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Abstract The target of this article is to study almost periodic

dynamical behaviors for complex-valued recurrent neural

networks with discontinuous activation functions and time-

varying delays. We construct an equivalent discontinuous

right-hand equation by decomposing real and imaginary

parts of complex-valued neural networks. Based on differ-

ential inclusions theory, diagonal dominant principle and

nonsmooth analysis theory of generalized Lyapunov func-

tion method, we achieve the existence, uniqueness and glo-

bal stability of almost periodic solution for the equivalent

delayed differential network. In particular, we derive a series

of results on the equivalent neural networks with discontin-

uous activation functions, constant coefficients as well as

periodic coefficients, respectively. Finally, we give a

numerical example to demonstrate the effectiveness and

feasibility of the derived theoretical results.

Keywords Almost periodic solution � Discontinuous
activations � Global exponential stability � Complex-valued

1 Introduction

Recently, the connected neural networks have been widely

investigated due to the successful applications in many

fields, such as signal processing, pattern recognition,

associative memories, complicated optimization [1–3].

These applications are mainly based on dynamical behav-

iors of neural networks. Therefore, it is extremely indis-

pensable to analyze the dynamics of neural networks.

As a generalization of the real-valued neural networks,

the states, connection weights and activation functions of

the complex-valued neural networks are complex-valued.

Generally, complex-valued neural networks have many

differences and more complicated characteristics than real-

valued ones. This becomes strongly required owing to their

practical applications in physical networks dealing with

light, ultrasonic and quantum [4, 5]. In fact, complex-val-

ued neural networks (CVNNs) make it successful to solve

many problems which cannot be dealt with their real-val-

ued neural networks. For example, both the detection of

symmetry problem and XOR problem can be handled with

a single complex-valued neuron with the orthogonal deci-

sion boundaries [6], but cannot be solved with a single real-

valued neuron. Consequently, it is extremely necessary to

research the dynamical behaviors of complex-valued
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neural networks, especially the stability problems of

complex-valued neural networks.

In the past few years, there have been many results on the

stability of CVNNs, such as [7–16]. As we know, there have

many applications of periodic oscillations in the recurrent

neural networks, such as pattern recognition [17, 18], robot

motion control [19] andmachine learning [20, 21]. Therefore,

it is very significant to research the existence and stability of

periodic solutions for connected neural networks. We

observed that the periodic parameters of dynamical systemare

often regarded as experienced uncertain perturbations. That is,

parameters can be looked upon as a periodic small error.

Under this circumstance, the almost periodic oscillatory

behavior makes closer to reality. The almost periodic neural

networks can be seemed as a natural generalization of the

periodic neural networks. Compared with the almost periodic

dynamics of real-valued neural networks, complex-valued are

more complicated and suitable. However, to the best of our

knowledge, almost periodic dynamics for complex-valued

recurrent neural networks was seldom considered.

Asweknow, the activation functions play a vital part in the

dynamical analysis of recurrent neural networks. Stability of

neural networks depends heavily on the structures of activa-

tion functions. In recent years, there have been considered

two kinds of activation functions for recurrent neural net-

works, that is, continuous activation functions and discon-

tinuous activation functions, respectively. In real-valued

neural networks, their activation functions are often selected

to be smooth, bounded and even globally Lipschitz. In the

complex domain, we know that every bounded entire func-

tion must be constant by Liouville’s theorem. Therefore,

when complex-valued activation functions are entire and

bounded, it must be a constant. It is obviously unsuitable.

Therefore, activation functions are important problem for the

complex-valued neural networks. In [8], Hu and Wang con-

sidered a class of continuous-time recurrent neural networks

with two kinds of activation functions. Some criterions for

existence, uniqueness and global stability of a unique equi-

librium point are obtained. In [9], when activation functions

can be decomposed into their real and imaginary parts,

authors researched the asymptotical stability of delayed

complex-valued neural networks. In [10], authors considered

the asymptotical stability of complex-valued neural networks

with constant delay. Moreover, the activation functions sat-

isfy Lipschitz continuous in the complex domain. On the

other hand, while handling with the dynamical systems

having high-slope nonlinear elements, discontinuous acti-

vation functions often emerge in applications. For this, many

researchers have been dedicated to investigate the dynamics

for neural networks with discontinuous activation functions.

However, almost periodic dynamics for delayed complex-

valued recurrent neural networks with discontinuous activa-

tion functions was considered.

Unfortunately, time delays are usually inescapable in

many physical, chemical and neural networks because of

the limited switching speed of neuron amplifiers and

propagation time, for example, pattern recognition, image

processing, signal processing and associative memory. As

everyone knows, time delays often have effect on the sta-

bility of neural network and may bring about instability.

Thus, it is very important to study the dynamical behaviors

of neural networks with time delays.

In the past few years, Hopfield neural networks with

discontinuous activations have been received much atten-

tion, and many works obtained are concerned with equi-

librium points [22–27], periodicity [28–30], almost

periodicity [31–41] and many others. Considering the

practical importance of almost periodic phenomenon, the

stability of almost periodic solution for delayed, impulsive

and discontinuous neural networks was proved by Allegretto

et al. In [42], they considered the existence, uniqueness and

global stability of the almost periodic solutions for delayed

neural network with discontinuous activation functions. In

[36], they studied the almost periodic dynamics for a class of

delayed neural networks with discontinuous activation

functions and give a condition that guarantee a stable almost

periodic solution of the discontinuous network under the

diagonal dominance principle. However, all discussions in

these articles are main relay on the assumption that dis-

continuous activation functions are monotone nondecreas-

ing. In [43], the authors discussed almost periodic solution

of impulsive Hopfield neural networks. When the mixed

delays neural network without global Lipschitz activation

functions, paper [44] gives a stability sufficient condition of

neural networks. Agarwal et al. researched almost periodic

dynamics for impulsive delayed neural networks on almost

periodic time scales, see [45].

Based on the above arguments, the almost periodic

dynamical behaviors for delayed complex-valued recurrent

neural networks with discontinuous activations functions

are discussed. An equivalent discontinuous right-hand

equation was constructed by decomposing real and imag-

inary parts of delayed complex-valued neural networks.

The main intent of this article is to consider the dynamical

behavior of complex-valued recurrent neural networks with

discontinuous activation functions. Firstly, we give the

existence of the almost periodic solution of the equivalent

discontinuous right-hand equation under the framework of

Filippov. Secondly, we obtain a condition that can guar-

antee the existence, the uniqueness and global exponential

stability of the almost periodic solution of the discontinu-

ous systems. Finally, when the connection strength is

constant coefficients or periodic coefficients, the corre-

sponding works will be obtained.

The rest of the article is structured as follows. In

Sect. 2, some preliminaries, formulated and lemmas of
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complex-valued neural networks are presented. In

Sect. 3, the uniqueness and global exponential stability

of almost periodic solution of the dynamical system is

obtained via some assumptions of the activation func-

tions. Moreover, some corollaries with some specific

cases are given. In Sect. 4, an example validates the

validity of our results. At last, we come to some con-

clusions in Sect. 5.

Notations The notations are quite standard in this article.

