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Abstract This article presents an analysis of stagnation

point of coupled flow and heat transfer of an upper-con-

vected Maxwell fluid over a stretching sheet along with

magnetic effects and slip condition at the boundary. The

recently proposed Cattaneo–Christov model is employed in

the energy equation to investigate the effects of thermal

relaxation time. Similarity transformations are adopted to

convert the governing partial differential equations into

ordinary differential equations. Numerical solution of the

system of ODEs is achieved by shooting method together

with Runge–Kutta method of order four. The effects of

stretching ratio parameter (0 B e B 0.5), elasticity number

(0 B b B 1.5), heat flux relaxation time (0 B c B 1.5),

magnetic parameter (0 B M B 1.5), slip coefficient

(1 B b B 4) and Prandtl number (0 B Pr B 1.5) on

velocity and temperature are investigated graphically and

numerically. It is observed that temperature boosts up with

an increase in thermal relaxation time.

Keywords Stagnation point � Magnetohydrodynamics �
Cattaneo–Christov heat flux model � Upper-convected
Maxwell fluid

List of symbols

a, c Constants (1/time)

b Slip coefficient

e Stretching ratio parameter c
a
ð Þ

Tw Wall temperature (K)

f0 Dimensionless velocity m
sð Þ

M Magnetic parameter

V Velocity vector m
sð Þ

Pr Prandtl number m
að Þ

a Thermal diffusivity m2

sð Þ
g Similarity variable (m)

r Electrical conductivity S
mð Þ

k1 Relaxation time of the fluid (s)

rv Tangential momentum accommodation

h Dimensionless temperature (K)

B0 Magnetic field strength (T)

cp Specific heat J
kgK

� �

T Temperature of fluid (K)

T? Ambient temperature (K)

(x, y) Coordinate axis (m)

k Thermal conductivity W
mK

� �
q Heat flux J

sð Þ
(u, v) Velocity components m

sð Þ
b Elasticity number

q Density of fluid kg
m3

� �

k0 Free path of molecular mean

k2 Relaxation time of heat flux (s)

m Kinematic viscosity m2

sð Þ
c Thermal relaxation time (s)

1 Introduction

In nature, heat transfer in a fluid has a significant effect

which happens due to difference in temperature within the

same body or between two bodies. Many researchers have

worth seeing contributions in this regard such as [1–8]. In

various practical situations, Fourier’s model provides the

basis to analyze the heat transfer phenomenon. But its
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major drawback was parabolic energy equation which

yields that the initial disturbance can affect the whole

system. To counter this shortcoming, Cattaneo [9] amal-

gamates the thermal relaxation time into the classical

Fourier’s law in order to get the hyperbolic energy equa-

tion. By introducing thermal relaxation time instead of

diffusion in Fourier’s law, heat transfer in the form of

waves with finite speed is observed. In order to obtain

invariant formulation of the material, Christov [10] modi-

fied the Cattaneo law by thermal relaxation time along with

Oldroyd’s upper-convected derivatives. The study of ther-

mal convection in the Cattaneo–Christov model was car-

ried by Straughan [11]. For the incompressible fluid,

Tibullo and Zampoli [12] explained the uniqueness of

Cattaneo–Christov heat flux model. Han et al. [13] studied

the coupled flow and heat transfer in upper-convected

Maxwell fluid over a stretching sheet by employing Cat-

taneo–Christov heat flux model. Khan et al. [14] investi-

gated the upper-convected Maxwell fluid combined with

heat transfer effects over an exponentially stretching sur-

face by taking Cattaneo–Christov heat flux model.

The flow surrounded by a stagnation point has gained a

considerable attention among several researchers during

the past few decades. It has extensive applications at

industrial level, e.g., nuclear reactors cooling all along

emergency restrain, solar central receivers unprotected to

wind currents, electronic devices cooling by fans and

several hydrodynamic processes. Initially Hiemenz [15]

proposed the concept of stagnation point flow. According

to his theory, stagnation point flow describes the motion of

fluid particles which are adjacent to the stagnation region

of a solid surface for both fixed and moving bodies. Idea of

Hiemenz was further extended by Homann [16] by con-

sidering the effect of stagnation point flow in three-di-

mensional geometry. Recently Turkyilmazoglu [5]

investigated the stagnation point flow along with the slip

effects on the MHD Jeffrey fluid and heat transfer over

deformable surfaces.

