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Abstract The target of this article is to study almost periodic
dynamical behaviors for complex-valued recurrent neural
networks with discontinuous activation functions and time-
varying delays. We construct an equivalent discontinuous
right-hand equation by decomposing real and imaginary
parts of complex-valued neural networks. Based on differ-
ential inclusions theory, diagonal dominant principle and
nonsmooth analysis theory of generalized Lyapunov func-
tion method, we achieve the existence, uniqueness and glo-
bal stability of almost periodic solution for the equivalent
delayed differential network. In particular, we derive a series
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of results on the equivalent neural networks with discontin-
uous activation functions, constant coefficients as well as
periodic coefficients, respectively. Finally, we give a
numerical example to demonstrate the effectiveness and
feasibility of the derived theoretical results.

Keywords Almost periodic solution - Discontinuous
activations - Global exponential stability - Complex-valued

1 Introduction

Recently, the connected neural networks have been widely
investigated due to the successful applications in many
fields, such as signal processing, pattern recognition,
associative memories, complicated optimization [1-3].
These applications are mainly based on dynamical behav-
iors of neural networks. Therefore, it is extremely indis-
pensable to analyze the dynamics of neural networks.

As a generalization of the real-valued neural networks,
the states, connection weights and activation functions of
the complex-valued neural networks are complex-valued.
Generally, complex-valued neural networks have many
differences and more complicated characteristics than real-
valued ones. This becomes strongly required owing to their
practical applications in physical networks dealing with
light, ultrasonic and quantum [4, 5]. In fact, complex-val-
ued neural networks (CVNNSs) make it successful to solve
many problems which cannot be dealt with their real-val-
ued neural networks. For example, both the detection of
symmetry problem and XOR problem can be handled with
a single complex-valued neuron with the orthogonal deci-
sion boundaries [6], but cannot be solved with a single real-
valued neuron. Consequently, it is extremely necessary to
research the dynamical behaviors of complex-valued
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neural networks, especially the stability problems of
complex-valued neural networks.

In the past few years, there have been many results on the
stability of CVNNS, such as [7-16]. As we know, there have
many applications of periodic oscillations in the recurrent
neural networks, such as pattern recognition [17, 18], robot
motion control [19] and machine learning [20, 21]. Therefore,
it is very significant to research the existence and stability of
periodic solutions for connected neural networks. We
observed that the periodic parameters of dynamical system are
often regarded as experienced uncertain perturbations. That s,
parameters can be looked upon as a periodic small error.
Under this circumstance, the almost periodic oscillatory
behavior makes closer to reality. The almost periodic neural
networks can be seemed as a natural generalization of the
periodic neural networks. Compared with the almost periodic
dynamics of real-valued neural networks, complex-valued are
more complicated and suitable. However, to the best of our
knowledge, almost periodic dynamics for complex-valued
recurrent neural networks was seldom considered.

As we know, the activation functions play a vital part in the
dynamical analysis of recurrent neural networks. Stability of
neural networks depends heavily on the structures of activa-
tion functions. In recent years, there have been considered
two kinds of activation functions for recurrent neural net-
works, that is, continuous activation functions and discon-
tinuous activation functions, respectively. In real-valued
neural networks, their activation functions are often selected
to be smooth, bounded and even globally Lipschitz. In the
complex domain, we know that every bounded entire func-
tion must be constant by Liouville’s theorem. Therefore,
when complex-valued activation functions are entire and
bounded, it must be a constant. It is obviously unsuitable.
Therefore, activation functions are important problem for the
complex-valued neural networks. In [8], Hu and Wang con-
sidered a class of continuous-time recurrent neural networks
with two kinds of activation functions. Some criterions for
existence, uniqueness and global stability of a unique equi-
librium point are obtained. In [9], when activation functions
can be decomposed into their real and imaginary parts,
authors researched the asymptotical stability of delayed
complex-valued neural networks. In [10], authors considered
the asymptotical stability of complex-valued neural networks
with constant delay. Moreover, the activation functions sat-
isfy Lipschitz continuous in the complex domain. On the
other hand, while handling with the dynamical systems
having high-slope nonlinear elements, discontinuous acti-
vation functions often emerge in applications. For this, many
researchers have been dedicated to investigate the dynamics
for neural networks with discontinuous activation functions.
However, almost periodic dynamics for delayed complex-
valued recurrent neural networks with discontinuous activa-
tion functions was considered.

@ Springer

Unfortunately, time delays are usually inescapable in
many physical, chemical and neural networks because of
the limited switching speed of neuron amplifiers and
propagation time, for example, pattern recognition, image
processing, signal processing and associative memory. As
everyone knows, time delays often have effect on the sta-
bility of neural network and may bring about instability.
Thus, it is very important to study the dynamical behaviors
of neural networks with time delays.

In the past few years, Hopfield neural networks with
discontinuous activations have been received much atten-
tion, and many works obtained are concerned with equi-
librium points [22-27], periodicity [28-30], almost
periodicity [31-41] and many others. Considering the
practical importance of almost periodic phenomenon, the
stability of almost periodic solution for delayed, impulsive
and discontinuous neural networks was proved by Allegretto
et al. In [42], they considered the existence, uniqueness and
global stability of the almost periodic solutions for delayed
neural network with discontinuous activation functions. In
[36], they studied the almost periodic dynamics for a class of
delayed neural networks with discontinuous activation
functions and give a condition that guarantee a stable almost
periodic solution of the discontinuous network under the
diagonal dominance principle. However, all discussions in
these articles are main relay on the assumption that dis-
continuous activation functions are monotone nondecreas-
ing. In [43], the authors discussed almost periodic solution
of impulsive Hopfield neural networks. When the mixed
delays neural network without global Lipschitz activation
functions, paper [44] gives a stability sufficient condition of
neural networks. Agarwal et al. researched almost periodic
dynamics for impulsive delayed neural networks on almost
periodic time scales, see [45].