We denoted the solution of system (2a) and (2b) with

Zðt;/; kÞ. ZðtÞ ¼ zRðtÞ; zIðtÞð ÞT , where zRðtÞ ¼ zR1 ðtÞ;
�

zR2 ðtÞ; . . .; zRn ðtÞÞ
T
, and zIðtÞ ¼ zI1ðtÞ; zI2ðtÞ; . . .; zInðtÞ

� �T
; cðtÞ

¼ cRðtÞ; cIðtÞð ÞT , where cRðtÞ ¼ cR1 ðtÞ; cR2 ðtÞ; . . .; cRn ðtÞ
� �T

,

and cIðtÞ ¼ cI1ðtÞ; cI2ðtÞ; . . .; cInðtÞ
� �T

. kZðtÞk denote the

1-norm of vector Z ¼ zR; zIð ÞT2 R2n : kZðtÞk ¼Pn
j¼1 njjzRi ðtÞj þ

Pn
j¼1 /jjzIi ðtÞj where nj;/j [ 0; j ¼ 1; 2;

. . .; n. Bðx; dÞ denotes the open d�neighborhood of a set

x � Rn : Bðx; dÞ ¼ fy 2 Rn : infz2x ky� zk\dg for some

k � k; Cð½0; T �;RnÞ, denote the spaces of continuous vector

function, L1ð½0; T�;RnÞ represent square integrable vector

function, and L1ð½0; T �;RnÞ denote essentially bounded

function on [0, T]. Z denotes the integer; f 0 denotes the

derivative of f.

2 Preliminaries

Consider complex-valued neural networks with asyn-

chronous time delays and almost periodic coefficients

described by the following nonlinear differential equations:

dzjðtÞ
dt

¼ �djðtÞzjðtÞ þ
Xn

k¼1

ajkðtÞfkðzkðtÞÞ

þ
Xn

k¼1

bjkðtÞfkðzkðt � sjkðtÞÞÞ þ ujðtÞ
ð1Þ

where j ¼ 1; 2; . . .; n; zjðtÞ 2 C is the state of the jth neu-

ron at t; djðtÞ[ 0 represents the self-feedback connection

weight, ajkðtÞ 2 C is the connection strength of the kth

neuron on the jth neuron; bjkðtÞ 2 C is the delayed feed-

back of the kth neuron on the jth neuron with time-varying

delay; ujðtÞ 2 C denotes the external input to the jth neu-

ron. sjkðtÞ is the time-varying transmission delay satisfying

0� sjkðtÞ� s; fkð�Þ : C ! C denotes the nonlinear activa-

tion function which is supposed to satisfy the condition

given:

Assumption 1 Let z ¼ zR þ izI ; fjðzÞ can be expressed by

its real and imaginary parts as fjðzÞ ¼ f Rj ðzRÞ þ if Ij ðzIÞ,
where f Rj ð�Þ; f Ij ð�Þ : R ! R; fjðzjÞ are continuous except on

a finite number set of isolation points a j
k : a

j
k\a j

kþ1;
�

k 2 Zg, and b j
k : b

j
k\b j

kþ1; k 2 Z
� �

on any compact

interval of R, respectively, where the left and right limits

satisfy f R�j a j
k

� �
\f Rþj a j

k

� �
; f I�j b j

k

� �
\f Iþj b j

k

� �
;

Furthermore, the following assumption is made on the

nonlinear activation function.

Assumption 2 f Rj ð�Þ and f Ij ð�Þ are monotonically nonde-

creasing and local Lipschitz except on a set of isolated

points a j
k

� �
and b j

k

� �
, respectively. i.e., for any u; v 2

a j
k; a

j
kþ1

� �
or b j

k; b
j
kþ1

� �
, there exists positive constant LRj ,

and LIj j ¼ 1; 2; . . .; n, such that f Rj ðuÞ � f Rj ðvÞ
���

���� LRj ju�

vj; f Ij ðuÞ
��� �f Ij ðvÞj� LIj ju� vj.

Denote zjðtÞ ¼ zRj ðtÞ þ izIj ðtÞ with zRj ðtÞ and zIj ðtÞ 2 R,

then network (1) can be replaced in the equivalent forms as

shown:

dzRj ðtÞ
dt

¼� djðtÞzRj ðtÞ þ
Xn

k¼1

aRjkðtÞf Rk zRk ðtÞ
� �

�
Xn

k¼1

aIjkðtÞf Ik zIkðtÞ
� �

þ
Xn

k¼1

bRjkðtÞf Rk zRk ðt � sjkðtÞÞ
� �

�
Xn

k¼1

bIjkðtÞf Ik zIkðt � sjkðtÞÞ
� �

þ uRj ðtÞ;

ð2aÞ

dzIj ðtÞ
dt

¼� djðtÞzIj ðtÞ þ
Xn

k¼1

aRjkðtÞf Ik zIkðtÞ
� �

þ
Xn

k¼1

aIjkðtÞf Rk zRk ðtÞ
� �

þ
Xn

k¼1

bRjkðtÞf Ik zIkðt � sjkðtÞÞ
� �

þ
Xn

k¼1

bIjkðtÞf Rk zRk ðt � sjkðtÞÞ
� �

þ uIj ðtÞ;

ð2bÞ

The following assumptions are also required for systems

(2a)–(2b).

Assumption 3 djðtÞ; aRjkðtÞ; aIjkðtÞ; bRjkðtÞ; bIjkðtÞ; uRj ðtÞ; uIj
ðtÞ; sjkðtÞ are all continuous almost periodic functions in

R. i.e., for any e[ 0, there exists l ¼ lðeÞ[ 0 such that for

any interval ½a; aþ l�, there exists x 2 ½a; aþ l� such that

djðt þ xÞ � djðtÞ
�� ��\e; aRjkðt þ xÞ � aRjkðtÞ

���
���\e; aIjkðt þ xÞ � aIjkðtÞ

���
���\e

uRj ðt þ xÞ � uRj ðtÞ
���

���\e; uIj ðt þ xÞ � uIj ðtÞ
���

���\e; bRjkðt þ xÞ � bRjkðtÞ
���

���\e;

sjkðt þ xÞ � sjkðtÞ
�� ��\e; bIjkðt þ xÞ � bIjkðtÞ

���
���\e:

hold for all j; k ¼ 1; 2; . . .; n and t 2 R.
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Assumption 4 The delays sjkðtÞ are continuous functions
and satisfied with s0jkðtÞ\1 for j; k ¼ 1; 2; . . .; n. Moreover,

there exist positive constants nj;/j and d such that

djðtÞ[ d[ 0;CjðtÞ\0 and !jðtÞ\0.

where j ¼ 1; 2; . . .; n

CjðtÞ ¼ aRjjðtÞnj þ
Xn

k¼1;k 6¼j

nk a
R
kjðtÞ

���
���þ

Xn

k¼1

/k a
I
kjðtÞ

���
���

þ
Xn

k¼1

nk
bRkj u�1

kj ðtÞ
� ����

���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj

þ
Xn

k¼1

/k

bIkj u�1
kj ðtÞ

� ����
���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj ;

!jðtÞ ¼ aRjjðtÞ/j þ
Xn

k¼1;k 6¼j

/k a
R
kjðtÞ

���
���þ

Xn

k¼1

nk a
I
kjðtÞ

���
���

þ
Xn

k¼1

nk
bIkj u�1

jk ðtÞ
� ����

���

1� s0kj u�1
jk ðtÞ

� � eds
M
kj

þ
Xn

k¼1

/k

bRkj u�1
jk ðtÞ

� ����
���

1� s0kj u�1
jk ðtÞ

� � eds
M
kj

in which u�1
jk is the inverse function of ujk ¼ t � sjkðtÞ;

sMjk ¼ max1� j;k� n sjkðtÞ
� �

j; k ¼ 1; 2; . . .; n.

First of all, the solution of delayed differential equations

(2a)–(2b) with discontinuous right-hand side is defined in

the sense of Filippov [46].

