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Abstract Based on the traditional boring bar, a boring bar

with friction damper is proposed in the paper. Firstly, the

frequency response under different pressures is computed

primarily based on the theory, which shows that the pro-

posed boring bar has a certain vibration reduction effect.

Secondly, the finite element model of the boring bar is

built, and the first 6-order modes are computed, whose

results are compared with the experimental value. As a

result, the virtual reality of the boring bar is achieved. They

are consistent with each other, which show that the finite

element model is reliable. Then, the experimental cutting

process of the boring bar is researched, which is compared

with the simulation model with good coincidence. It is

found from the result that the cutting simulation model of

the boring bar is effective. Later, based on the verified

simulation model, the positive pressure between the fric-

tion vibrator and boring bar, cutting speed, feed rate, back

cutting depth and other parameters are changed to study the

vibration reduction effects of the boring bar with friction

damper. PSO (particle swarm optimization)-BP (back-

propagation) neural network is then used to optimize the

cutting process of the boring bar, and the optimal cutting

parameters can be obtained. Finally, these optimized

parameters are applied in the boring bar, the vibration

reduction effect of the boring bar is verified by means of

experiments, and the corresponding result shows that the

proposed optimization in this paper is feasible. We can

obtain higher quality work piece when we use this boring

bar in the actual engineering.

Keywords Boring bar � Virtual reality � PSO-BP neural

network � Vibration reduction � Optimization design

1 Introduction

With the constant development of mechanical manufac-

turing technology, increasingly high precisions have been

required on cutting technology in actual engineering,

especially some industries demanding high precisions.

When the boring bar has a large overhanging, produced

work pieces cannot meet design requirements as vibration

cannot be excited by static stiffness or dynamic stiffness.

The machining characteristics of the boring bar have a poor

static stiffness and dynamic stiffness. In high-speed cutting

process, even slight vibration will lead to the instability of

high-speed machining process and the serious damage of

cutting tools due to the high rotation speed of machine tool

spindle. Therefore, studying how to reduce vibration is

necessary to lower machining costs and improve the high-

speed machining efficiency of grinding tools [1–4]. To

reduce the vibration amplitude of the boring bar head, the

following several measures are mainly taken: (1) Conduct

optimization design for the boring bar head and reduce the

weight of the boring bar head on the premise of ensuring

the high stiffness of the boring bar; (2) Adopt composite

materials to produce the boring bar, improve the static

stiffness and dynamic stiffness of the boring bar and

increase the damping ratio of the boring bar; (3) Take

advantage of the hollow structure of the boring bar and

subtly design damper to consume vibration energy and

improve the dynamic performance of the boring bar.
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To solve the vibration problem of the boring bar and

improve themachining precision of cutting of the boring bar,

currently, a large number of scholars have made many

attempts and conducted numerous studies. Sandvik in Swe-

den produced boring bars with damping vibration attenua-

tion whose principle added a damping system to the section

where the boring bar was close to the tool, improving the

dynamic performance of the boring bar [5]. Japanese Mit-

subishi Corporation and Toshiba Corporation produced

series damping boring bars whose design thought was to

optimize the boring bar head, adopt unique section and try to

reduce the weight of its head on the premise of ensuring the

strength of the boring bar [6]. Zhai et al. [7] also designed a

kind of high-frequency, precise and servo boring bars from a

dynamic perspective and experimentally verified the supe-

riority of the structure. Mei et al. [8] proposed an innovative

chatter suppression method based on a magnetorheological

(MR) fluid-controlled boring bar. The MR fluid, which can

change stiffness consecutively by varying the strength of the

applied magnetic field, was applied to adjust the stiffness of

the boring bar and suppress chatter. An approach to study the

whirling motion of the deep hole boring system is presented

by introducing the system excitation in the form of internal

forces between the boring bar and the work piece, and

external suppression forces will reduce the whirl amplitude

at the same locations. The researched result was also verified

by the corresponding experiment [9].