Based on the above arguments, the almost periodic
dynamical behaviors for delayed complex-valued recurrent
neural networks with discontinuous activations functions
are discussed. An equivalent discontinuous right-hand
equation was constructed by decomposing real and imag-
inary parts of delayed complex-valued neural networks.
The main intent of this article is to consider the dynamical
behavior of complex-valued recurrent neural networks with
discontinuous activation functions. Firstly, we give the
existence of the almost periodic solution of the equivalent
discontinuous right-hand equation under the framework of
Filippov. Secondly, we obtain a condition that can guar-
antee the existence, the uniqueness and global exponential
stability of the almost periodic solution of the discontinu-
ous systems. Finally, when the connection strength is
constant coefficients or periodic coefficients, the corre-
sponding works will be obtained.

The rest of the article is structured as follows. In
Sect. 2, some preliminaries, formulated and lemmas of
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complex-valued neural networks are presented. In
Sect. 3, the uniqueness and global exponential stability
of almost periodic solution of the dynamical system is
obtained via some assumptions of the activation func-
tions. Moreover, some corollaries with some specific
cases are given. In Sect. 4, an example validates the
validity of our results. At last, we come to some con-
clusions in Sect. 5.

Notations The notations are quite standard in this article.
We denoted the solution of system (2a) and (2b) with

Z(t,p,2). Z(1) = (R(1),2(1))", where ZR(r) = (X(1),
&@),.... &))", and (1) = (z{( ):2 ( ) 2 0)" ()
= (R(1),7 ()", where 7R( = (( R ))T,

and /(1) = (7 (1), 75(0), .- ',Vn( )" IIZ( )|| denote the
l-norm  of  vector = (RN erR|Z(1)| =
S GRS 0] where &,y > 0,7 = 1,2,

.,n. B(x,0) denotes the open d—neighborhood of a set
x CR":B(x,0) = {y € R" :inf e, ||y — 2| <J} for some
Il - I, C([0,T],R"), denote the spaces of continuous vector
function, L'([0, T], R") represent square integrable vector
function, and L>([0,T],R") denote essentially bounded
function on [0, T]. Z denotes the integer; ' denotes the
derivative of f.

2 Preliminaries

Consider complex-valued neural networks with asyn-
chronous time delays and almost periodic coefficients
described by the following nonlinear differential equations:
dz;(1) -
# = —di(07(t) + Y ap(t)fe(z (1))
k=1
n (1)
> bl = (1)) + (1)
k=1

where j =1,2,...,n, z(t) € C is the state of the jth neu-
ron at t,d;(t) > O represents the self-feedback connection
weight, ay(¢) € C is the connection strength of the kth
neuron on the jth neuron; by (r) € C is the delayed feed-
back of the kth neuron on the jth neuron with time-varying
delay; u;(r) € C denotes the external input to the jth neu-
ron. Tjx(#) is the time-varying transmission delay satisfying
0<7(t) <71 fi(-) : C — C denotes the nonlinear activa-
tion function which is supposed to satisfy the condition
given:

Assumption 1 Let z = Z% +iZ', fi(z) can be expressed by
= (") +if (),

where fR(-), f/(-) : R — R,fi(zj) are continuous except on

its real and imaginary parts as f;(z)

a finite number set of isolation points {ay : o) <o,

keZ}, and {[3,’< : ﬁ,{<[3i+1, k e Z} on any compact
interval of R, respectively, where the left and right limits

satisfy f* (o) <f* () 1 (BO) </ (B):

Furthermore, the following assumption is made on the
nonlinear activation function.

Assumption 2 f7(-) and f!(-) are monotonically nonde-
creasing and local Lipschitz except on a set of isolated
points {zx,’{} and {ﬁ,’c}, respectively. i.e., for any u,v €

(oci, oc,{H) or ([)’]{,ﬁiﬂ), there exists positive constant LJR,

and L’» j=1,2,...,n, such that VR(M) —jj-R(v)‘ SLJR|u—

J
HOEHE)

Denote z;(t)

I
)< Lilu—vl.

= z}(1) + iz (1) with z}(r) and (1) € R,
then network (1) can be replaced in the equivalent forms as
shown:

dz()

Cdr + Z a/k fk Zk
- ia_,'-k@ ()
kjl (2a)
+ Y BRI (R (e — (1))
k=1
=SB (= 0) + 20,
k=1
dz! n
Zéft) = —di(Z() + ) _ ag(fi (7))
k=1
£ )
o (2b)
+ > R Of (2t — (1))

n

+ Db (0f (& (r

k=1

— (1)) + uj(0),

The following assumptions are also required for systems
(2a)—(2b).

