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Abstract In this work, we concentrate on the analysis of

the time-fractional Rosenau–Hyman equation occurring in

the formation of patterns in liquid drops via q-homotopy

analysis transform technique and reduced differential

transform approach. The q-homotopy analysis transform

algorithm can provide rapid convergent series by choosing

the appropriate values of auxiliary parameters �h and n at

large domain. The reduced differential transform technique

gives wider applicability due to reduction in computations

and makes the calculation much simpler and easier. The

proposed techniques are realistic and free from any

assumption and perturbation for solving the time-fractional

Rosenau–Hyman equation.

Keywords Time-fractional Rosenau–Hyman equation �
Liquid drops � Laplace transform method � q-Homotopy

analysis transform technique � Reduced differential

transform technique

1 Introduction

The theory of fractional derivatives and integral operators

has attracted a great attention of scientists due to its wide

uses and importance in mathematics, physics, biology,

economics and finance. The mathematical models, coupled

equations, linear and nonlinear equations having initial and

boundary conditions, applied in various fields and tech-

nologies, can extend and describe more general through the

fractional calculus [1–8]. An excellent literature and

hereditary properties involving fractional operators for

differential and integral equations concerning fractional

calculus were reported by number of researchers [9–16].

The Rosenau–Hyman equation occurs in formation of

patterns in liquid drops having compaction solutions was

discovered by Rosenau and Hyman [17]. The compactons

studies of the Rosenau–Hyman equation play effective role

in applied sciences and mathematical physics [18–23].

Recently, the fractional Rosenau–Hyman equation is

studied by Molliq and Noorani by using VIM and HPM

[24]. These techniques have some shortcomings such as

small convergence region, strongly depend on Lagrange’s

multiplier, correctional functional, calculating integrals

appear in VIM and small/large parameters assumptions

mentioned in HPM.

In this work, numerical simulation of the time-frac-

tional Rosenau–Hyman equation is conducted with the

application of q-homotopy analysis transform technique (q-

HATT) and reduced differential transform technique. The

q-HATT is a graceful combination of q-HAM and Laplace

transform, which provides multiple approximate solutions.

The q-HAM proposed by El-Tavil and Huseen [25, 26] is a

generalized form of homotopy analysis scheme firstly

discovered by Liao [27, 28] and homotopy perturbation

approach firstly given by He [29–31]. In recent years, semi-
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analytical techniques have also been coupled with Laplace

transform algorithm such as Laplace decomposition tech-

nique [32], homotopy perturbation transform technique

[33–35] and homotopy analysis transform technique

[36–38] to analyze integer and fractional differential

equations describing real-word problems arising in scien-

tific and technological areas.

The q-HATT gives us with a straightforward way to

insure the convergence of series solution with the help of the

auxiliary parameter �h, the embedding parameter q 2
0; 1

n

� �
ðn� 1Þ; asymptotic parameter n, auxiliary function

H(x, t) and the initial guess u0(x, t) to find the series solution

in more general form. On the other hand, we illustrate the

reduced differential transform technique (RDTT) [39–41]

to examine the time-fractional Rosenau–Hyman equation

with small size computational work and provide rapidly

convergent series solution. The proposed schemes can be

performed very easily (free from any assumption or cal-

culating integrals), uniformly valid in nonlinear equations

for small/large parameters. The outline of the present article

is as follows: In Sect. 2, the definition of Caputo fractional

derivative and its Laplace transform formula are discussed.

In Sect. 3, the basic idea of q-HATT is presented. Section 4

contains the basic idea of RDTT. In Sect. 5, implementa-

tion of q-HATT on time-fractional Rosenau–Hyman

equation is discussed. In Sect. 6, RDTT is applied on time-

fractional Rosenau–Hyman equation. Numerical results

and discussion for time-fractional Rosenau–Hyman equa-

tion are presented in Sect. 7. Finally, Sect. 8 is dedicated to

conclusions.

2 Preliminaries

Here, we present the basic definition and properties of

fractional ordered derivatives.

