACOU ACOS ACOD PRW

Test20

ACOS [0.05 – 2.223e-12 4.334e-12

ACOD [0.05 [0.05 – 4.895e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 5.113e-12 0.016 3.129e-12

Test21

ACOS [0.05 – 4.433e-12 6.098e-12

ACOD 0.984 [0.05 – 5.174e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 3.263e-12 0.957 4.122e-12

Test22

ACOS [0.05 – [0.05 5.198e-12

ACOD 0.043 5.114e-12 – 5.104e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 4.223e-12 5.343e-12 5.132e-12

Test23

ACOS [0.05 – [0.05 4.238e-12

ACOD [0.05 3.223e-12 – 6.113e-12

PRW [0.05 [0.05 [0.05 –

ACOU – 5.211e-12 4.114e-12 2.152e-12

Test24

ACOS [0.05 – [0.05 4.524e-12

ACOD [0.05 4.243e-12 – 7.254e-12

PRW [0.05 [0.05 [0.05 –

3218 Neural Comput & Applic (2018) 30:3209–3220

123

ACOS algorithm, ACOD algorithm and PRW algorithm,

are proposed to solve the CSPs. And then the Ant-Solver

based on Max–Min ant system (MMAS) is described and

combined with local search to solve the CSPs. We subse-

quently discuss the improved ACOU algorithm, ACO

algorithm with strengthened pheromone updating mecha-

nism, which is applied to solving CSP on a set of bench-

mark test cases. Finally, it is verified that the ACO

algorithm is superior to PRW algorithm in solving the

CSPs. Among the three ACO algorithms, ACOU algorithm

with strengthened pheromone updating mechanism per-

forms better than ACOS algorithm and ACOD algorithm.

In the following study, when the searching of ACO algo-

rithm is near to stagnation, the algorithm is easy to fall into

the state of local optimum. Accordingly, we can reinitialize

the pheromone matrix by using iterative period after stag-

nation to continue the search, which can enhance the

algorithm’s capabilities of global search.

Acknowledgements This work was supported by the National Nat-

ural Science Foundation Program of China (61572116, 61572117,

61602105), CERNET Innovation Project (NGII20160126), and the

Special Fund for Fundamental Research of Central Universities of

Northeastern University (N150408001, N150404009).

Compliance with ethical standards

Conflict of interest We declare that we have no financial and per-

sonal relationships with other people or organizations that can inap-

propriately influence our work, and there is no professional or other

personal interest of any nature or kind in any product, service and/or

company that could be construed as influencing the position presented

in or the review of the manuscript entitled, ‘‘An improved ant colony

optimization algorithm with strengthened pheromone updating

mechanism for constraint satisfaction problem.’’

References

1. Rouahi A, Salah KB, Ghédira K (2015) Belief constraint satis-

faction problems. In: IEEE/ACS international conference of

computer systems and applications. IEEE

2. Ranft B, Stiller C (2016) The role of machine vision for intelli-

gent vehicles. IEEE Trans Intell Vehi 1(1):8–19

3. Ekwongmunkong W, Mittrapiyanuruk P, Kaewtrakulpong P

(2016) Automated machine vision system for inspecting cutting

quality of cubic zirconia. IEEE Trans Inst Meas 65(9):2078–2087

4. Vidovic M, Hwang HJ, Amsuss S et al (2015) Improving the

robustness of myoelectric pattern recognition for upper limb

prostheses by covariate shift adaptation. IEEE Trans Neural Syst

Rehabil Eng 24(9):961–970

5. Adewuyi AA, Hargrove LJ, Kuiken TA (2016) An analysis of

intrinsic and extrinsic hand muscle emg for improved pattern

recognition control. IEEE Trans Neural Syst Rehabil Eng Publ

IEEE Eng Med Biol Soc 24(4):1

6. Zhang C, Lin Q, Gao L et al (2015) Backtracking search algo-

rithm with three constraint handling methods for constrained

optimization problems. Expert Syst Appl 42(21):112–116

7. Xu W, Gong F (2016) Performances of pure random walk algo-

rithms on constraint satisfaction problems with growing domains.

J Comb Optim 32(1):51–66

8. Narjess D, Sadok BA (2016) New hybrid GPU-PSO approach for

solving Max-CSPs. In: Proceedings of the genetic and evolu-

tionary computation conference companion. ACM

9. Dali N, Bouamama S (2015) GPU-PSO: parallel particle swarm

optimization approaches on graphical processing unit for con-

straint reasoning: case of Max-CSPs. Proc Comput Sci

60(1):1070–1080

10. Breaban M, Ionita M, Croitoru C (2007) A new PSO approach to

constraint satisfaction. In: IEEE congress on evolutionary com-

putation, 2007. CEC 2007. IEEE, pp 1948–1954

11. Hemert JIV (2015) Evolutionary computation and constraint

satisfaction, springer handbook of computational intelligence.