Assumptlon 3 d( )7 ]k(t)a ]k( )7b§<( )7b/Ik( ) MR(t)a u]l
(1), k() are all continuous almost periodic functions in
R.i.e., for any ¢ > 0, there exists [ = I(¢) > 0 such that for

any interval o, o + ), there exists o € [0, o+ [| such that
‘d.(t +w)— d-(t)| <e, )aﬁ((t +w)— aﬁ(l)‘ <e, ‘a;k(t + o) — a]’-k(t)’ <e

i (1 + ) —

(t)’<€

W+ o) — u;(t)‘ <¢, ]bfk(; fo)— bfk(t)( <,

[t + w) — i (1)] <, ‘b]{k(l‘+ ) — b](k(t)}<s.

hold for all j,k=1,2,...,nand t € R.
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Assumption 4 The delays ty(t) are continuous functions
and satisfied with rj’-k(t) <l1forjk=1,2,...,n. Moreover,
there exist positive constants &j,¢; and o6 such that
di(t) > 0 > 0,T;(r) <0 and Y;(z) <O.

where j =1,2,...,n
DO -dng+ Y &
k=1 k]
- ‘bl]g} (qok_j] (t)) ’ ot
+ kzz; & | ‘L';q- ((P];'l(t)) 9%
[t (os'0)
i I; P 1- T;j((p;jl(t))

0 =g+ Y dilalo]+ 3 a0
k=1

k=1k#j

0]+ o)

S M
e()rky. ,

in which qoﬁ(1 is the inverse function of @, =1 — 1;(t),
‘Cj-‘l/(’ = maxlgj,kg,,{fjk(t)} ],k = 1,2, o

First of all, the solution of delayed differential equations
(2a)—(2b) with discontinuous right-hand side is defined in
the sense of Filippov [46].

Definition 1 For given continuous functions ¢, (s) and
¢ (s) defined on [—1,0] as well as the measurable func-
tions Y, (s) € 0 [ff(@4(s))] and ¥, (s) € TO[f{ (P (s))] for
almost all s € [—7,0], the absolute continuous function
(R(1),2' (1)) with 2R (1) = ((0), )., 28(0) " (1) =
T ~ ~
(@10, 25(1),. . 2,(1))" and zZ(s) = Py(s), () = Pi(s)
for all s € [—7,0] is said to be a solution of systems (2a)—
(2b) on [0, T7 if there exist measurable functions yR(r) €
colff(zR(1))], 74 () € co[f! (zL(1))] for almost all ¢ € [0, T]
such that

dzk ; Y n
T 00+ 00— S + Y B ()
=1 k=1 =

7t —T(r) = k; b (07 (t = T (1) + (1) ae.r€[0,7)

d ! n n n
ZE[) =—di(NZ (1) + Y _al(t)yh(t) + > ah () + > bf(6)x
k=1 k=1 k=1

Pt —T(1)) + z BL(R(t — () + (1) ae.r€[0,T)

(3)
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and yR(s) = @(s), yi(s) = @y (s) for almost all s € [—7,0],
where k =1,2,...,n.

Definition 2 Let Z(r) = (2{(1),25(1), ..., 2(1), 21 (1),
Z5(1),...,2(1))" be a solution for systems (2a)—(2b), Z(t)
is said to be globally exponentially stable, if for any
solution Z(1) = (zR(1),2(1))" of systems (2a)—(2b), there
exist constants M > 0 and é > 0 such that

1Z(5) = Z(1)| <Me™™,  1>16>0.

As introduced by Fink [47] and He [48], the following
concept of almost periodic solution is presented.

Definition 3 [36] A continuous function Z(¢) : R — R*"
is said to be almost periodic in R, if for any & > 0, it is
possible to find a real number [ = I(¢) > 0; for any interval
with length I(e), there exists a number w = w(¢) in this
interval such that ||Z(r + ) — Z(¢)|| <& for all € R.

The time derivative of the composed function V(g(?)) :
[0,400) — R can be calculated by a chain rule, where
q(t) : [0,+00) — R" is absolutely continuous on any
compact interval [0, +00).

Lemma 1 (Chain rule) [36] Assume that V(t) : R" — R is
C-regular, and that q(t) is absolutely continuous on any
compact interval [0,400), then q(t) and V(q(1)):
[0, +00) — R are differential for a.e. t € [0,+00), and we
have

dvi(z(r))
2=

dz(r)
dr

(),

> Ve(r) € 0V (z()).
3 Main results

In this section, the existence of almost periodic solution of
systems (2a)—(2b) was considered primarily. We applied
with a suitable Lyapunov function so that some sufficient
criteria are achieved to guarantee the existence of the
almost periodic solution.

Lemma 2 Under Assumptions 1-4, there exists a solution
(Z,7) of systems (2a)—(2b) on [0, +00) for any given initial
value, i.e., the solution Z of systems (2a)—(2b) is defined for
t € [0,400) and v is defined for t € [0,+00) up to a set
with measure zero. Moreover, there exists a constant
M > 0 such that ||Z|| <M for t € [—1,4+00) and ||y|| <M
fora.e. t € [—1,400).

Proof Define set-valued map as follows:

dz® n
Z’Tt(t) — = di(n) (1) + Y ai(neolfi (1))
k=1

n

= > _aunelf ()]

k=1
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+Zb
_Zb
dzi(1)

14040 + Y el ()

— 1 (1)))]

x co[ff (zf (t

— ()] +uf' (1),

cofk

3 dy oyl )]
k=1

n Xn: b (o[ (z (1 — w(1)))]
k=1

3 el

k=1

— 5 (1))] + u (1)

it is apparent that this set-valued map is upper semi-con-

tinuous with nonempty compact convex values, which

implies that the local solution Z(r) = (R(r), Z(r))" of

systems (2a)—(2b) obviously exists. That is to say that the

initial valued problem of systems (2a)—(2b) has at least a

solution  Z(f) = (R (1),Z/(1))" on [0,7) for some
€ (0, +o0].