Definition 2.1 If f (t) be a function of t, then the fractional

ordered derivative in terms of Caputo [42] is defined and

expressed as:

Da
t f ðtÞ ¼ Jn�aDn

t f ðtÞ ¼
1

Cðn� aÞ

Z t

0

ðt � sÞn�a�1
f nðsÞds; ð1Þ

for n� 1\a� n; n 2 N; t[ 0:

Definition 2.2 If Da
t f ðtÞ is the Caputo derivative of the

function f(t), then its Laplace transform is presented as

[42, 43]

L Da
t f ðtÞ

� �
¼ saL f ðtÞ½ � �

Xn�1

r¼0

sa�r�1f rð Þð0þÞ;

n� 1\a� n:

ð2Þ

3 Basic idea of q-HATT

To demonstrate the basic plan and solution procedure of

this approach, we take a fractional nonlinear differential

equation written as:

Da
t uðx; tÞ þ R uðx; tÞ þ Nuðx; tÞ ¼ gðx; tÞ; n� 1\a� n:

ð3Þ

In the fractional Eq. (3), Da
t uðx; tÞ is indicating the

fractional derivative of the function u(x, t) defined by

Caputo, R is denoting the linear differential operator, N is

representing the general nonlinear differential operator and

g(x, t) is representing a function arising from the source.

By putting up the application of Laplace transform on

fractional Eq. (3), we have

L Da
t u

� �
þ L½Ru� þ L ½Nu� ¼ L½gðx; tÞ�: ð4Þ

By employing the differentiation formula of the Laplace

transform, it gives

saL½u� �
Xn�1

k¼0

sa�k�1uðkÞðx; 0Þ þ L ½Ru� þ L½Nu� ¼ L½gðx; tÞ�:

ð5Þ

On simplifying, we get the following result:

L½u� � 1

sa

Xn�1

k¼0

sa�k�1uðkÞðx; 0Þ

þ 1

sa
L½Ru� þ L½Nu� � L½gðx; tÞ�½ �

¼ 0: ð6Þ

According to HAM, the nonlinear operator is presented

as:

N½/ðx; t; qÞ� ¼ L½/ðx; t; qÞ� � 1

sa

Xn�1

k¼0

sa�k�1/ðkÞðx; t; qÞð0þÞ

þ 1

sa
L ½R/ðx; t; qÞ� þ L½N/ðx; t; qÞ� � L½gðx; tÞ�½ �:

ð7Þ

In Eq. (7) q 2 ½0; 1=n�, and /ðx; t ; qÞ is indicating a real

function of x, t and q. In view of well-known HAM, the

homotopy is constructed in the following manner:

ð1 � nqÞL½/ðx; t ; qÞ � u0ðx; tÞ� ¼ �hqHðx; tÞN½uðx; tÞ�: ð8Þ

In Eq. (8), L is denoting the Laplace transform operator,

n� 1; q 2 0; 1
n

� �
is known as the embedding parameter,

H(x, t) indicates a nonzero auxiliary function, �h = 0 is an

auxiliary parameter and u0(x, t) is an initial guess of u(x, t).

It is clear that, when the embedding parameter q = 0 and

q ¼ 1
n
; it gives

/ðx; t; 0Þ ¼ u0ðx; tÞ; / x; t;
1

n

� �
¼ uðx; tÞ; ð9Þ
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respectively. Hence, as q increases from 0 to 1
n
, the solution

/ðx; t ; qÞ varies from the initial guess u0(x, t) to the solu-

tion u(x, t) of the nonlinear fractional differential equation.

On expanding the function /ðx; t ; qÞ in series form by

using Taylor’s formula about q, we have

/ðx; t ; qÞ ¼ u0ðx; tÞ þ
X1

m¼1

umðx; tÞqm; ð10Þ

where

umðx; tÞ ¼
1

m!

om/ðx; t; qÞ
oqm

q¼0:
�� ð11Þ

If the values of u0(x, t), n, �h and H(x, t) are selected in a

proper manner, the series (10) converges at q ¼ 1
n
, and then,

we get

uðx; tÞ ¼ u0ðx; tÞ þ
X1

m¼1

umðx; tÞ
1

n

� �m

: ð12Þ

Equation (12) must be one of the solutions of the non-

linear Eq. (3). Using definition (12), the governing equa-

tion can be derived from the deformation equation of zero

order (8).