The mentioned studies mainly improve the internal

structure of the boring bar and need relatively high design

cycle and cost. Aiming at this problem, this paper firstly

adopts finite element method to improve various parame-

ters in the cutting process of the boring bar and study the

impact of cutting parameters on the precision of the boring

bar. As a result, the virtual reality of the boring bar is

achieved. Then, this paper uses PSO-BP neural network to

optimize the cutting process of the boring bar and get the

optimal cutting parameters so as to obtain the result of high

cutting precision on the prerequisite of maintaining the

original structure of the boring bar.

2 Theoretical model of the boring bar

Based on the friction damper principle, boring bar is

designed. There is friction vibrator, and permanent magnet

poles repel in front cavity of the boring bar to reduce

vibration.

2.1 Mechanical model in sliding friction state

Kinetic model of the boring bar in sliding friction state is

shown in Fig. 1. Figure 1 is from the professional drawing

software AutoCAD.

M1 and K1 are mass of the main structure and elasticity

coefficient, respectively. M2 is mass of the additional struc-

ture. There are damping c2 and frictionFd betweenM1 andM2.

x is excitation frequency. P0 is amplitude of excitation force.

For solving and measuring the system, it needs excitation to

make the system vibrate. There are three kinds of excitation:

steady-state sinusoidal excitation, random excitation and

transient excitation. Therefore, we use the most common

steady-state sinusoidal excitation which also known as simple

harmonic excitation; its advantages are large excitation

power, high signal–noise ratio and high test precision.

Friction is the important part of boring bar we resear-

ched, and we choose the dry friction model that the sliding

friction coefficient is characterized as polynomial function

of relative velocity. And this model has been successfully

used to analyze friction natural vibration [8, 9]. Changing

curve of sliding friction coefficient ld and changing curve

of dry friction force Fd with velocity are shown in Figs. 2

and 3, respectively. According to figures, the time when

relative velocity _yj j\vm, ld increases with decreasing of

_yj j and when relative _yj j[ vm, ld increases with increasing

of _yj j are shown. And the time when _yj j ¼ vm, ld reaches

the minimum. Dry friction force can be approximately

expressed as follow equation.

Fd ¼ Ff sgnð _yÞ � B1 _yþ B2 _y
3 ¼ ldF ð1Þ

In the equation, Ff[ 0, B1[ 0, B2[ 0, and they are

constant. ld is the friction coefficient. F is the positive

pressure.

Establish differential equations for M1 and M2 as

follows.

m2€x2 þ c2 _yþ Fdð _yÞ ¼ 0 ð2Þ
m1€x1 þ c1 _x1 þ k1x1 � c2 _y� Fdð _yÞ ¼ P0 sinxt ð3Þ

wherein m1, c1 and k1 are modal mass coefficient, modal

damping coefficient and modal stiffness coefficient of

Fig. 1 Kinetic model of boring bar

1358 Neural Comput & Applic (2018) 29:1357–1367

123

RETRACTED A
RTIC

LE



boring bar, respectively. m2, c2 and k2 are modal mass

coefficient, modal damping coefficient and modal stiffness

coefficient of built-in subsystem. P0 and x are the ampli-

tude and frequency of sine excitation force.

During the cutting process, the vibration of the boring

bar is not very big, and the corresponding value is only

several millimeter. As a result, x and y are also small.

Finally, in the above equations, high-order harmonics in

the solution will be very small when it is compared with the

low-order harmonics. So the high-order harmonics can be

neglected, and the corresponding solution is shown in the

following.

x1 ¼ xm sinðxt � /xÞ y ¼ ym sinðxt � /yÞ ð4Þ

Figure 4 only shows waveform of the first term Ff sgnð _yÞ
in Eq. (1). According to the published paper [1], sgnð _yÞ is a
sign function in which period is 3p/2, and waveform of the

sign function is a square wave as shown in Fig. 4. This

detailed type of the sign function can be determined by

experiments (Fig. 5).

Make Fourier series expansion for ~FðxsÞ as follows.