Next, we will show that lim, - ||Z(¢)]|< + oo if
T < + oo, which means that the maximal existing interval
of Z(t) can be extended to +oo. Construct a function as
follows:

V(l) =V (l) + Vz(l‘)

where

= &)
j=1

!

IO o) I
Va (1) —j;C.i/HMWM(Zf(P))}C rrddp

) + En: q,')je(s’ z;(t)
=

" ‘ (b,’-k <<ﬂ,;l (p)) ] . (o
+j;:1 g /I—‘[jk([) W i (zi(0)) |3(s *)dp
)

Pk )
lk( /k !e p+rj‘z)dp

n t
Ny
>h)

k=1 -1 ((pjk (

)
S LA 2\

jh=1  Jrw@ 1 — r/k( k]

)

| (&
)
(4)

To calculate the derivative of V(f) along the solution tra-
jectories of systems (2a)—(2b) in the sense of (3) by uti-
lizing Lemma 1, one gets that

p+1]k ) dp

‘-i-z&b e‘s’

:iagjeéf (+Z@ o1 R
=

+zn:¢je5’ z‘f(t)’
_255 e[ % (+de“s1gn(
+Za¢je5f Z (;)’

st (40) (40}

)(E0)

’ Jk(%k )’ 3(-21)
+z;1 1— ]k((p]k (t)
_ZQJ i “Vk — 1t |e (t=m(r)+f)
+Z§J ’ jk(q)jk ())’ (1)]e (1)

= (o)

- Z éj‘bjl'k(f) ‘ ’Vi (t_'fjk(t)) |e‘5(’*1jk(1)+rj’.‘k4)
Jk=1

t+rj’.‘,”(’)

“/k ’e

==t ((pjjcl (t))
Ol
Jk=1

t+T

ENCCIIY
2 i)™

- Z (pj’b]lk “Vk — Tt
< Z & [—di(r) +
=1
+3 g yf(z)]{ajj.(t)gj D IRAHOI
Jj=1 k=1 k#j

+2n:¢k‘ak, ’ Zf —‘bkj((pk] ()N e’
k=1,

=1, 1—1, ((p,jj (1)

e (1=m(+)

6]]4*@)]
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+ il d)jeét[_dj(t) + 4] ‘ZJ[(Z)‘

+X¥@W§({

+kzi;fk‘a/g “"Z(f)

S - (0'0)

: St

: st

+ e
D G — 7

+ i: ¢k)afj(t)’

k=T ki

(25 0)] s
o)l

ae. t€[0,+00)

where u# = sup ||u()|| < + oo, which implies that
>0

wngwm+%%@ (6)

Combining the definition of V() and (6), one has

1Z(0)]) <&V (1) <T.
where M = V(0) + 3%, which shows that Z(r) is bounded
on its existence interval [—t,7].  Therefore,
lim,_7- || Z(¢)|| < + oo, which means T = 4o0. That is,
systems (2a)—(2b) have a global solution for any initial
values problem.

Moreover, we have

1Z@)ll = &z
=1

‘<M0, t€[—1,400)

where Mo = mw&“m?www—mxﬁ
{o &l o)+ 20k delo ()]}

]§R and le have finite number of discontinuous points on
any compact interval of R. In speciality, f* and f have

finite number of discontinuous points on compact interval
[—My, My]. Without loss of generality, we select discon-

I} and {B]:k=1,2,
., 1j} for f* and £ on the interval [~Mo, Mo}, respectively,

tinuous points {oc,{ k=1,2,...,

and assume that
<pl<pi<

functions of ]§.R as follows:

—My<of <of<--- <<x{j <My, —M,

- < ﬁli <M,. Discuss a battery of continuous

@ Springer

o LI e M),
! R(ocj—O) if 28 = al;
J 1 ) 12
j;R(“Ll - 0)7 if % =0 |,
FE) =1 &), if 2 € (o ),
R (o) +0), if 28 = of;
[ FE0). =
£ =
FR(R), if 2 € (af,Mo]
where k =2,...,; — 1.
Denote

Aljl :maX{Pl7Ql7W1}7 m/l :mln{P,17Ql17W;}7

P :ZREI[IE%‘@{}{J? (ZR)}7 0= 2<I?2)’§I{ZRGT;?)?%/}{/]{(ZR)}}
max {7/} P = min

Re ol Mo
J

Qll _2<rknirlljI{ZREI[‘:En‘xq{jk(ZR)}}v W{ =

Wi

It is easy to see that
R 1 1
(0] < o]

C"{ i

Similarly, consider a battery of continuous functions of ];’ :

}, i=1.2....n

Ay <9 if 2/ € [~Mo, ),
/ (Bl -0), ifd=p;
];I(Blifl _0)7 if 2/ :ﬁI{—l7
&) =3 f1(@), if 2 € (Bi_1. Br)-
A(BL+0),  if R =B
J; i ﬂlﬁ"_o)’ ifZ':ﬁz’,?
() = | |
&) it < € (.M.
where k =2,...,[ — 1
Denote
sz = max{P,, 0,, W, }, m]2 = min{P’z, 05, Wé}
where
1,1 _ k
P, R iz )}, 0 = 2<‘?3§1{4,€[;‘f’1f,;ﬂ{f (z’)}}
Wr = max {j_‘]-l/(zl)}7 P, = 1 min ) {j?l(zl)}
Jde [ﬂé‘Mo} Ze[_MO'/}J

min { i (z’)}}.