Now, we define the vectors as

u~m ¼ fu0ðx; tÞ; u1ðx; tÞ; . . .; umðx; tÞg: ð13Þ

Next on differentiating the zeroth-order deformation

Eq. (8) m-times with respect to q and then dividing them

by m! and finally putting q = 0, we arrive at the following

mth-order deformation equation:

L½umðx; tÞ � kmum�1ðx; tÞ� ¼ �hHðx; tÞ<mðu~m�1Þ: ð14Þ

Using the inverse Laplace transform in Eq. (14), it gives

umðx; tÞ ¼ kmum�1ðx; tÞ þ �hL�1½Hðx; tÞ<mðu~m�1Þ�: ð15Þ

In the above Eq. (15), the values of <mðu~m�1Þ and km are

presented as:

<mðu~m�1Þ ¼
1

ðm� 1Þ!
om�1N½/ðx; t; qÞ�

oqm�1 q¼0;
�� ð16Þ

and

km ¼ 0; m� 1

n; m[ 1
;

�
ð17Þ

respectively.

4 Reduced differential transform technique
(RDTT)

To demonstrate the basic solution procedure of RDTT, we

take a function p(x, t) and consider that it can be expressed

as a product of two single variable functions, i.e.,

pðx; tÞ ¼ dðiÞgðjÞ. On the basis of the properties of the one-

dimensional differential transform, the function p(x, t) can

be defined as:

pðx; tÞ ¼
X1

i¼0

dðiÞxi
X1

j¼0

gðjÞt j ¼
X1

i¼0

X1

j¼0

Pði; jÞxit j; ð18Þ

where Pði; jÞ ¼ dðiÞgðjÞ is the spectrum of p(x, t).

Let RD indicates the reduced differential transform

operator and R�1
D the inverse reduced differential transform

operator [39]. The basic definitions and operations of the

reduced differential transform are as follows.

Definition 4.1 If p(x, t) is analytical and continuously dif-

ferentiable about the space variable x and time variable t in the

domain of interest, then the t-dimensional spectrum function

PkðxÞ ¼
1

Cðkaþ 1Þ
ok

otk
pðx; tÞ

� 	

t¼t0

; ð19Þ

is the fractional reduced transformed function of p(x, t),

where a is a parameter which describes the order of time-

fractional derivatives. The differential inverse transform of

Pk(x) is demonstrated in the following way

pðx; tÞ ¼
X1

k¼0

WkðxÞðt � t0Þka: ð20Þ

On comparing Eqs. (19) and (20), it can be observed

that

pðx; tÞ ¼
X1

k¼0

1

Cðkaþ 1Þ
ok

otk
pðx; tÞ

� 	

t¼t0

ðt � t0Þka: ð21Þ

If we set t = 0, Eq. (13) is reduced to

pðx; tÞ ¼
X1

k¼0

1

Cðkaþ 1Þ
ok

otk
pðx; tÞ

� 	

t¼t0

tka: ð22Þ

From the above definition, it can be observed that the

idea of the fractional reduced differential transform is

obtained from the power series expansion of a function.

Definition 4.2 If uðx; tÞ ¼ R�1
D ½UkðxÞ�; vðx; tÞ ¼ R�1

D

½VkðxÞ� and the convolution H indicates the fractional

reduced differential transform version of the multiplication,

then the fundamental operations of the fractional reduced

differential transform are expressed in Table 1.

5 Implementation of q-HATT

Here we show the efficiency and applicability of q-HATT

for examining the time-fractional Rosenau–Hyman equa-

tion which is characterized as
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Table 1 Fundamental

operations of the fractional

reduced differential transform

technique

Original function Fractional reduced differential transformed function

RD½uðx; tÞvðx; tÞ� UkðxÞHVðxÞ ¼
Pk

i¼0 UiðxÞVk�iðxÞ
RD½auðx; tÞ � bvðx; tÞ� aUkðxÞ � bVkðxÞ
RD½ðoNa=otNaÞuðx; tÞ� ½ðCðkaþ Naþ 1ÞÞ=Cðkaþ 1ÞÞ�UkþNðxÞ
RD½ðxrtnuðx; tÞ� xrUk�nðxÞ
RD½ekt� kk=Cðk þ 1Þ
RD½sinðxt þ aÞ� ðxk=Cðk þ 1ÞÞ sin½ðpk=Cð3ÞÞ þ a�
RD½cosðxt þ aÞ� ðxk=Cðk þ 1ÞÞ cos½ðpk=Cð3ÞÞ þ a�

Fig. 1 Fourth-order family of approximate q-HATT (for �h = -1 and n = 1) and RDTT solution u(x, t) of Eq. (23) versus x and time t at

c = 0.5 and a = 1: a exact solution; b approximate solution; c absolute error E4(u) = |uex - uapp|
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oau

ota
¼ u

o3u

ox3
þ u

ou

ox
þ 3

ou

ox

o2u

ox2
; t[ 0; 0\a� 1:

ð23Þ

with the initial condition

uðx; 0Þ ¼ � 8

3
c cos2 x

4


 �
: ð24Þ

Here, u = u(x, t) is the function of space coordinate

x and time t, c is arbitrary constant. The time-fractional

Rosenau–Hyman equation occurs in the investigation of

nonlinear dispersion in the formation of patterns in liquid

drops [17].

To solve Eqs. (23) and (24), we apply the Laplace

transform along with the initial condition, and it gives

L uðx; tÞ½ � � 1

s
� 8

3
c cos2 x

4


 �� �

� 1

sa
L u

o3u

ox3
þ u

ou

ox
þ 3

ou

ox

o2u

ox2

� 	

¼ 0: ð25Þ

The nonlinear operator is

N /ðx; t; qÞ½ � ¼ L /ðx; t; qÞ½ � � 1

s
� 8

3
c cos2 x

4


 �� �

� 1

sa
L /ðx; t; qÞ o

3/ðx; t; qÞ
ox3

�

þ/ðx; t; qÞ o/ðx; t; qÞ
ox

þ 3
o/ðx; t; qÞ

ox

o2/ðx; t; qÞ
ox2

	
;

ð26Þ

and thus

<mðu~m�1Þ ¼ Lðum�1Þ þ
1

s
1 � km

n

� �
8

3
c cos2 x

4


 �

� 1

sa
L

Xm�1

r¼0

ur
o3um�1�r

ox3

"

þ
Xm�1

r¼0

ur
oum�1�r

ox
þ 3

Xm�1

r¼0

our

ox

o2um�1�r

ox2

#

ð27Þ

The deformation equation of mth-order is given by:

L umðx; tÞ � kmum�1ðx; tÞ½ � ¼ �h<mðu~m�1Þ: ð28Þ

Using the inverse of Laplace transform operator on

above equation, we get the following result

umðx; tÞ ¼ kmum�1ðx; tÞ þ �hL�1 <mðu~m�1Þ½ �: ð29Þ

On solving Eq. (29), it yields

u0ðx; tÞ ¼ � 8

3
c cos2 x

4


 �

u1ðx; tÞ ¼
2

3
�hc2 sin

x

2


 � ta

C aþ 1ð Þ ;

u2ðx; tÞ ¼
2

3
�h �hþ nð Þc2 sin

x

2


 � ta

C aþ 1ð Þ

þ 1

3
�h2c3 cos

x

2


 � t2a

C 2aþ 1ð Þ ;

u3ðx; tÞ ¼
2

3
�h �hþ nð Þ2

c2 sin
x

2


 � ta

C aþ 1ð Þ þ
2

3
�h2ð�hþ nÞc3

� cos
x

2


 � t2a

C 2aþ 1ð Þ

� 1

6
�h3c4 sin

x

2


 � t3a

C 3aþ 1ð Þ ;

u4ðx; tÞ ¼ �hþ nð Þu3ðx; tÞ þ �h2ð�hþ nÞ2
c3 cos

x

2


 � t2a

C 2aþ 1ð Þ

� 1

3
�h3ð�hþ nÞc4 sin

x

2


 � t3a

C 3aþ 1ð Þ

� 1

12
�h4c5 cos

x

2


 � t4a

C 4aþ 1ð Þ ; ð30Þ

Using the same way, the remaining of the components

um(x, t) for m[ 4 can be obtained, and the series expansion

is given as:

Fig. 2 Fourth-order approximate q-HATT (for �h = -1 and n = 1)

and RDTT solution u(x, t) versus time t for Eq. (23) at x = 20 and

c = 0.5 for various values of a
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uðx; tÞ ¼ u0ðx; tÞ þ
X1

m¼1

umðx; tÞ
1

n

� �m

; ð31Þ

Equation (31) represents the family of q-HATT series

solutions for Eq. (23). The expansion of q-HATT series

solution (31) directly converges to HAM when n = 1 and

RDTT, HPM, VIM solution series by putting n = 1 and

�h = -1. If we set �h = -1, n = 1 and a = 1 in
PN

m¼0 umðx; tÞ 1
n

� m
when N ? ?, it converges to the

standard exact solution given as [44]

uðx; tÞ ¼ � 8

3
c cos2 1

4
ðx� ctÞ

� �
; x� ctj j � 2p; ð32Þ

where c indicates the arbitrary constant [17].