~FðxsÞ ¼ a0

2
þ
X1

n¼1

an cos nxsþ bn sin nxs ð5Þ

According to Fig. 4, Eq. (5) is a period function,

a0 = 0, and an = bn.

an ¼ bn ¼
4Ff

np
sin

np
2

h i
; n ¼ 2mþ 1

0; n ¼ 2mþ 2

(
m ¼ 0; 1; 2. . .

ð6Þ

As a square wave of ideal dry friction model which is

well-known as Coulomb dry friction, the approximate

solution can take the first term of its Fourier series [10],

and the approximation is consistent with the exact solution

well [11]. So take the first term of series expansion instead

and contact Eq. (4), approximate solution can be obtained

as follows.

~FðxtÞ � 4Ff

p
cosðxt � hÞ ð7Þ

With Eq. (1), the equation can be expressed as follows.

Fdð _yÞ ¼
4Ff

p
cosðxt � hÞ � B1 _yþ B2 _y

3 ð8Þ

3 Initial simulation results based on MATLAB

As known from the above model, the vibration reduction

effect generated by the friction damper with the dry friction

changing can be researched when the other parameters are

not changed. Wherein, M1 = 2.9 kg, M2 = 1.1 kg,

c1 ¼ 0:076, and k1 = 2,500,000 N/m. The above formula

Fig. 2 Changing curve of sliding friction coefficient

Fig. 3 Changing curve of dry friction

Fig. 4 Square wave of friction force

Fig. 5 Model in bonding state
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is programmed by MATLAB, so as to obtain the dis-

placement frequency response and real part changing curve

of the boring bar, as shown in Figs. 6 and 7.

The fourth curve is the displacement frequency

response curve without friction. Meanwhile, the vibrator

and the main system are in the adhered state. As can be

seen from the above figures, the friction damper which is

in the adhered state is equivalent to a system with single

degree of freedom. And the natural frequency of the

boring bar is reduced, the amplitude is increased, the

largest real part is also enlarged, and the vibration

reduction effect of the boring bar is greatly reduced.

However, the friction damper has an effect on the

remaining curves. Among them, the friction damping of

the first curve is small, and the second one is moderate,

while the third one is large. As known from the above

simulation result, the response magnitude of the boring

bar is decreased with the increase in the friction damp-

ing, and the friction plays an important effect on the

vibration reduction. There are two obvious peaks in

Fig. 7 because they are from the structural resonance.

4 Finite element model verification and reality
of the virtual boring bar

From the above analysis, the friction plays an important

role in the vibration reduction process of the boring bar.

However, more perfect results cannot be obtained only

through MATLAB software, because the computation

based on the theory has been simplified to some extent, and

the virtual boring bar cannot be realized. As a result, it

cannot reflect the actual situation exactly. Therefore, it is

necessary to build the finite element model to conduct the

simulation analysis and realize the virtual. The boring bar

is divided into a lot of tetrahedral meshes, and constraints

are implied on its internal structure. The end of the boring

bar is fixed, while the other end is free to cut the work

piece. As a result, the finite element model of the boring

bar can be obtained as shown in Fig. 8. It has 10,296 ele-

ments and 11,269 nodes, and the computational software is

ABAQUS. Then, the finite element mesh is given the

material properties, in order to solve the first 6-order

modes, as shown in Fig. 9. In Fig. 9, there are some

bending and twisting modes. The fixed end is not changed.

The serious vibration is in the free end of the boring bar,

and it is also the work end.

As the internal structure of the boring bar is very com-

plex, it is necessary to verify the finite element model by

experiments, whose results are shown in Table 1. It is

indicated that the relative errors between the experimental

and simulation values of the boring bar are controlled

within 5% which is allowable error in engineering.

Therefore, the finite element model in this paper is reliable.