Definition 1 For given continuous functions eukðsÞ and

bukðsÞ defined on ½�s; 0� as well as the measurable func-

tions wkðsÞ 2 co f Rk ðeukðsÞÞ
	 


and bwkðsÞ 2 co f Ik ðbukðsÞÞ
	 


for

almost all s 2 ½�s; 0�, the absolute continuous function

zRðtÞ; zIðtÞð Þ with zRðtÞ ¼ zR1 ðtÞ; zR2 ðtÞ; . . .; zRn ðtÞ
� �T

; zIðtÞ ¼
zI1ðtÞ; zI2ðtÞ; . . .; zInðtÞ
� �T

and zRk ðsÞ ¼ eukðsÞ; zIkðsÞ ¼ bukðsÞ
for all s 2 ½�s; 0� is said to be a solution of systems (2a)–

(2b) on [0, T] if there exist measurable functions cRk ðtÞ 2
co f Rk zRk ðtÞ

� �	 

; cIkðtÞ 2 co f Ik zIkðtÞ

� �	 

for almost all t 2 ½0; T�

such that

dzRj ðtÞ
dt

¼�djðtÞzRj ðtÞþ
Xn

k¼1

aRjkðtÞcRk ðtÞ�
Xn

k¼1

aIjkðtÞcIkðtÞþ
Xn

k¼1

bRjkðtÞ�

cRk ðt� sjkðtÞÞ�
Pn

k¼1

bIjkðtÞcIkðt� sjkðtÞÞþ uRj ðtÞ a.e. t 2 ½0;TÞ

dzIj ðtÞ
dt

¼�djðtÞzIj ðtÞþ
Xn

k¼1

aRjkðtÞcIkðtÞþ
Xn

k¼1

aIjkðtÞcRk ðtÞþ
Xn

k¼1

bRjkðtÞ�

cIkðt� sjkðtÞÞþ
Pn

k¼1

bIjkðtÞcRk ðt� sjkðtÞÞþ uIj ðtÞ a.e. t 2 ½0;TÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ

and cRk ðsÞ ¼ eukðsÞ; cIkðsÞ ¼ bukðsÞ for almost all s 2 ½�s; 0�,
where k ¼ 1; 2; . . .; n.

Definition 2 Let eZðtÞ ¼ bzR1 ðtÞ;bz
R
2 ðtÞ; . . .;bz

R
n ðtÞ;bz

I
1ðtÞ;

�

bzI2ðtÞ; . . .;bz
I
nðtÞÞ

T
be a solution for systems (2a)–(2b), eZðtÞ

is said to be globally exponentially stable, if for any

solution ZðtÞ ¼ zRðtÞ; zIðtÞð ÞT of systems (2a)–(2b), there

exist constants M[ 0 and d[ 0 such that

kZðtÞ � bZðtÞk�Me�dt; t� t0 � 0:

As introduced by Fink [47] and He [48], the following

concept of almost periodic solution is presented.

Definition 3 [36] A continuous function ZðtÞ : R ! R2n

is said to be almost periodic in R, if for any e[ 0, it is

possible to find a real number l ¼ lðeÞ[ 0; for any interval

with length lðeÞ, there exists a number x ¼ xðeÞ in this

interval such that kZðt þ xÞ � ZðtÞk\e for all t 2 R.

The time derivative of the composed function VðqðtÞÞ :
½0;þ1Þ ! R can be calculated by a chain rule, where

qðtÞ : ½0;þ1Þ ! Rn is absolutely continuous on any

compact interval ½0;þ1Þ.

Lemma 1 (Chain rule) [36] Assume that VðtÞ : Rn ! R is

C-regular, and that q(t) is absolutely continuous on any

compact interval ½0;þ1Þ, then q(t) and VðqðtÞÞ :
½0;þ1Þ ! R are differential for a.e. t 2 ½0;þ1Þ, and we

have

dVðzðtÞÞ
dt

¼ 1ðtÞ; dzðtÞ
dt

� �
81ðtÞ 2 oVðzðtÞÞ:

3 Main results

In this section, the existence of almost periodic solution of

systems (2a)–(2b) was considered primarily. We applied

with a suitable Lyapunov function so that some sufficient

criteria are achieved to guarantee the existence of the

almost periodic solution.

Lemma 2 Under Assumptions 1–4, there exists a solution

ðZ; cÞ of systems (2a)–(2b) on ½0;þ1Þ for any given initial

value, i.e., the solution Z of systems (2a)–(2b) is defined for

t 2 ½0;þ1Þ and c is defined for t 2 ½0;þ1Þ up to a set

with measure zero. Moreover, there exists a constant

M[ 0 such that kZk\M for t 2 ½�s;þ1Þ and kck\M

for a.e. t 2 ½�s;þ1Þ.

Proof Define set-valued map as follows:

dzRj ðtÞ
dt

!� djðtÞzRj ðtÞ þ
Xn

k¼1

aRjkðtÞco f Rk zRk ðtÞ
� �	 


�
Xn

k¼1

aIjkðtÞco f Ik zIkðtÞ
� �	 
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þ
Xn

k¼1

bRjkðtÞ � co f Rk zRk ðt � sjkðtÞÞ
� �	 


�
Xn

k¼1

bIjkðtÞco f Ik zIkðt � sjkðtÞÞ
� �	 


þ uRj ðtÞ;

dzIj ðtÞ
dt

!� djðtÞzIj ðtÞ þ
Xn

k¼1

aRjkðtÞco f Ik zIkðtÞ
� �	 


þ
Xn

k¼1

aIjkðtÞco f Rk zRk ðtÞ
� �	 


þ
Xn

k¼1

bRjkðtÞco f Ik zIkðt � sjkðtÞÞ
� �	 


þ
Xn

k¼1

bIjkðtÞco f Rk zRk ðt � sjkðtÞÞ
� �	 


þ uIj ðtÞ

it is apparent that this set-valued map is upper semi-con-

tinuous with nonempty compact convex values, which

implies that the local solution ZðtÞ ¼ ðzRðtÞ; zIðtÞÞT of

systems (2a)–(2b) obviously exists. That is to say that the

initial valued problem of systems (2a)–(2b) has at least a

solution ZðtÞ ¼ zRðtÞ; zIðtÞð ÞT on [0, T) for some

T 2 ð0;þ1�.

Next, we will show that limt!T� kZðtÞk\þ1 if

T\þ1, which means that the maximal existing interval

of Z(t) can be extended to þ1. Construct a function as

follows:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ

where

V1ðtÞ ¼
Xn

j¼1

nje
dt zRj ðtÞ
���

���þ
Xn

j¼1

/je
dt zIj ðtÞ
���

���;

V2ðtÞ ¼
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk zRk ðqÞ
� ��� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cIk zIkðqÞ
� ��� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cIk zIkðqÞ
� ��� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk zRk ðqÞ
� ��� ��ed qþsM

jkð Þdq:

ð4Þ

To calculate the derivative of V(t) along the solution tra-

jectories of systems (2a)–(2b) in the sense of (3) by uti-

lizing Lemma 1, one gets that

dVðtÞ
dt

¼
Xn

j¼1

dnje
dt zRj ðtÞ
���

���þ
Xn

j¼1

nje
dt _zRj ðtÞ
���

���þ
Xn

j¼1

d/je
dt zIj ðtÞ
���

���

þ
Xn

j¼1

/je
dt _zIj ðtÞ
���

���

¼
Xn

j¼1

dnje
dt zRj ðtÞ
���

���þ
Xn

j¼1

nje
dtsign zRj ðtÞ

� �
_zRj ðtÞ

� �

þ
Xn

j¼1

d/je
dt zIj ðtÞ
���

���

þ
Xn

j¼1

nje
dtsign zIj ðtÞ

� �
_zIj ðtÞ

� �

þ
Xn

j;k¼1

nj
bRjk u�1

jk ðtÞ
� ����

���

1�s0jk u�1
jk ðtÞ

� � cRk ðtÞ
�� ��ed tþsM

jkð Þ

�
Xn

j;k¼1

nj b
R
jkðtÞ

���
��� cRk t�sjkðtÞÞ

� ��� ��ed t�sjkðtÞþsM
jkð Þ

þ
Xn

j;k¼1

nj
bIjk u�1

jk ðtÞ
� ����

���

1�s0jk u�1
jk ðtÞ

� � cIkðtÞ
�� ��ed tþsM

jkð Þ

�
Xn

j;k¼1

nj b
I
jkðtÞ

���
��� cIk t�sjkðtÞ

� ��� ��ed t�sjkðtÞþsM
jkð Þ

þ
Xn

j;k¼1

/j

bRjk u�1
jk ðtÞ

� ����
���

1�s0jk u�1
jk ðtÞ

� � cIkðtÞ
�� ��ed tþsM

jkð Þ

�
Xn

j;k¼1

/j b
R
jkðtÞ

���
��� cIk t�sjkðtÞ

� ��� ��ed t�sjkðtÞþsM
jkð Þ

þ
Xn

j;k¼1

/j

bIjk u�1
jk ðtÞ

� ����
���

1�s0jk u�1
jk ðtÞ

� � cRk ðtÞ
�� ��ed tþsM

jkð Þ

�
Xn

j;k¼1

/j b
I
jkðtÞ

���
��� cRk t � sjkðtÞ

� ��� ��ed t�sjkðtÞþsM
jkð Þ

�
Xn

j¼1

nje
dt½�djðtÞ þ d� zRj ðtÞ

���
���

þ
Xn

j¼1

nje
dt cRj ðtÞ
���

��� aRjjðtÞnj þ
Xn

k¼1;k 6¼j

nk a
R
kjðtÞ

���
���

(

þ
Xn

k¼1;

/k a
I
kjðtÞ

���
���þ

Xn

k¼1;

nk
bRkj u�1

kj ðtÞ
� ����

���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj

þ
Xn

k¼1;

/k

bIkj u�1
kj ðtÞ

� ����
���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj

9
=

;
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þ
Xn

j¼1

/je
dt½�djðtÞ þ d� zIj ðtÞ

���
���

þ
Xn

j¼1

nje
dt cIj ðtÞ
���

��� aRjjðtÞ/j þ
Xn

k¼1;k 6¼j

/k a
R
kjðtÞ

���
���

(

þ
Xn

k¼1

nk a
I
kjðtÞ

���
���þ

Xn

k¼1

/k

bRkj u�1
kj ðtÞ

� ����
���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj

þ
Xn

k¼1

nk
bIkj u�1

kj ðtÞ
� ����

���

1� s0kj u�1
kj ðtÞ

� � eds
M
kj

9
=

;

þ
Xn

j¼1

nje
dtjuRj ðtÞ þ

Xn

j¼1

/je
dtjuIj ðtÞ

�����

�����

ð5Þ

It follows from (5) and Assumption 4 that

dVðtÞ
dt

� edtbu; a.e. t 2 ½0;þ1Þ

where bu ¼ sup
t� 0

kuðtÞk\þ1, which implies that

VðtÞ�Vð0Þ þ 1

d
buedt: ð6Þ

Combining the definition of V(t) and (6), one has

kZðtÞk� e�dtVðtÞ�M:

where M ¼ Vð0Þ þ 1
d bu, which shows that Z(t) is bounded

on its existence interval ½�s; T�. Therefore,

limt!T� kZðtÞk\þ1, which means T ¼ þ1. That is,

systems (2a)–(2b) have a global solution for any initial

values problem.

Moreover, we have

kZðtÞk ¼
Xn

j¼1

nj z
R
j ðtÞ

���
���þ

Xn

j¼1

/j z
I
j ðtÞ

���
����M0; t 2 ½�s;þ1Þ

where M0 ¼ Vð0Þ þ 1
d buRj þ buIj
� �

þ khk; khk ¼ sup�s� s� 0Pn
k¼1 nk euðsÞ þ

Pn
k¼1 /k

�� ��buðsÞ
�� ��� �

.

f Rj and f Ij have finite number of discontinuous points on

any compact interval of R. In speciality, f Rj and f Ij have

finite number of discontinuous points on compact interval

½�M0;M0�. Without loss of generality, we select discon-

tinuous points a j
k : k ¼ 1; 2; . . .; lj

� �
and b j

k : k ¼ 1; 2;
�

. . .; ljg for f Rj and f Ij on the interval ½�M0;M0�, respectively,
and assume that �M0\a j

1\a j
2\ � � �\a j

lj
\M0;�M0

\b j
1\b j

2\ � � �\b j
lj
\M0. Discuss a battery of continuous

functions of f Rj as follows:

f 1j ðzRÞ ¼
f Rj ðzRÞ; if zR 2 �M0; a

j
1

	 �
;

f Rj a j
1 � 0

� �
; if zR ¼ a j

1;

(

f kj ðzRÞ ¼
f Rj a j

k�1 � 0
� �

; if zR ¼ a j
k�1;

f Rj ðzRÞ; if zR 2 a j
k�1; a

j
k

� �
;

f Rj a j
k þ 0

� �
; if zR ¼ a j

k;

8
>><

>>:

f
lj
j ðzRÞ ¼

f Rj a j
lj
þ 0

� �
; if zR ¼ a j

lj
;

f Rj ðzRÞ; if zR 2 a j
lj
;M0

� i
:

8
><

>:

where k ¼ 2; . . .; lj � 1.

Denote

M1
j ¼max P1;Q1;W1f g; m1

j ¼ min P0
1;Q

0
1;W

0
1

� �
;

P1 ¼ max
zR2 �M0;a

j

1½ �
f 1j ðzRÞ

n o
; Q1 ¼ max

2� k� lj�1
max

zR2 a j

k�1
a j

k½ �
f kj ðzRÞ

n o
( )

;

W1 ¼ max

zR2 a j

lj
;M0

h i f
lj
j ðzRÞ

n o
P0
1 ¼ min

zR2 �M0;a
j

1½ �
f 1j ðzRÞ

n o
;

Q0
1 ¼ min

2� k� lj�1
min

zR2 a j

k�1
;a j

k½ �
f kj ðzRÞ

n o
( )

; W 0
1 ¼ min

zR2 a j

lj
;M0

h i f
lj
j ðzRÞ

n o
:

It is easy to see that

co f Rj zRj ðtÞ
� �h i���

���� max M1
j

���
���; m1

j

���
���

n o
; j ¼ 1; 2; . . .; n:

Similarly, consider a battery of continuous functions of f Ij :

f 1j ðzIÞ ¼
f Ij ðzIÞ; if zI 2 �M0; b

j
1

	 �
;

f Ij b j
1 � 0

� �
; if zI ¼ b j

1;

(

f kj ðzIÞ ¼
f Ij b j

k�1 � 0
� �

; if zI ¼ b j
k�1;

f Ij ðzIÞ; if zI 2 b j
k�1; b

j
k

� �
;

f Ij b j
k þ 0

� �
; if zR ¼ b j

k;

8
>><

>>:

f
lj
j ðzIÞ ¼

f Ij b j
lj
þ 0

� �
; if zI ¼ b j

lj
;

f Ij ðzIÞ; if zI 2 b j
lj
;M0

� i
:

8
><

>:

where k ¼ 2; . . .; lj � 1.