de|pl Mo
J
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Similarly, one gets that 512(,760) = —Z(t+ o) [d(t+ ) — di(1)]
ol (40) ]| < max{|m2|.|m2|}, 7 =1.2.0m. +3 0 [ab -+ w) —af )]s+ o)
k=1
I (e (1 -
Note that y ) € co[j (z )} and y (1) € co{fj (zj (t))} +Z {ajk(t—i—w) —a (0| 7R (1 + )
for ae.te [ 7,400), j=1,2,...,n. Hence, max . (7b)

{[#w),

t € [-1,+00),

2n 2n
I7(2) |<max{ Mg
J J=1

j=1

’(t)‘} < maxHMj1 ,
i=12,...

1 2
mw’Mj’

12‘ } for a.e.

n, which implies that

2n
2 2
"%.72@"";"}7
=

ae. € [—1,+00).

Let

M = max{MO, CJ‘MI‘ ZCJ

Hence, we have

lv@)|| <M, ae.te[—1,+00).

The proof of Lemma 2 is complete.

Lemma 3 Suppose that Assumptions 1-4 hold, then any
solution of systems (2a)—-(2b) is asymptotically almost
periodic, Le., for any ¢ > 0, there exist T > 0,1 = I(¢) and
o = w(e€) in any interval [o, o + ] such that

—Z()|<e

forallt>T.

1Z(t + )

Proof Construct the following auxiliary functions:

g (1,0) ==z (1+ 0)[d;(1 + @) — dj(1)]

n

3 [+ w) —ak ]+ o)

k=1

-3 [ahte+0) (0]t + )

=1

=~

=

+ 3B+ )~ B O]+ 0 - alr+ )
1

~
Il

=

=Y [Bhle+ @) =B (0] 1+ 0 — i+ )

>~
—_

+ulf (14 ) —uf (1)

(7a)

In the light of Assumption 3 and the boundedness of
Z(t) and 7(z), for any ¢ > 0, there exists [ =1(¢) > 0 and at
least one point @ in any interval [o,a+ ] satisfying the
following inequalities:

o€
|d;(t + ) _dj(f)|<ma
u'?(z+w)—u'?(r)’<£
J J 24nA’
o¢
I I
R (1 + w) — af (1) <L
@t + o) = G| < r
o€
a;k(t+ w) — ajl'k(f) < Sa2MA’
o¢
R R
by (1 + w) — by (1) < a2 MA’
o¢
/ [
bjk(t+w) _bjk(t) <m

where 0< £ min; <j<, <A=max; <j<,{}. Hence, one
has

de
1
g (1, a))‘ <A for a.e. t € [~1,+00) (8)
and
et w)‘ < d¢. for ae. t € [—1,+00) )
it 4nA’ :

Denoting X,(1) = (x£(1). ¢ (z))T, with ¥8()
2 (1) and xi(1) = z/(1 + @) —
dxR(z)

T +Zaf"
Z i (1) [7(t+ @) = 33.(1)]

=21+ 0)—

J(t), then, one obtains that

/k t+ow) - (f)]

Z (O + o — gt + @) = 9 (1 = 7 (1))]

*be'k(’) [k + 0 — 11+ @) =9 (t— e (1)] + ¢} (1, 0)
k=1
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and
dx.éft) — —d(Onl () + i;aﬁ(t) [5(t + @) = y4(1)]
+ ga}k (O [RE+ o) = 9 (0)]
N gbﬁ‘(’) it + @ = Tt + ) = 74t — ()]

n

+ Y DO [+ o — Tt + ) = 7 — T(0)]

k=1
+(r,0)

Construct the following candidate function:

L(t) =1 (l) + Lz(l)

where

Zc,
Ly(1) = 2": é;/ttm

‘+Z¢j ot
‘bjk(q)jk (P))‘

1— T]k (gojk )

0]

(o + @) () H)ap

L (e o)
ik ik .
+Zk#ﬂ o+ o)~ A Hap
jk=1  Jim t)l—‘r ((P,k p))
k ‘Pk P))‘
+Z J J |/k[)+(07/ |eop+1 )dp
= a1 - k](p>
1
‘_]k((pjk (p) ‘ o(p+!
+Z¢/ . (0 + ) =8 (p) [ H)dp
jk=1 r T/k()l—'f]k((ﬂjk (p)
O

By the similar way utilized in Lemma 2, and combining
inequalities (8), (9), one has

dL(t) _ 59

= 26, for a.e.

€ [0, +00).

Note that L(0) is a constant, then one can pick a sufficiently
large T > O such that

e'L(0) < % 1>T.

Then,
t
IX(0)| < e*‘”L(t) < e"”L(O) + e"”/ L(s)ds<3.
0

Furthermore, we have

1Z(t + w) — Z(1)|] < e 'L(0) + % <&, for 1>T.

@ Springer

The proof of Lemma 3 is complete.

Theorem 1 Suppose that Assumptions 1-4 hold, then
systems (2a)—(2b) have at least a almost periodic solution
in the sense of (3).