6 Implementation of RDTT

Here, we illustrate RDTT for examining the time-frac-

tional Rosenau–Hyman equation (23) with initial condi-

tion (24)

By the application of RDTT to Eq. (23), we get the

following recurrence relation:

Cðmaþ aþ 1Þ
Cðmaþ 1Þ Umþ1ðxÞ ¼

Xm

r¼0

Ur

o3Um�r

ox3
þ
Xm

r¼0

Ur

oUm�r

ox

þ 3
Xm

r¼0

oUr

ox

o2Um�r

ox2
: ð33Þ

Using the RDTT to the initial condition (24), we get

U0ðxÞ ¼ � 8

3
c cos2 x

4


 �
: ð34Þ

Using Eq. (34) in Eq. (33), we obtain the following

values of Um(x), for m = 1, 2, 3, …, as

U1ðxÞ ¼ � 2

3
c2 sin

x

2


 � 1

C aþ 1ð Þ ; U2ðxÞ ¼
1

3
c3 cos

x

2


 � 1

C 2aþ 1ð Þ ;

U3ðxÞ ¼
1

6
c4 sin

x

2


 � 1

C 3aþ 1ð Þ ; U4ðxÞ ¼ � 1

12
c5 cos

x

2


 � 1

C 4aþ 1ð Þ ;

..

.

ð35Þ

Using the above way, the rest of the components can be

found, and using the differential inverse reduced transform

of Um(x), m = 1, 2, 3, …, we get

uðx; tÞ ¼
X1

m¼0

UmðxÞtma

¼ U0ðxÞ þ U1ðxÞta þ U2ðxÞt2a þ U3ðxÞt3a þ � � � ;
ð36Þ

which converges to the standard exact solution given as

below [44]:

uðx; tÞ ¼ � 8

3
c cos2 1

4
ðx� ctÞ

� �
; x� ctj j � 2p; ð37Þ

where c represents the arbitrary constant [17].

This is the same solution series obtained by q-HATT, at

�h = -1, n = 1. We observe that the reduced differential

transform technique is very easier to implement and

requires less computational work for convergent solution

series. The maple package is used for graphical represen-

tation of q-HATT solution series and RDTT (q-HATT,

�h = -1, n = 1) solution series of time-fractional Rose-

nau–Hyman equation.

7 Results and discussion

In this part of the article, we enumerate the results found

by using q-HATT and RDTT. The multiple graphical

surface solutions of Eq. (23) are depicted in Fig. 1. In

Fig. 1a–c, we can observe that the results obtained with

aid of q-HATT and RDTT are in an excellent agreement

with the exact solution. Figure 2 depicts the relation

between approximate solution u(x, t) and time t for dis-

tinct values of a. In Fig. 2, it is to be noted that the value

of a significantly affects the displacement. Figure 3a–d

represents �h- and n-curves. The value of �h is selected,

corresponding to arbitrary n(n C 1) from the convergence

range. From Fig. 3a–d, we can notice from �h- and

asymptotic n-curves that q-HATT have great efficiency

and accuracy and gives convergent solution series at large

admissible domain. We can observe from �h-curves that

the convergence range is directly proportional to n

8 Conclusions

In this paper, q-HATT is used for numerical simulation of

the time-fractional Rosenau–Hyman equation at large

admissible domain compared to VIM, HPM [24] and

RDTT. The �h- and asymptotic n-curves show the validity

of q-HATT for infinitely many acceptable q-HATT solu-

tions and the middle point of �h-curve interval, i.e.,

�h = -n is a suitable choice, at this point the numerical

solution converges to the exact solution. The application of

RDTT tool to solve time-fractional Rosenau–Hyman

equation in efficient way is demonstrated. Moreover, the

computational work contained in RDTT tool is very small,

simple and attractive. Thus, it can be concluded that the

both q-HATT and RDTT are highly efficient and user
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friendly to investigate nonlinear fractional differential

equations.
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Rosenau–Hyman compacton equation. Math Comput Simul