Denote

M2
j ¼ max P2;Q2;W2f g; m2

j ¼ min P0
2;Q

0
2;W

0
2

� �
:

where

P2 ¼ max
zI2 �M0;b

j

1½ �
f 1j ðzIÞ

n o
; Q2 ¼ max

2� k� lj�1
max

zI2 b j

k�1
;b j

k½ �
f kj ðzIÞ

n o
( )

;

W2 ¼ max

zI2 b j

lj
;M0

h i f
lj
j ðzIÞ

n o
; P0

2 ¼ min
zI2 �M0;b

j

1½ �
f 1j ðzIÞ

n o
;

Q0
2 ¼ min

2� k� lj�1
min

zI2 b j

k�1
;b j

k½ �
ff kj ðzIÞg

( )

W 0
2 ¼ min

zI2 b j

lj
;M0

h i f
lj
j ðzIÞg

n o
:
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Similarly, one gets that

co f Ij zIj ðtÞ
� �h i���

���� max M2
j

���
���; m2

j

���
���

n o
; j ¼ 1; 2; . . .; n:

Note that cRj ðtÞ 2 co f Rj zRj ðtÞ
� �h i

and cIj ðtÞ 2 co f Ij zIj ðtÞ
� �h i

for a.e. t 2 ½�s;þ1Þ; j ¼ 1; 2; . . .; n. Hence, max

cRj ðtÞ
���

���; cIj ðtÞ
���

���
n o

� max M1
j

���
���; m1

j

���
���; M2

j

���
���; m2

j

���
���

n o
for a.e.

t 2 ½�s;þ1Þ; j ¼ 1; 2; . . .; n, which implies that

kcðtÞk� max
X2n

j¼1

nj M
1
j

���
���;
X2n

j¼1

nj m
1
j

���
���;
X2n

j¼1

/j M
2
j

���
���;
X2n

j¼1

/j m
2
j

���
���

( )

;

a.e. t 2 ½�s;þ1Þ:

Let

M ¼ max M0;
X2n

j¼1

nj M
1
j

���
���;
X2n

j¼1

nj m
1
j

���
���;
X2n

j¼1

/j M
2
j

���
���;
X2n

j¼1

/j m
2
j

���
���

( )

:

Hence, we have

kcðtÞk�M; a.e. t 2 ½�s;þ1Þ:

The proof of Lemma 2 is complete.

Lemma 3 Suppose that Assumptions 1–4 hold, then any

solution of systems (2a)–(2b) is asymptotically almost

periodic, i.e., for any e[ 0, there exist T [ 0; l ¼ lðeÞ and
x ¼ xð�Þ in any interval ½a; aþ l� such that

kZðt þ xÞ � ZðtÞk� e

for all t� T .

Proof Construct the following auxiliary functions:

e1j ðt;xÞ ¼� zRj ðtþxÞ½djðtþxÞ� djðtÞ�

þ
Xn

k¼1

aRjkðtþxÞ� aRjkðtÞ
h i

cRk ðtþxÞ

�
Xn

k¼1

aIjkðtþxÞ� aIjkðtÞ
h i

cIkðtþxÞ

þ
Xn

k¼1

bRjkðtþxÞ� bRjkðtÞ
h i

cRk ðtþx� sjkðtþxÞÞ

�
Xn

k¼1

bIjkðtþxÞ� bIjkðtÞ
h i

cIkðtþx� sjkðtþxÞÞ

þ uRj ðtþxÞ� uRj ðtÞ
ð7aÞ

e2j ðt;xÞ ¼� zIj ðtþxÞ½djðtþxÞ� djðtÞ�

þ
Xn

k¼1

aRjkðtþxÞ� aRjkðtÞ
h i

cIkðtþxÞ

þ
Xn

k¼1

aIjkðtþxÞ� aIjkðtÞ
h i

cRk ðtþxÞ

þ
Xn

k¼1

bRjkðtþxÞ� bRjkðtÞ
h i

cIkðtþx� sjkðtþxÞÞ

þ
Xn

k¼1

bIjkðtþxÞ� bIjkðtÞ
h i

cRk ðtþx� sjkðtþxÞÞ

þ uIj ðtþxÞ� uIj ðtÞ

ð7bÞ

In the light of Assumption 3 and the boundedness of

Z(t) and cðtÞ, for any e[0, there exists l¼ lðeÞ[0 and at

least one point x in any interval ½a;aþ l� satisfying the

following inequalities:

jdjðt þ xÞ � djðtÞj\
d�

24nMD
;

uRj ðt þ xÞ � uRj ðtÞ
���

���\
d�

24nD
;

uIj ðt þ xÞ � uIj ðtÞ
���

���\
d�

24nD
;

aRjkðt þ xÞ � aRjkðtÞ
���

���\
d�

24n2MD
;

aIjkðt þ xÞ � aIjkðtÞ
���

���\
d�

24n2MD
;

bRjkðt þ xÞ � bRjkðtÞ
���

���\
d�

24n2MD
;

bIjkðt þ xÞ � bIjkðtÞ
���

���\
d�

24n2MD
:

where 0\n,min1� j� n �D,max1� j� nfnjg. Hence, one
has

e1j ðt;xÞ
���

���\
d�
4nD

; for a.e. t 2 ½�s;þ1Þ ð8Þ

and

e2j ðt;xÞ
���

���\
d�
4nD

; for a.e. t 2 ½�s;þ1Þ ð9Þ

Denoting XjðtÞ ¼ xRj ðtÞ; xIj ðtÞ
� �T

, with xRj ðtÞ ¼ zRj ðt þ xÞ�
zRj ðtÞ and xIj ðtÞ ¼ zIj ðt þ xÞ � zIj ðtÞ, then, one obtains that

dxRj ðtÞ
dt

¼� djðtÞxRj ðtÞþ
Xn

k¼1

aRjkðtÞ cRk ðtþxÞ� cRk ðtÞ
	 


�
Xn

k¼1

aIjkðtÞ cIkðtþxÞ� cIkðtÞ
	 


þ
Xn

k¼1

bRjkðtÞ cRk ðtþx� sjkðtþxÞÞ� cRk ðt� sjkðtÞÞ
	 


�
Xn

k¼1

bIjkðtÞ cIkðtþx� sjkðtþxÞÞ� cIkðt� sjkðtÞÞ
	 


þ e1j ðt;xÞ
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and

dxIj ðtÞ
dt

¼� djðtÞxIj ðtÞ þ
Xn

k¼1

aRjkðtÞ cIkðt þ xÞ � cIkðtÞ
	 


þ
Xn

k¼1

aIjkðtÞ cRk ðt þ xÞ � cRk ðtÞ
	 


þ
Xn

k¼1

bRjkðtÞ cIkðt þ x� sjkðt þ xÞÞ � cIkðt � sjkðtÞÞ
	 


þ
Xn

k¼1

bIjkðtÞ cRk ðt þ x� sjkðt þ xÞÞ � cRk ðt � sjkðtÞÞ
	 


þ e2j ðt;xÞ

Construct the following candidate function:

LðtÞ ¼ L1ðtÞ þ L2ðtÞ

where

L1ðtÞ ¼
Xn

j¼1

nje
dt xRj ðtÞ
���

���þ
Xn

j¼1

/je
dt xIj ðtÞ
���

���;

L2ðtÞ ¼
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk ðqþxÞ � cRk ðqÞ
�� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cIkðqþxÞ � cIkðqÞ
�� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cIkðqþxÞ � cIkðqÞ
�� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk ðqþxÞ � cRk ðqÞ
�� ��ed qþsM

jkð Þdq

h

By the similar way utilized in Lemma 2, and combining

inequalities (8), (9), one has

dLðtÞ
dt

� edt
d
2
�; for a.e. t 2 ½0;þ1Þ:

Note that L(0) is a constant, then one can pick a sufficiently

large T[ 0 such that

e�dtLð0Þ\ e
2
; t� T :

Then,

kXðtÞk� e�dtLðtÞ� e�dtLð0Þ þ e�dt
Z t

0

_LðsÞds\e:

Furthermore, we have

kZðt þ xÞ � ZðtÞk� e�dtLð0Þ þ e
2
\e; for t� T :

The proof of Lemma 3 is complete.

Theorem 1 Suppose that Assumptions 1–4 hold, then

systems (2a)–(2b) have at least a almost periodic solution

in the sense of (3).