5 Experiment and simulation of the cutting
process for the boring bar

In order to verify the applicability of the boring bar, the

actual cutting experiment is conducted, with acceleration

sensor arranged in the boring bar. In the platform of the

experiment, LabVIEW is applied to make a set of signal

Fig. 6 Displacement frequency response of the boring system

Fig. 7 Changing curve of real part frequency response

Fig. 8 Finite element model of

the boring bar
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acquisition program, and the acquisition of vibration sig-

nals is realized on PXI-1042Q data acquisition computer.

The experimental data can be exported from the acquisition

system, and MATLAB program is used to analyze the

cutting vibration data.

The experimental conditions are given. The overhang

length of the boring bar is 450 mm, boring bar diameter is

40 mm, rotation speed is 500 rpm, back cutting depth is

0.2 mm, feed rate is 0.18 mm/r, cutting speed is 70 m/min,

and positive pressure between the friction vibrator and

boring bar is 5 N. Finally, the frequency response curve of

the boring bar is obtained, as shown in Fig. 10. It can be

seen that the energy of the frequency response curve is

basically concentrated in the 100–200 Hz.

According to the experimental conditions and the finite

element model of the boring bar, the cutting process sim-

ulation model of the boring bar is built and the frequency

response curve is then computed, which is compared with

Fig. 9 First 6-order modes of

the boring bar
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the experimental value in Figs. 10 and 11. It can be seen

that the difference between simulation and experimental

results is very small. Therefore, it indicates the cutting

simulation model is reliable and can be used to conduct the

subsequent analysis.

6 Parameter analysis of cutting process
for the boring bar

The boring bar vibration in the cutting process is affected

by many factors, such as positive pressure between the

friction vibrator and boring bar, cutting speed, feed rate and

back cutting depth. The size of the cutting force is directly

affected by these factors. As a result, the dynamic char-

acteristics of the boring bar will be also affected by these

factors. Therefore, it is necessary to analyze and research

these factors, so as to obtain a boring bar with better

vibration reduction performance.

6.1 Positive pressure between the friction vibrator

and boring bar

The cutting speed is 70 m/min, feed rate is 0.18 mm/r,

and back cutting depth is 0.2 mm, while the positive

pressure between the friction vibrator and boring bar is

changed as shown in Fig. 12. Through the verified

simulation model, the frequency response of the boring

bar under different pressures is computed as shown in

Fig. 13. It can be seen from the figure that the amplitude

of the spectrum firstly decreases and then increases with

the increasing positive pressure. The third condition has

the minimum frequency response amplitude, and the

energy distribution of each frequency is evenly instead

of concentrated in a band, so the vibration reduction

effect is better. Under the sixth condition, the positive

pressure between the friction vibrator and boring bar is

greater, which prevents them from the relative sliding.

Therefore, the vibration reduction effect is not obvious,

and the frequency response is large.

Fig. 10 Cutting frequency response curve of the boring bar

Fig. 11 Comparison of the cutting frequency response curve between

simulation and experiment

Fig. 12 Positive pressure between the friction vibrator and boring bar

Table 1 Comparison of the

experimental and simulation

values regarding first 6-order

modes

Order Simulation value/Hz Experimental value/Hz Relative error/%

1 7.42 7.69 -3.50

2 45.76 44.12 3.71

3 125.56 122.36 2.61

4 238.24 241.25 -1.25

5 278.66 270.69 2.94

6 374.73 380.05 -1.40
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6.2 Cutting speed

The positive pressure is 10 N, feed rate is 0.18 mm/r,

and back cutting depth is 0.2 mm, while the cutting

speed is changed from 70 to 90 m/min with the step size

of 10 m/min. The frequency response curve of the bor-

ing bar under different cutting speeds is obtained as

shown in Fig. 14. As can be seen from the figure, the

frequency response amplitude of the boring bar is

decreased gradually along with the increase in cutting

speed. Thus, the greater value regarding the cutting

speed of the boring bar should be preferred in the actual

cutting engineering.