Springer, Berlin, pp 1271–1288

12. Sharma A (2015) Analysis of evolutionary operators for ICHEA

in solving constraint optimization problems. In: IEEE congress

on evolutionary computation, CEC 2015. IEEE, Sendai,

pp 46–53. doi:10.1109/CEC.2015.7256873

13. Karim MR, Mouhoub M (2014) Coevolutionary genetic algo-

rithm for variable ordering in CSPs. In: IEEE congress on evo-

lutionary computation. pp 2716–2723

14. Craenen BGW, Eiben AE, van Hemert JI (2003) Comparing

evolutionary algorithms on binary constraint satisfaction prob-

lems. IEEE Trans Evol Comput 7(5):424–444

15. Aratsu Y, Mizuno K, Sasaki H et al (2013) Experimental eval-

uation of artificial bee colony with greedy scouts for constraint

satisfaction problems. In: Conference on technologies and

applications of artificial intelligence. IEEE Computer Society,

pp 134–139

16. Aratsu Y, Mizuno K, Sasaki H et al (2013) Solving constraint

satisfaction problems by artificial bee colony with greedy scouts.

Proc World Congr Eng Comput Sci 1(1):1–6

17. Yang Q (2008) A comparative study of discrete differential

evolution on binary constraint satisfaction problems. In: IEEE

congress on evolutionary computation, CEC 2008. IEEE, Hong

Kong, pp 330–335. doi:10.1109/CEC.2008.4630818

18. Mizuno K, Hayakawa D, Sasaki H et al (2011) Solving constraint

satisfaction problems by ACO with cunning ants. In: Interna-

tional conference on technologies and applications of artificial

intelligence. IEEE Computer Society, pp 155–160

19. Solnon C (2002) Ants can solve constraint satisfaction problems.

IEEE Trans Evol Comput 6(4):347–357

20. Tarrant F, Bridge D (2005) When ants attack: ant algorithms for

constraint satisfaction problems. Artif Intell Rev 24(3–4):455–476

21. Goradia HJ (2013) Ants with limited memory for solving con-

straint satisfaction problems. In: IEEE congress on evolutionary

computation, CEC 2013. IEEE, Cancun, pp 1884–1891. doi:10.

1109/CEC.2013.6557789

22. Gonzalez-Pardo A, Camacho D (2013) A new CSP graph-based

representation for ant colony optimization. In: IEEE congress on

evolutionary computation, 2013. CEC 2013. IEEE, Cancun,

pp 689–696. doi:10.1109/CEC.2013.6557635

23. Mavrovouniotis M, Yang S (2014) Ant colony optimization with

self-adaptive evaporation rate in dynamic environments. In: IEEE

symposium on computational intelligence in dynamic and

uncertain environments (CIDUE). pp 47–54

24. Stützle T, Hoos HH (2000) MAX–MIN ant system. Future Gener

Comput Syst 16:889–914

25. Zhang Z, Feng Z (2009) A novel Max–Min ant system algorithm

for traveling salesman problem. In: IEEE international confer-

ence on intelligent computing and intelligent systems. IEEE,

pp 508–511

Neural Comput & Applic (2018) 30:3209–3220 3219

123

http://dx.doi.org/10.1109/CEC.2015.7256873
http://dx.doi.org/10.1109/CEC.2008.4630818
http://dx.doi.org/10.1109/CEC.2013.6557789
http://dx.doi.org/10.1109/CEC.2013.6557789
http://dx.doi.org/10.1109/CEC.2013.6557635

26. Lin JY, Chen YP (2011) Analysis on the collaboration between

global search and local search in memetic computation. IEEE

Trans Evol Comput 15(5):608–623

27. Macintyre E, Prosser P, Smith B et al (1998) Random constraint

satisfaction: theory meets practice. Springer, Berlin

28. Fan Y, Shen J (2011) On the phase transitions of random

k-constraint satisfaction problems. Artif Intell 175(3–4):

914–927

3220 Neural Comput & Applic (2018) 30:3209–3220

123

	An improved ant colony optimization algorithm with strengthened pheromone updating mechanism for constraint satisfaction problem
	Abstract
	Introduction
	The basic ACO algorithm for CSPs
	ACO algorithm with strengthened pheromone updating mechanism for CSPs
	Experimental results
	Datasets of test case
	Comparison with the related algorithms
	Comparison based on convergence analysis
	Comparison of algorithms based on descriptive statistics
	Comparison of algorithms based on nonparametric statistical analysis

	Conclusion
	Acknowledgements
	References