Proof Let ZðtÞ ¼ ðzRðtÞÞT ; ðzIðtÞÞT
� �T

be any solution of

system (3). Then one can select a sequence ftkgk2N satis-

fying limk!þ1 tk ¼ þ1, and such that

e1j ðt; tkÞ
���

���� 1

k
; for t 2 ½�s;þ1Þ; ð10Þ

and

je2j ðt; tkÞj �
1

k
; for t 2 ½�s;þ1Þ ð11Þ

where j ¼ 1; 2; . . .; n; e1j ðt; tkÞ; e2j ðt; tkÞ are the auxiliary

functions (7a) and (7b) defined. h

It follows from Lemma 2 that there exists M	 [ 0 such

that jZ 0
jðtÞj �M	 for a:e t 2 ½�s;þ1Þ. Thus, the sequence

fZðt þ tkÞgk2N is equi-continuous and uniformly bounded.

By the Arzela–Ascoli theorem and diagonal selection

principle, we can choose a subsequence of ftkg (denoted by
ftkg), such that Zðt þ tkÞ converges uniformly to some

absolutely continuous function bZðtÞ on any compact

interval [0, T].

Next, we claim that bZðtÞ is an almost periodic solution

of systems (2a)–(2b) in the sense of (3). Firstly, bZðtÞ is a
solution of system (2a)–(2b) in the sense of (3).

By Lebesgue’s dominated convergence theorem, for any

t 2 ½�s;þ1Þ, and l 2 R, one has

bzRj ðtþ lÞ�bzRj ðtÞ¼ lim
k!þ1

zRj ðtþ tkþ lÞ� zRj ðtþ tkÞ
h i

¼ lim
k!þ1

Z tþl

t

_zRj ðhþ tkÞdh

¼ lim
k!þ1

Z tþl

t

�djðhÞzRj ðhþ tkÞþ
Xn

k¼1

aRjkðhÞcRk ðhþ tkÞ�
"

Xn

k¼1

aIjkðhÞcIkðhþ tkÞ
#

þ
Xn

k¼1

bRjkðhÞcRk ðhþ tk� sjkðhþ tkÞÞ

�
Xn

k¼1

bIjkðhÞcIkðhþ tk� sjkðhþ tkÞÞþuRj ðhÞþ e1j ðh; tkÞdh

¼
Z tþl

t

�djðhÞbzRj ðhÞþ
Xn

k¼1

aRjkðhÞbc
R
k ðhÞ�

Xn

k¼1

aIjkðhÞbc
I
kðhÞ

"

þ
Xn

k¼1

bRjkðhÞbc
R
k ðh� sjkðhÞÞ�

Xn

k¼1

bIjkðhÞbc
I
kðh� sjkðhÞÞ

þuRj ðhÞ
i
dhþ lim

k!þ1

Z tþl

t

e1j ðh; tkÞdh
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and

bzIj ðtþ lÞ�bzIj ðtÞ ¼ lim
k!þ1

zIj ðtþ tk þ lÞ� zIj ðtþ tkÞ
h i

¼ lim
k!þ1

Z tþl

t

_zIj ðhþ tkÞdh

¼ lim
k!þ1

Z tþl

t

�djðhÞzIj ðhþ tkÞþ
Xn

k¼1

aRjkðhÞcIkðhþ tkÞ
"

þ
Xn

k¼1

aIjkðhÞcRk ðhþ tkÞ
#

þ
Xn

k¼1

bRjkðhÞcIkðhþ tk � sjkðhþ tkÞÞ

þ
Xn

k¼1

bIjkðhÞcRk ðhþ tk � sjkðhþ tkÞÞþ uIj ðhÞþ e2j ðh; tkÞdh

¼
Z tþl

t

�djðhÞbzIj ðhÞþ
Xn

k¼1

aRjkðhÞbc
I
kðhÞþ

Xn

k¼1

aIjkðhÞbc
R
k ðhÞ

"

þ
Xn

k¼1

bRjkðhÞbc
I
kðh� sjkðhÞÞ

þ
Xn

k¼1

bIjkðhÞbc
R
k ðh� sjkðhÞÞþ uIj ðhÞ�dh

þ lim
k!þ1

Z tþl

t

e2j ðh; tkÞdh

From (10) and (11), it is easy to conclude that

lim
k!þ1

Z tþl

t

e1j ðh; tkÞdh ¼ 0; lim
k!þ1

Z tþl

t

e2j ðh; tkÞdh ¼ 0:

ð12Þ

Therefore, bZðtÞ is a solution of systems (2a)–(2b).

Secondly, we claim that bcRk ðtÞ 2 co f Rk bzRk ðtÞ
� �	 


; bcIkðtÞ 2
co f Ik bzIkðtÞ

� �	 

for a.e. t 2 ½�s;þ1Þ. Note that Z(t) uni-

formly converges to bZðtÞ with respect to t 2 ½�s;þ1Þ and
co f Rk
	 


; co f Ik
	 


are upper semi-continuous set-valued map,

for any e[ 0, there exists N[ 0 such that f R zRðt þ tkÞð Þ 2
Bðco½f RðzRðtÞÞ�; eÞ for k[N and t 2 ½�s;þ1Þ. Noting

that co½f RðzRðtÞÞ� is convex and compact, then

cRðtÞ 2 Bðco½f RðzRðtÞÞ�; eÞ, which implies bcRk ðtÞ 2
B co f Rk zRk ðtÞ

� �	 

; e

� �
holds for any t 2 ½�s;þ1Þ. Repeating

the above method, we can prove

bcIkðtÞ 2 B co f Ik zIkðtÞ
� �	 


; e
� �

. Because of the arbitrary of e,

we know that bcRk ðtÞ 2 co½f Rk ðbz
R
k ðtÞÞ�;bc

I
kðtÞ 2 co½f Ik ðbz

I
kðtÞÞ�

for a.e. t 2 ½�s;þ1Þ.
Finally, bZðtÞ ¼ bzRðtÞ;bzIðtÞ

� �
is an almost periodic

solution of the neural network systems (2a)–(2b). By

Lemma 3, For any e[ 0, there exist T [ 0 and l ¼ lðeÞ
such that any interval ½a; aþ l� contains an x such that

kZðt þ xÞ � ZðtÞk\e

hold for all t� T . Therefore, there exists sufficiently large

constant K[ 0 such that

kZðt þ tk þ xÞ � Zðt þ tkÞk\e

holds for all k[K and t 2 ½�s;þ1Þ. As k ! þ1, we

can conclude thatkbzðt þ xÞ � bzðtÞk\e for all

t 2 ½�s;þ1Þ. This implies that bzðtÞ is an almost periodic

solution of the neural network systems (2a)–(2b). The

proof is complete.

Next, we will research the uniqueness and global

exponential stability of the almost periodic solution

obtained in Theorem 1 for the dynamical networks (2a)–

(2b). By utilizing a generalization Lyapunov function,

some sufficient criteria are gained to assure that networks

have a uniqueness and global exponential stability almost

periodic solution.

Theorem 2 Under Assumptions 1–4, then systems (2a)–

(2b) have a unique almost periodic solution which is

globally exponentially stable in the sense of (3).