6.3 Feed rate

The positive pressure is 10 N, cutting speed is 90 m/min,

and back cutting depth is 0.2 mm, while the feed rate is

changed from 0.18 to 0.38 mm/r with the step size of

0.1 mm/r. The frequency response curve of the boring

bar under different feed rates is obtained as shown in

Fig. 15. As can be seen from the figure, the frequency

response amplitude of the boring bar is gradually

increased along with the increase in feed rate. Thus, the

smaller feed rate should be chosen in the cutting process

of the boring bar.

6.4 Back cutting depth

The positive pressure is 10 N, cutting speed is 90 m/min, and

feed rate is 0.18 mm/r,while the back cutting depth is changed

from 0.2 to 0.4 mm with the step size of 0.1 mm. The fre-

quency response curve of the boring bar under different back

cutting depths is obtained as shown in Fig. 16. As can be seen

from the figure, the frequency response amplitude of the

boring bar is gradually increased along with the increase in

back cutting depth. Thus, the smaller back cutting depth

should be chosen in the cutting process of the boring bar.

7 Optimization of the cutting process based
on PSO-BP neural networks

Finite element software is usually used for response anal-

ysis when direct computation is applied to conduct struc-

tural optimization in actual engineering. With the

Fig. 13 Frequency response curve of the boring bar under different

pressures. a Frequency response of the boring bar under the first three

pressures, b frequency response of the boring bar under the last three

pressures

Fig. 14 Frequency response curve of the boring bar under different

cutting speeds

Fig. 15 Frequency response curve of the boring bar under different

feed rates
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increasing complexity of optimized structures, finite ele-

ment models have been larger and more refined and the

response analysis of finite element software has spent more

time, which reduces optimization efficiency. Aimed at this

situation, models of fast operation are introduced into the

field of the structural engineering. At present, response

surface and neural network are representative models.

Neural network is a mathematical model which is designed

by simulating the information processing of human nervous

system. With strong function approximation ability and

impressive performance in parallel computing, neural net-

work is more and more widely applied in the computation

and simulation of structures. Numerous studies show that

neural network with a hidden layer can approximate to any

continuous functions. To optimize the cutting process and

precision of the boring bar, this paper adopts a BP neural

network structure with a hidden layer [10–12], as shown in

Fig. 17. To improve precision, the number of neurons in

the hidden layer is set as 13, and training is conducted for

BP neural network. The computational software of the

neural network is MATLAB in this paper. Training error is

shown in Fig. 18. It can be seen from Fig. 18 that the

output result of neural network is basically stable when the

number of iterations of training is 800. This process takes a

lot of time, and optimization efficiency is low.

As a widely common network model, BP neural network

has clear and understandable principle, rigorous process and

strong universality. However, it can be found from the above

analysis that BP neural network also has some deficiencies

like slow convergence speed and long training time. When

training is carried out to a certain extent, situations like the

drop of error and the sharp decline of rate usually take place,

which is caused by the small learning rate and slow learning

speed set by standard BP algorithm in order to guarantee

system stability. Apart from the drop of error and the decline

of rate, the drop and stagnation of error also appear in the

process of training, which results in local minimum. As BP

algorithm adopts gradient descent method, training process

drops to the minimum along the bevel face of error function.

Aimed at the deficiencies of BP neural networks, a structural

model of BP neural network based on particle swarm opti-

mization [13–16] is proposed to solve the problem of falling

into local extremum easily.

PSO algorithm is based on global search, whose opti-

mization starts from multiple random particles and sear-

ches the space around these particles. Compared with BP

algorithm, PSO algorithm optimizes multiple random

points, with fast convergence speed. In addition, updating

the location and speed of each particle will be affected by

other particles. Then, a particle is very likely to jump out of

local extremum under the influence of other particles after

falling into local extremum. By contrast, BP algorithm only

has one particle which will find it difficult to jump out of

local extremum once it falls into it. As a result, the intro-

duction of PSO algorithm into BP neural network will

possibly solve the problems of BP network including slow

convergence speed and falling into local extremum easily.