Proof Let Z(1) = ((2*(1))", (z’(t))T)T be any solution of
system (3). Then one can select a sequence {fx},.y satis-
fying limy_, ;o # = +00, and such that

1
‘gjl (t, tk)’ < o for t € [—1,+00), (10)
and
) 1
le7 (2, 10)] < o for t € [—1,+00) (11)
where j=1,2,.. .,n,s} (, tk),ejg(t, ty) are the auxiliary
functions (7a) and (7b) defined. O

It follows from Lemma 2 that there exists M* > 0 such
that |Z{(1)] <M* for a.e t € [—7,+00). Thus, the sequence
{Z(t + ;) } ey is equi-continuous and uniformly bounded.
By the Arzela—Ascoli theorem and diagonal selection
principle, we can choose a subsequence of {7} (denoted by
{#}), such that Z(¢t+#/) converges uniformly to some
absolutely continuous function Z(r) on any compact
interval [0, T1.

Next, we claim that Z () is an almost periodic solution
of systems (2a)—(2b) in the sense of (3). Firstly, 4 () is a
solution of system (2a)—(2b) in the sense of (3).

By Lebesgue’s dominated convergence theorem, for any
t € [-1,+00), and [ € R, one has

£ (t+0) -2 (1) = lim_ {Zf(z+zk+1) —zj?(z+zk)]

t+1

_ -R
,kkinocv A Zj (9+t1()d9

e R - R R
=Jim [ OF 010+ > a0 0 )

Z 0)74(0+1)

. Z”fk(")“/f(ﬁﬂk — 1 (0+1))
k=1

=Y BR(O)74 0+t =t (04 1)) +uuf (6) +
k=1

8]! (G,Ik)de

1+ n n
= / {—dj(f))?_f(ﬁ) +> (07 (0) =Y ai ()7
t k=1 k=1
+ Y bRO)T(0—w(6) = > bi(0)7,(0—Tx(6))
k=1 k=1

t+l
(H)] d0+ lim

k—+00
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and

2(t+1) -2 (1) = lim [z_;(t+tk+z)—z;(z+zk)]

k—+00
t+1 ;
:kklﬂc ’ 4 (0+1)d0
! 1 ~ R !
= Jim | fd,~<0>z,<0+rk>+;a,-k<0>vk<9+tk>

Vk 9+tk

+Za,k

+ bek

T ;b;kw)yf(wzk — Tk (0+1)) + 14 (0) +
- / " {_d,(e)g’(e) + Z al (0)74(0) + ;a,’-k(f’)?f(@)

+bek —i(0))

+ ijlk

1+l

sz(e, tk)dG

’ 0+tk — T/k(0+lk))

112(0 tk)dO

R0~ (0)) +u(0)]0

+ lim
k—+o00 ‘
From (10) and (11), it is easy to conclude that
t+1 -+l
lim ¢ (0,1,)d0 =0, lim

k—+o00 J; k—+o00 J;

& (0,1,)d0 = 0.
(12)

Therefore, Z(I) is a solution of systems (2a)—(2b).

Secondly, we claim that 75 () € col, ,f(’z\f(t))], 7)€
co[f! (Z(1))] for ae.t € [~1,+00). Note that Z(f) uni-
formly converges to Z (¢) with respect to t € [—1, +00) and
co|f¥],colf!] are upper semi-continuous set-valued map,
for any & > 0, there exists N > 0 such that fR(%(t + 1)) €
B(co[f®(*(1))],e) for k >N and t € [—7,+00). Noting
that co[f®(zR(r))] is convex and compact, then
(1) € B@lf* (1)), 2),  which ) e
B(co[ff(zX(1))],¢) holds for any r € [, +00). Repeating
the above method, we can prove
7(t) € B(co[fl (z4(1))]. ). Because of the arbitrary of e,
we know that 75 (1) € colff (2 (1)), 7(t) € olf{ (Z(1)]
for a.e. t € [—1,400).

Finally, Z(1) = (ER(I),EI(Z)) is an almost periodic
solution of the neural network systems (2a)—(2b). By

Lemma 3, For any ¢ > 0, there exist 7 >0 and [ = [(¢)
such that any interval [0, o + ] contains an  such that

implies

1Z(t 4+ o) — Z(2)|| <e

hold for all > T. Therefore, there exists sufficiently large
constant K > 0 such that

||Z(l‘+ t + w) — Z(l‘+ tk)H <e

holds for all k > K and t € [-1,+00). As k — 400, we
can  conclude that||Z(r+ w) —Z(r)[[<e  for  all
t € [-7,400). This implies that Z(¢) is an almost periodic
solution of the neural network systems (2a)-(2b). The
proof is complete.

Next, we will research the uniqueness and global
exponential stability of the almost periodic solution
obtained in Theorem 1 for the dynamical networks (2a)-
(2b). By utilizing a generalization Lyapunov function,
some sufficient criteria are gained to assure that networks
have a uniqueness and global exponential stability almost
periodic solution.

Theorem 2 Under Assumptions 1-4, then systems (2a)—
(2b) have a unique almost periodic solution which is
globally exponentially stable in the sense of (3).

Proof Let Z(1) and Z(z) be any two solutions of systems
(2a)—(2b) associated with y(¢),7(z) and initial value pairs
(W, ), (W, 7). respectively.