Proof Let Z(t) and bZðtÞ be any two solutions of systems

(2a)–(2b) associated with cðtÞ;bcðtÞ and initial value pairs

ðw; lÞ; ðbw; blÞ, respectively.
It follows from (3) that

_zRj ðtÞ� _bzRj ðtÞ¼�djðtÞ zRj ðtÞ�bzRj ðtÞ
h i

þ
Xn

k¼1

aRjkðtÞ cRk ðtÞ�bcRk ðtÞ
h i

�
Xn

k¼1

aIjkðtÞ cIkðtÞ�bcIkðtÞ
h i

þ
Xn

k¼1

bRjkðtÞ cRk ðt�sjkðtÞÞ�bcRk ðt�sjkðtÞÞ
h i

�
Xn

k¼1

bIjkðtÞ cIkðt�sjkðtÞÞ�bcIkðt�sjkðtÞÞ
h i

_zIj ðtÞ� _bzIj ðtÞ¼�djðtÞ zIj ðtÞ�bzIj ðtÞ
h i

þ
Xn

k¼1

aRjkðtÞ cIkðtÞ�bcIkðtÞ
h i

�
Xn

k¼1

aIjkðtÞ cRk ðtÞ�bcRk ðtÞ
h i

þ
Xn

k¼1

bRjkðtÞ cIkðt�sjkðtÞÞ�bcIkðt�sjkðtÞÞ
h i

�
Xn

k¼1

bIjkðtÞ cRk ðt�sjkðtÞÞ�bcRk ðt�sjkðtÞÞ
h i

Then, one has the following inequalities:
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_zRj ðtÞ � _bzRj ðtÞ
���

��� ¼sign _zRj ðtÞ � _bzRj ðtÞ
n o

_zRj ðtÞ � _bzRj ðtÞ
� �

� � djðtÞ zRj ðtÞ � bzRj ðtÞ
���

���

þ cRj ðtÞ � bcRj ðtÞ
���

��� aRjjðtÞ þ
Xn

k¼1;k 6¼j

aRkjðtÞ
���

���

" #

þ
Xn

k¼1

aIjkðtÞ
���

��� cIkðtÞ � bcIkðtÞ
�� ��

þ
Xn

k¼1

bRjkðtÞ
���

��� cRk ðt � sjkðtÞÞ � bcRk ðt � sjkðtÞÞ
�� ��

þ
Xn

k¼1

bIjkðtÞ
���

��� cIkðt � sjkðtÞÞ � bcIkðt � sjkðtÞÞ
�� ��

and

_zIj ðtÞ � _bzIj ðtÞ
���

��� ¼sign _zIj ðtÞ � _bzIj ðtÞ
n o

_zIj ðtÞ � _bzIj ðtÞ
� �

� � djðtÞ zIj ðtÞ � bzIj ðtÞ
���

���

þ cIj ðtÞ � bcIj ðtÞ
���

��� aRjjðtÞ þ
Xn

k¼1;k 6¼j

aRkjðtÞ
���

���

" #

þ
Xn

k¼1

aIjkðtÞ
���

��� cRk ðtÞ � bcRk ðtÞ
�� ��

þ
Xn

k¼1

bRjkðtÞ
���

��� cIkðt � sjkðtÞÞ � bcIkðt � sjkðtÞÞ
�� ��

þ
Xn

k¼1

bIjkðtÞ
���

��� cIkðt � sjkðtÞÞ � bcIkðt � sjkðtÞÞ
�� ��

Construct the following candidate Lyapunov functions:

WðtÞ ¼ W1ðtÞ þW2ðtÞ

where

W1ðtÞ ¼
Xn

j¼1

nje
dt zRj ðtÞ � bzRj ðtÞ
���

���þ
Xn

j¼1

/je
dt zIj ðtÞ � bzIj ðtÞ
���

���;

W2ðtÞ ¼
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk ðqÞ � bcRk ðqÞ
�� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

nj

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � jcIkðqÞ � bcIkðqÞje
d qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bRjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cIkðqÞ � bcIkðqÞ
�� ��ed qþsM

jkð Þdq

þ
Xn

j;k¼1

/j

Z t

t�sjkðtÞ

bIjk u�1
jk ðqÞ

� ����
���

1� s0jk u�1
jk ðqÞ

� � cRk ðqÞ � bcRk ðqÞ
�� ��ed qþsM

jkð Þdq

To calculate the derivative of W(t) with respect to t along

the solution trajectories of systems (2a)–(2b) in the sense

(3) of by applying Lemma 1, one obtains that

dWðtÞ
dt

�
Xn

j¼1

edtnjð�djðtÞþdÞ zRj ðtÞ�bzRj ðtÞ
���

���

þ
Xn

j¼1

edt/jð�djðtÞþdÞ zIj ðtÞ�bzIj ðtÞ
���

���

þ
Xn

j¼1

edt cRj ðtÞ�bcRj ðtÞ
���

���

� aRjjðtÞnjþ
Xn

k¼1;k 6¼j

nk a
R
kjðtÞ

���
���þ

Xn

k¼1

/k a
I
kjðtÞ

���
���

(

þ
Xn

j;k¼1

nk
bRkj u�1

jk ðtÞ
� ����

���

1�s0kj u�1
jk ðtÞ

� �eds
M
kj þ

Xn

j;k¼1

/k

bIkj u�1
jk ðtÞ

� ����
���

1�s0kj u�1
jk ðtÞ

� �eds
M
kj

9
=

;
þ

þ
Xn

j¼1

edt cIj ðtÞ�bcIj ðtÞ
���

��� aRjjðtÞ/jþ
Xn

k¼1;k 6¼j

/k a
R
kjðtÞ

���
���þ

Xn

k¼1

nk a
I
kjðtÞ

���
���þ

(

þ
Xn

j;k¼1

nk
bIkj u�1

jk ðtÞ
� ����

���

1�s0kj u�1
jk ðtÞ

� �eds
M
kj þ

Xn

j;k¼1

/k

bRkj u�1
jk ðtÞ

� ����
���

1�s0kj u�1
jk ðtÞ

� �eds
M
kj

9
=

;

It follows from Assumption 4 that

dWðtÞ
dt

� 0; a.e. t 2 ½0;þ1Þ: ð13Þ

Note that

kZðtÞ� bZðtÞk ¼
Xn

j¼1

nj z
R
j ðtÞ�bzRj ðtÞ

���
���þ

Xn

j¼1

/j z
I
j ðtÞ�bzIj ðtÞ

���
���:

ð14Þ

It follows from (13) and (14) that one has

kZðtÞ � bZðtÞk� e�dtWðtÞ� e�dtWð0Þ: ð15Þ

Let M ¼ Mðw; l; bw; blÞ ¼ Wð0Þ, then kzðtÞ � bzðtÞk�
Me�dt. Moreover, there exists an almost periodic solution

for systems (2a)–(2b) in the sense of (3). Hence, one has

kZðtÞ � Z	ðtÞk�Oðe�dtÞ; ð16Þ

which implies that almost periodic solution Z	ðtÞ is glob-
ally exponentially stable. Finally, it should be pointed out

that almost periodic solutions of system (2a)–(2b) are

unique. Actually, assume that Z	ðtÞ and U	ðtÞ are two

almost periodic solutions.

kZ	ðtÞ � U	ðtÞk�Oðe�dtÞ: ð17Þ

According to Levitan and Zhikov(1982), we conclude that

if Z	ðtÞ and U	ðtÞ are two almost periodic functions sat-

isfying (17), then Z	ðtÞ ¼ U	ðtÞ. Therefore, the almost

periodic solution is unique. The proof is complete.

Finally, we study a specific case in the main theorem.

Due to that periodic function can be regard as an almost

periodic function, all fruits use to periodic case. Now,

taking the place of Assumption 3, the following assump-

tion holds. h
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Assumption 5 djðtÞ; aRjkðtÞ; aIjkðtÞ; bRjkðtÞ; bIjkðtÞ; uRj ðtÞ; uIj
ðtÞ; sjkðtÞ are continuous functions in R. i.e., for any e[ 0,

there exists l ¼ lðeÞ[ 0 such that for any interval

½a; aþ l�, there exists x 2 ½a; aþ l� such that

djðt þ xÞ ¼djðtÞ; sjkðt þ xÞ ¼ sjkðtÞ;
aRjkðt þ xÞ ¼aRjkðtÞ; aIjkðt þ xÞ ¼ aIjkðtÞ;
uRj ðt þ xÞ ¼uRj ðtÞ; uIj ðt þ xÞ ¼ uIj ðtÞ;
bRjkðt þ xÞ ¼bRjkðtÞ; bIjkðt þ xÞ ¼ bIjkðtÞ:

hold for all j; k ¼ 1; 2; . . .; n and t 2 R.

According to Theorem 1 and Theorem 2, the following

corollary is true.