76:188–192

22. Rus F, Villatoro FR (2009) A repository of equations with cosine/

sine compactons. Appl Math Comput 215:1838–1851

23. Rus F, Villatoro FR (2008) Numerical methods based on modi-

fied equations for nonlinear evolution equations with com-

pactons. Appl Math Comput 204:416–422

24. Molliq RY, Noorani MSM (2012) Solving the fractional Rose-

nau–Hyman equation via variational iteration method and

homotopy perturbation method. Int J Differ Equ 2012. Article ID

472030

25. El-Tawil MA, Huseen SN (2012) The q-homotopy analysis

method (q- HAM). Int J Appl Math Mech 8:51–75

26. El-Tawil MA, Huseen SN (2013) On convergence of the q-ho-

motopy analysis method. Int J Contemp Math Sci 8:481–497

27. Liao SJ (1992) The proposed homotopy analysis technique for the

solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong

University

28. Liao SJ (2003) Beyond perturbation: introduction to the homo-

topy analysis method. Chaoman and Hall/CRC Press, Boca Raton

29. He JH (1999) Homotopy perturbation technique. Comput Meth-

ods Appl Mech Eng 178:257–262

30. He JH (2003) Homotopy perturbation method: a new nonlinear

analytical technique. Appl Math Comput 135:73–79

31. He JH (2006) New interpretation of homotopy perturbation

method. Int J Mod Phys B 20:2561–2568

32. Khuri SA (2001) A Laplace decomposition algorithm applied to a

class of nonlinear differential equations. J Appl Math 1:141–155

33. Khan Y, Wu Q (2011) Homotopy perturbation transform method

for nonlinear equations using He’s polynomials. Comput Math

Appl 61(8):1963–1967

34. Kumar D, Singh J, Kumar S (2015) A fractional model of

Navier–Stokes equation arising in unsteady flow of a viscous

fluid. J Assoc Arab Univ Basic Appl Sci 17:14–19

35. Kumar S, Kumar A, Kumar D, Singh J, Singh A (2015) Ana-

lytical solution of Abel integral equation arising in astrophysics

via Laplace transform. J Egypt Math Soc 23(1):102–107

36. Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new

comparative study between homotopy analysis transform method

and homotopy perturbation transform method on semi-infinite

domain. Math Comput Model 55:1143–1150

37. Kumar D, Singh J, Kumar S, Sushila (2014) Numerical compu-

tation of Klein-Gordon equations arising in quantum field theory

by using homotopy analysis transform method. Alex Eng J

53(2):469–474

38. Yin XB, Kumar S, Kumar D (2015) A modified homotopy

analysis method for solution of fractional wave equations. Adv
Mech Eng 7(12):1–8

39. Keskin Y, Oturanc G (2010) Reduced differential transform

method: a new approach to factional partial differential equations.

Nonlinear Sci Lett A 1:61–72

40. Gupta PK (2011) Approximate analytical solutions of fractional

Benney–Lin equation by reduced differential transform method

and the homotopy perturbation method. Comput Math Appl

58:2829–2842

41. Srivastava VK, Awasthi MK, Tamsir M (2013) RDTM solution

of Caputo time fractional-order hyperbolic telegraph equation.

AIP Adv. doi:10.1063/1.4799548

42. Caputo M (1969) Elasticita e dissipazione. Zani-Chelli, Bologna

43. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and

applications of fractional differential equations. Elsevier,

Amsterdam

44. Clarkson PA, Mansfield EL, Priestley TJ (1997) Symmetries of a

class of nonlinear third-order partial differential equations. Math

Comput Modell 25(8–9):195–212

3070 Neural Comput & Applic (2018) 30:3063–3070

123

http://dx.doi.org/10.1186/1687-1847-2014-119
http://dx.doi.org/10.1186/1687-1847-2014-119
http://dx.doi.org/10.1115/1.4033899
http://dx.doi.org/10.2202/1542-6580.2156
http://dx.doi.org/10.1103/PhysRevE.81.056708
http://dx.doi.org/10.1063/1.4799548

	An efficient computational approach for time-fractional Rosenau--Hyman equation
	Abstract
	Introduction
	Preliminaries
	Basic idea of q-HATT
	Reduced differential transform technique (RDTT)
	Implementation of q-HATT
	Implementation of RDTT
	Results and discussion
	Conclusions
	Acknowledgements
	References