PSO algorithm does not directly optimize the objective

function, but conducts optimization according to the fitness

function corresponding to the objective function. Inde-

pendent of the gradient information of error function, PSO

algorithm will have a wider range of application. The

process of PSO-BP neural network algorithm [17–25] is

shown in Fig. 19.

Fig. 16 Frequency response curve of the boring bar under different

back cutting depths

Fig. 17 Topology result of BP neural network of the optimized

boring bar

Fig. 18 Training error of BP neural network
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The first step is to initialize BP neural network, mainly

including setting the number of neurons in the input layer

and output layer [26–28], the number of layers and neurons

in the hidden layer, and parameters like learning rate and

error value.

The second step is to initialize the particle swarm,

mainly including setting the number of particles, initial

position, initial velocity, maximum speed and so on.

The third step is to compute fitness value and initialize

global optimal point and individual optimal point, includ-

ing putting initialized particles into BP neural network,

computing the mean square error of training output and

sample output of neural network according to fitness

function and initializing global optimum and individual

optimum.

The fourth step is to update the extremum. Compared

with the individual value of particles, the current optimum

will be given to individual particles if the current optimum

is more optimal.

The fifth step is to update the speed and location,

including adjusting the speed of each particle according to

the formula of speed update and adjusting the location of

each particle according to location.

The sixth step is to check whether the conditions of

stopping iteration are met. If globally optimal solution is

less than the specified error or the number of iterations is

maximum, and iteration will be stopped and weights and

thresholds of neural network will be outputted. Otherwise,

it will switch to the third step.

The improved BP neural network is used to optimize the

cutting process of the boring bar. Firstly, training is carried

out for neural network. Training error is shown in Fig. 20.

It can be seen from Fig. 20 that PSO-BP neural network

tends to be stable when the number of iterations is 200.

Compared with original BP neural network, optimization

efficiency is obviously improved. Based on the above

optimization algorithm, the optimal parameter in the cut-

ting process of the boring bore can be obtained. It can be

determined that when the positive pressure between the

friction vibrator and boring bar is 10 N, cutting speed is

90 m/min, feed rate is 0.18 mm/r, and back cutting depth is

0.2 mm, the boring bar has better vibration reduction

effect. In order to verify the optimized effect, the param-

eters of the cutting experiment are set according to the

above experiment so as to cut the work piece. And its result

is compared with the result of the original cutting param-

eters, as shown in Fig. 21. It can be seen that the cutting

quality has significantly improved after optimizing the

boring bar. Therefore, it is indicated that the optimized

boring bar in this paper is effective. Therefore, we can

obtain higher quality work piece when we use this boring

bar in the actual engineering.

Fig. 19 Flow chart of PSO-BP neural network

Fig. 20 Training error of PSO-BP neural network

Fig. 21 Experimental verification of the cutting precision
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8 Conclusions

1. Based on the traditional boring bar, a boring bar with

friction damper is proposed in the paper. Then, the

frequency response under different pressures is com-

puted primarily based on the theory, which shows that

the proposed boring bar has a certain vibration

reduction effect.

2. The finite element model of the boring bar is built, and

the first 6-order modes are computed, whose results are

compared with the experimental value. They are

consistent with each other, which show that the finite

element model is reliable. The experimental cutting

process of the boring bar is researched, which is

compared with the simulation model with good

coincidence. It is found from the result that the cutting

simulation model of the boring bar is effective.

3. Based on the verified simulation model, the positive

pressure between the friction vibrator and boring bar,

cutting speed, feed rate, back cutting depth and other

parameters are changed to study the vibration reduc-

tion effects of the boring bar with friction damper.

PSO-BP neural network is then used to optimize the

cutting process of the boring bar, and the optimal

cutting parameters can be obtained. Finally, these

optimized parameters are applied in the boring bar, the

vibration reduction effect of the boring bar is verified

by means of experiments, and the corresponding result

shows that the proposed optimization in this paper is

feasible. We can obtain higher quality work piece

when we use this boring bar in the actual engineering.

In the future work, we want to change the internal

structure of the boring bar to improve the cutting

result.
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