It follows from (3) that

A OEAGEE

a0 [2(0) 2 1))
+3 a0 310 -
+ij§ ) [7R(= () -
,ijzk )]
AOREIOREIOIEAD)
—E}w )[R0
+Z%mwu
—Ejb

WAIORAD

T 1=u(e)]

Yk I*T/k q/k(t*"f'ﬂc(t))]

(t ] +Zaﬂ( [

7]

*/A )}

— (1)) = 41— T (0)]

) [ =) = = (1))

Then, one has the following inequalities:
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(1) = 20| =sign{F(0) ~ 0 } (£ - W)
< — (] - 2|

Vf(f)—?f(t)wa,’-}(tH 3 ok

10|40 = 40|

_|_

,m\ [ = (1)) = FE (e = (1)

Tt = () = (8 — (1))

and
!z'f()w(r(—slgn{zf(r) 20} (30 -20)
t)‘ -3 1O ’
+’V,’-( —/J(t)‘ a]’;(t)+ i ‘afj(t)‘]
k=1 ki
2 al (1) | |78 (1) = 7 (1))
4 RO = Te(0) = Tt — (1))
+Z 0| [ — () — 740t — )

Construct the following candidate Lyapunov functions:

W () = Wi(r) + Wa(1)
where
= a0 -3f0] + St o)
R : ‘bjk(qop(p))’ hR o)
Wi(t) 71;:1 fj/,,m)l_f (w,k (p)) 1R(p) — 7% (0) |+ ) dp
i\ Pk (P))‘ y ord)
+Z /wml&(P)— 7 (p) e’ dp
(e @)] |, "
+ Z ;i /t w1 7Tjk((ij](p)> [4(6) = Tl Hdp
+ Z ¢,/ ‘bjk<(pj7c (P))‘ b (e) - |eﬁ o )dp

=) 1 — T ((pﬁf(p))

To calculate the derivative of W(¢) with respect to ¢ along
the solution trajectories of systems (2a)—(2b) in the sense
(3) of by applying Lemma 1, one obtains that

@ Springer

W < > €60+ -5f0)

+Ze‘3’¢
+Ze‘3’
X{¢§(f)éf+ > S|+ 2 e )

k=T kA
o (0i' )] (e )] .
+,kzl§k1 Tk/((/’/kl(t>) o '~k:1¢ I_Tkj((p];(l([>)e> N

+Zem 1) {C{S(I)Cﬁj“’ i ¢k‘ag(f)’+gék‘aij(t))+

Perw)| )"kf(%%‘@))! }
) +1k2:1 ‘ Tkj((/);kl(t))

+0)[5(0 -2 )|

K0 =750

+

70 =75

+
ij:] 1-1; ((pj‘ ()
It follows from Assumption 4 that

dw(r)
dr
Note that

12~ 20 —Z@\f

<0, ae.t€]0,+00). (13)

0]+ 3000

(14)
It follows from (13) and (14) that one has
1Z(1) = Z(1)|| <e W(t) <e *W(0). (15)
Let M =M, p v, i) = W(0), then ||z(r)—Z(1)] <

Me~%. Moreover, there exists an almost periodic solution
for systems (2a)—(2b) in the sense of (3). Hence, one has

1Z() = z* (1) < O(e™™), (16)

which implies that almost periodic solution Z*(¢) is glob-
ally exponentially stable. Finally, it should be pointed out
that almost periodic solutions of system (2a)-(2b) are
unique. Actually, assume that Z*(r) and U*(¢) are two
almost periodic solutions.

1Z*(r) = U ()l < O(e™™). (17)

According to Levitan and Zhikov(1982), we conclude that
if Z*(¢) and U*(¢) are two almost periodic functions sat-
isfying (17), then Z*(t) = U*(¢). Therefore, the almost
periodic solution is unique. The proof is complete.
Finally, we study a specific case in the main theorem.
Due to that periodic function can be regard as an almost
periodic function, all fruits use to periodic case. Now,
taking the place of Assumption 3, the following assump-
tion holds. ]
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Assumptlon S d( )7 ]k(t)v ]k( ),bﬁ( )7b/[k( ) MR(I)a u]l
(1), Tjx () are continuous functions in R. i.e., for any ¢ > 0,
there exists 1 =1(¢) >0 such that for any interval

[ot, 0t + 1], there exists € [o, o + I] such that

di(t + w) =d;(1), Tt + o) = (1),
;k(’JF w) *a/k( ), a jl'k(ter) = _,I‘k(t)»
i (1 + o) =ui' (1), wj(t + ) = (1),
bﬁ(r+ w) =b (1), bi(t+ w) = bl (1).

hold for all j,k =1,2,....nand t € R.

According to Theorem 1 and Theorem 2, the following
corollary is true.

Corollary 1 If assumptions 1, 2, 4, 5 are satisfied, then
system (2a)—(2b) has a unique periodic solution, where it is
globally exponentially stable.

Furthermore, a constant is a periodic function with any
periodic. Therefore, the following complex-valued delayed
neural networks are

)+ E ajkfk z (1

dz;(r)

dr —djz(t

N+ S bufilalt — (o) +w,
k=1

j=1,...,n
(18)

Assumption 6 Assume that the delays tj(t) are contin-
uous function and satisfying v (t) <1 for j,k=1,2,...,n

Moreover, there exist positive constants &;, ¢; and

d; > 6> 0, such that T;<0 and Y;<0,j=1,2,...,n

where
_ n n n u
I=alei+ D Glafl+ Y dfay] + D cekle”™
k=1 k#j k=1, k=1,
n
+> d’k’b/'cj e
k=1,
n n n gy
IR ED AT KA
k=1k#j k=1 jk=1
n
£ dfplfe
jk=1

S-M
0Ty

and 7y (1) = max{ti (1)}, j,k=1,2,...,n
The following corollary is also true.