Corollary 1 If assumptions 1, 2, 4, 5 are satisfied, then

system (2a)–(2b) has a unique periodic solution, where it is

globally exponentially stable.

Furthermore, a constant is a periodic function with any

periodic. Therefore, the following complex-valued delayed

neural networks are

dzjðtÞ
dt

¼ �djzjðtÞ þ
Xn

k¼1

ajkfkðzkðtÞÞ þ
Xn

k¼1

bjkfkðzkðt � sjkðtÞÞÞ þ uj;

j ¼ 1; . . .; n

ð18Þ

Assumption 6 Assume that the delays sjkðtÞ are contin-

uous function and satisfying s0jkðtÞ\1 for j; k ¼ 1; 2; . . .; n.

Moreover, there exist positive constants nj;/j and

dj [ d[ 0, such that Cj\0 and !j\0; j ¼ 1; 2; . . .; n.

where

Cj ¼aRjjnj þ
Xn

k¼1;k 6¼j

nkjaRkjj þ
Xn

k¼1;

/k a
I
kj

���
���þ

Xn

k¼1;

nk b
R
kj

���
���eds

M
kj

þ
Xn

k¼1;

/k b
I
kj

���
���eds

M
kj

!j ¼aRjj/j þ
Xn

k¼1;k 6¼j

/k a
R
kj

���
���þ

Xn

k¼1

nk a
I
kj

���
���þ

Xn

j;k¼1

nk b
I
kj

���
���eds

M
kj

þ
Xn

j;k¼1

/k b
R
kj

���
���eds

M
kj

and sMjk ðtÞ ¼ maxfsjkðtÞg; j; k ¼ 1; 2; . . .; n.
The following corollary is also true.

Corollary 2 If Assumptions 1, 2, 6 are satisfied, then

system (18) has a unique solution with any initial valued;

moreover, system (18) has a unique equilibrium, where it is

globally exponentially stable.

4 Numerical example

In this section, an example validates the validity of our

results which is obtained in Theorem 1 and Theorem 2.

Example 1 Considering complex-valued dynamical net-

works constituting of two subnetworks as follows:

_z1ðtÞ ¼ � 2z1ðtÞ þ ½ð�0:5þ 0:01 sin
ffiffiffi
2

p
tÞ

þ ð0:01 sin
ffiffiffi
2

p
tÞi�f1ðz1ðtÞÞ � ½0:01þ 0:01i�f2ðz2ðtÞÞ

þ ½ð�0:05þ 0:01 sin
ffiffiffi
2

p
tÞ

þ ð0:01 sin
ffiffiffi
2

p
tÞi�f1ðz1ðt � 0:1ÞÞ

� ½0:01þ 0:01i�f2ðz2ðt � 0:1ÞÞ
þ ð0:02 sin

ffiffiffi
2

p
t þ 0:01 cos

ffiffiffi
5

p
tÞ

þ ð0:02 sin
ffiffiffi
2

p
t þ 0:01 cos

ffiffiffi
5

p
tÞi

_z2ðtÞ ¼ � 2z2ðtÞ þ ð0:01þ 0:01iÞf1ðz1ðtÞÞ
� ½0:4þ ð0:01 cos

ffiffiffi
2

p
tÞi�f2ðz2ðtÞÞ

þ ð0:01þ 0:1iÞf1ðz1ðt � 0:1ÞÞ
� ½ð0:04þ 0:01 cos

ffiffiffi
2

p
tÞi�f2ðz2ðt � 0:1ÞÞ

þ ð0:03 cos
ffiffiffi
3

p
t � 0:01 sin tÞ

þ ð0:03 cos
ffiffiffi
3

p
t � 0:01 sin tÞi

ð19Þ

where the discontinuous activation functions are given as

follows:

f Rk ðxÞ ¼ f Ik ðxÞ ¼
�2; x 2 ð�1;�1Þ
0; x 2 ð�1; 1Þ
3 x 2 ð1;þ1Þ

8
><

>:

Obviously, f Rk ð�Þ; f Ik ð�Þ is local Lipschitz with Lipschitz

constants LRj ¼ LIj ¼ 0:01. Observing that d1ðtÞ ¼ d2ðtÞ ¼
2; sjk ¼ 0:1; aR11ðtÞ ¼ �0:5þ 0:01 sin

ffiffiffi
2

p
t; aI11ðtÞ ¼ 0:01

sin
ffiffiffi
2

p
t; aR12ðtÞ ¼ �0:01; aI12ðtÞ ¼ �0:01; aR21ðtÞ ¼ 0:01;

aI21ðtÞ ¼ 0:01; aR22ðtÞ ¼ �0:4; aI22ðtÞ ¼ �0:01 cos
ffiffiffi
2

p
t;

bR11ðtÞ ¼ �0:05þ 0:01 sin
ffiffiffi
2

p
t; bI11ðtÞ ¼ 0:01 sin

ffiffiffi
2

p
t, bR12

ðtÞ ¼ �0:01; bI12ðtÞ ¼ �0:01; bR21ðtÞ ¼ 0:01; bI21ðtÞ ¼
0:01; bR22ðtÞ ¼ �0:04, bI22ðtÞ ¼ �0:01 cos

ffiffiffi
2

p
t; uR1 ðtÞ ¼

0:02 sin
ffiffiffi
2

p
t þ 0:01 cos

ffiffiffi
5

p
t; uI1ðtÞ ¼ 0:02 sin

ffiffiffi
2

p
t þ

0:01 cos
ffiffiffi
5

p
t; uR2 ðtÞ ¼ 0:03 cos

ffiffiffi
3

p
t � 0:01 sin t; uI2ðtÞ ¼

0:03 cos
ffiffiffi
3

p
t � 0:01 sin t are satisfied with Assumption 3.

Let d ¼ 0:01; n1 ¼ n2 ¼ /1 ¼ /2 ¼ 1, we have C1\0;

C2\0;!1\0; !2\0. According to Theorems 1 and 2,

system (19) has a unique almost periodic solution, which is

globally exponentially stable. The dynamics of system (19)

are illustrated in Figs. 1, 2, 3, and 4, where we give five

initial values of system (19).
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Remark 1 When aIjkðtÞ ¼ bIjkðtÞ ¼ 0 and fkð�Þ are real

functions, system (1) becomes a real-valued system as in

[25]. In this paper, we firstly investigate the uniqueness and

stability of almost periodic solution for delayed complex-

valued recurrent neural networks with discontinuous acti-

vation functions. It is a special kind of discontinuous

complex-valued activation functions in which real parts

and imaginary parts are discontinuous. Therefore, com-

plex-valued neural networks are more suitable than real-

valued neural networks.

5 Conclusion

In the past decades, the theory framework of the discon-

tinuous neural networks and its application was set up in

practice. In this article, we propose the almost periodic

solution of the complex-valued neural networks with dis-

continuous activations depending on the concept of Filip-

pov solution. Under these assumptions, we proved the

exponential convergence of the almost periodic solution

using the diagonal dominant principle, 1-norm and nons-

mooth analysis theory with generalized Lyapunov
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Fig. 1 Time-domain behavior of the state variable Rez1 for system

(19) with five random initial conditions, sjkðtÞ ¼ 0:1
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Fig. 2 Time-domain behavior of the state variable Imz1 for system

(19) with three random initial conditions, sjkðtÞ ¼ 0:1
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Fig. 3 Time-domain behavior of the state variable Rez2 for system

(19) with three random initial conditions, sjkðtÞ ¼ 0:1
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Fig. 4 Time-domain behavior of the state variable Imz2 for system

(19) with three random initial conditions, sjkðtÞ ¼ 0:1
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approach. We obtain the existence, uniqueness and global

stability of almost periodic solution for the complex-valued

neural networks. Finally, a numerical example demon-

strates the effectiveness of our obtained theoretical results.
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