Corollary 2 If Assumptions 1, 2, 6 are satisfied, then
system (18) has a unique solution with any initial valued;
moreover, system (18) has a unique equilibrium, where it is
globally exponentially stable.

4 Numerical example

In this section, an example validates the validity of our
results which is obtained in Theorem 1 and Theorem 2.

Example 1 Considering complex-valued dynamical net-
works constituting of two subnetworks as follows:

21 (1) = = 2z1(1) 4 [(—0.5 4 0.01 sin v/27)

+ (0.01 sin v22)i]fi (z1 (1)) — [0.01 + 0.01i]f>(z2(1))

+ [(—0.05 + 0.01 sin v/27)

+ (0.01 sin v21)ilf; (z1 (t — 0.1))

—[0.01 + 0.01i]f3(z2(t — 0.1))

+ (0.02 sin v/27 4 0.01 cos V/51)

+ (0.02 sin v/27 + 0.01 cos V/51)i
Z2(t) = — 225(1) 4+ (0.01 + 0.010)f;1 (z1(2))

—[0.4 + (0.01 cos V21)ilfa(z2(1))

+ (0.01 4 0.18)f; (z1 (£ — 0.1))
— [(0.04 + 0.01 cos V20)ilfa(z2(r — 0.1))
(0.03 cos v/3t — 0.01 sin¢
(

+ +

0.03 cos V31 — 0.01 sin )i

(19)
where the discontinuous activation functions are given as
follows:

-2, x € (—o0,—1)

:fkl(x): 0, €(-1L1)
3 x € (1,+00)

FE)

Obviously, fX(-),fI() is local Lipschitz with Lipschitz
constants LY = L{ = 0.01. Observing that d;(t) = d»(1) =
2,73 = 0.1,a8, (1) = —0.5+0.01sinv2t, al,(r) = 0.01
sinv/2t, af (1) = —0.01, al,(t) = —0.01, & (¢) = 0.01,
dy, (1) = 0.01, ab,(t) = —0.4, db,(1) = —0.01  cos/2t,
bR (1) = —0.05 + 0.01 sin v/2¢, b}, (¢) = 0.01sinv/2t, b5,

(1) = —0.01, bi,(t) = —0.01, DX (r)=001, B, (r)=
0.01, b%,(t) = —0.04, bb,y(1) = —0.01cos V21, uk(t) =
0.02 sinv/2r4+0.01 cosv/5t, ul(r) = 0.02sin/2t +
0.01 cos v/5t, ul(f) = 0.03cos /3t —0.01sinz, uh(r) =

0.03 cos /3t — 0.01 sin¢ are satisfied with Assumption 3.
Let 6 =001, ¢, =& =¢, = ¢, =1, we have '} <0,
I'<0,Y, <0, Y,<0. According to Theorems 1 and 2,
system (19) has a unique almost periodic solution, which is
globally exponentially stable. The dynamics of system (19)
are illustrated in Figs. 1, 2, 3, and 4, where we give five
initial values of system (19).
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2
Rez1™!
1.5 Rez1'
— Rez1?
1 Rez1? ]
Rez1°
0.5}
N 0
[}
x
-0.5
-1
-1.5
_2 1 Il Il 1
0 5 10 15 20 25

Fig. 1 Time-domain behavior of the state variable Rez; for system
(19) with five random initial conditions, 7 (¢) = 0.1

2
Imz1”"!
15 imz1" |
Imz172
1 Imz1? |
\ Imz1°
0.5 *\ B
N 0 — — - — —
E
-0.5 B
_1 4
-1.5 B
) . . . .
0 5 10 15 20 25

t

Fig. 2 Time-domain behavior of the state variable Imz; for system
(19) with three random initial conditions, 7 (r) = 0.1

Remark 1 When aj (1) = b (1) =0 and fi(-) are real
functions, system (1) becomes a real-valued system as in
[25]. In this paper, we firstly investigate the uniqueness and
stability of almost periodic solution for delayed complex-
valued recurrent neural networks with discontinuous acti-
vation functions. It is a special kind of discontinuous
complex-valued activation functions in which real parts
and imaginary parts are discontinuous. Therefore, com-
plex-valued neural networks are more suitable than real-
valued neural networks.
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Fig. 3 Time-domain behavior of the state variable Rez, for system
(19) with three random initial conditions, tjy(f) = 0.1
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Fig. 4 Time-domain behavior of the state variable Imz, for system
(19) with three random initial conditions, tj(r) = 0.1

5 Conclusion

In the past decades, the theory framework of the discon-
tinuous neural networks and its application was set up in
practice. In this article, we propose the almost periodic
solution of the complex-valued neural networks with dis-
continuous activations depending on the concept of Filip-
pov solution. Under these assumptions, we proved the
exponential convergence of the almost periodic solution
using the diagonal dominant principle, 1-norm and nons-
mooth analysis theory with generalized Lyapunov
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approach. We obtain the existence, uniqueness and global
stability of almost periodic solution for the complex-valued
neural networks. Finally, a numerical example demon-
strates the effectiveness of our obtained theoretical results.
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