Maxwell fluid has received a prominent consideration of

researchers in recent era. The main advantage of Maxwell

fluid is that it incorporates the relaxation time for the vis-

coelastic fluid in boundary layer flow. Choi et al. [17] inves-

tigated the flow of Maxwell fluid in a channel, in which, by

increasing Deborah number, the viscoelasticity affects the

velocity profiles in the same pattern as inertia in a Newtonian

fluid with a fixed Reynolds number. Boundary layer flow of

MHD upper-convected Maxwell fluid over a porous channel

was analyzed by Abbas et al. [18], in which they considered

the combined effects of viscoelasticity, inertia and applied

magnetic field to yield an analytical solution. The impact of

MHD and thermal radiation on Maxwell fluid over a stretch-

ing sheet was discussed by Aliakbar et al. [19]. According to

their observation, an increase in the magnetic parameter and

elasticity number causes an enhancement in the heat transfer

rate from the stretching sheet to the fluid. Mustafa [20] con-

sidered an upper-convected Maxwell fluid for rotating flow

and heat transfer in the presence of Cattaneo–Christov heat

flux model. Kumaria et al. [21] investigated the MHD mixed

convection stagnation point flow of an upper-convected

Maxwell fluid. They concluded that with the increase in the

elasticity number, reduction in the surface heat transfer, sur-

face velocity gradient and displacement thickness was expe-

rienced. Sadeghy et al. [22] examined the stagnation point

flow of upper-convected Maxwell fluid, in which they negate

the previously well-established prediction about the stagna-

tion point flow of viscoelastic fluids, which states that the

velocity inside the boundary layer may exceed from the out-

side layer.Hayat et al. [23] studied the stagnation point flowof

an upper-convectedMaxwell fluid formass transfer. Effect on

stagnation point flowof an upper-convectedMaxwell fluid for

heat transfer over a stretching sheet was analyzed by Hayat

et al. [24]. Hayat et al. [25] discussed the stagnation point flow

and heat flux in the Cattaneo–Christovmodel over a nonlinear

stretching surface with variable thickness along with homo-

geneous–heterogeneous reactions in Maxwell fluid having

variable thermal conductivity.

The main aspiration of the present study is to sort out the

numerical solution of boundary layer stagnation point flow

and heat transfer of viscoelastic fluid. Two models namely

upper-convected Maxwell fluid model and Cattaneo–

Christov heat flux model are considered for the formulation

of momentum and energy equation. To obtain the numer-

ical solution of the problem, similarity transformation and

shooting method play a key role. However, these types of

problems in a limiting case can be solved analytically.

Turkyilmazoglu [6] proposed multipleness of the analytical

solution by considering the exponential and algebraic type

solutions. Turkyilmazoglu [8] presented the some equiva-

lences between the stretching plate problems over different

configuration in two–three dimensions. According to his

study, he proposed three different geometrical configura-

tions which are mathematically equivalent to two-dimen-

sional system. The influence of physical parameters on

temperature and velocity profiles is investigated.

2 Mathematical model

Consider two-dimensional steady, laminar and incompress-

ible stagnation point flow of a viscoelastic fluid over a semi-

infinite plate coinciding with the plane y = 0. The plate is

supposed to have a constant temperature Tw and the ambient

fluid temperature T? as shown in Fig. 1. Magnetic field of

strengthB0 is applied normally to the direction of flow. Due to

the consideration of small magnetic Reynolds number, the

electric field is absent and inducedmagnetic field is neglected.
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Further first-order velocity slip condition is assumed at the

wall. The heat fluxmodel introduced by Cattaneo–Christov is

taken into consideration. By using standard boundary layer

approximations, the governing equations for the continuity,

momentum and temperature flow are [5, 13] and [23]:

ou

ox
þ ov

oy
¼ 0 ð1Þ

u
ou

ox
þ ou

oy
þ k1 u2

ou2

ox2
þ v2

ou2

oy2
þ 2uv

ou2

oxoy

� �

¼ v
o2u

oy2
þ ue

due

dx
þ rB2

0

q
ue � u� k1v

ou

oy

� �
ð2Þ

qcpV:rT ¼ �r:q:
ð3Þ

The corresponding velocity slip boundary conditions [26] are:

u ¼ axþ k0
2� rv
rv

ou

oy
; v ¼ 0; T ¼ Tw at y ¼ 0;

ueðxÞ ¼ cx; T ! T1 as y ! 1:

9=
; ð4Þ

The heat flux q satisfies the following relation:

qþ k2
oq

ot
þ V:rq� q:rVþ r:Vð Þq

� 	
¼ �krT; ð5Þ

whereV ¼ ðu; vÞ is the velocity vector of theMaxwell fluid.

If we choose k2 = 0, Eq. (5) corresponds to Fourier’s law.

Continuity equation for the incompressible fluid implies

r:V ¼ 0, which when used in Eq. (5) yields the following:

qþ k2
oq

ot
þ V:rq� q:rV

� 	
¼ �krT; ð6Þ

Eliminating q from Eqs. (3) and (6), we get:

u
oT

ox
þ v

oT

oy
þ k2 u

ou

ox
þ v

ou

oy

� �
oT

ox
þ u

ov

ox
þ v

ov

oy

� ��

oT

oy
þ u2

o2T

ox2
þ v2

o2T

oy2
þ 2uv

o2T

oxoy

�
¼ a

o2T

oy2
ð7Þ

Introducing the following dimensionless variables:

g ¼
ffiffiffi
a

v

r
y; w ¼

ffiffiffiffiffi
av

p
xf gð Þ; h gð Þ ¼ T � T1

Tw � T1
ð8Þ

After simplification we come forth with the following ordinary

differential equations:

f 000 þ ff 00 � f 02 þ bð2ff 0f 00 � f 2f 000Þ þMðe� f 0 þ bff 00Þ þ e2

¼ 0

ð9Þ
1

Pr
h00 þ fh0 � c ff 0h0 þ f 2h00

� �
¼ 0: ð10Þ

The transformed boundary conditions of (4) are:

f 0ð0Þ ¼ 1þ bf 00ð0Þ; f ð0Þ ¼ 0;hð0Þ ¼ 1; f 0ð1Þ ¼ e;hð1Þ ¼ 0:
�

ð11Þ

Different dimensionless parameters appearing in Eqs. (9)–

(11) are defined as:

b ¼ k1a; c ¼ k2a; e ¼ c

a
; M ¼ rB2

0

aq
; Pr ¼ m

a
¼ lcp

k
;

b ¼ k0
2� rv
rv

ffiffiffi
a

m

r
: ð12Þ

The skin friction coefficient Cf and local Nusselt number

Nu are defined as:

Cf ¼
sw

qðaxÞ2
; Nu ¼ xqw

aðTw � T1Þ : ð13Þ

Here the wall shear stress sw and the heat flux qw are

defined as:

sw ¼ lð1þ bÞ ou

oy

� �

y¼0

; qw ¼ �a
oT

oy

� �

y¼0

: ð14Þ

The dimensionless form of skin friction and Nusselt

number is:

Re1=2x Cf ¼ ð1þ bÞf 00ð0Þ; Re�1=2
x Nux ¼ �h0ð0Þ: ð15Þ

Fig. 1 Geometry of the model

Neural Comput & Applic (2018) 30:2979–2986 2981

123



3 Numerical solution

The resulting nonlinear system of ordinary differential

Eqs. (9) and (10) subject to the conditions (11) has been

explored numerically through shooting method [27] for

various values of the concerned parameters. On the basis of

number of computational experiments, as there is no sig-

nificant difference in the results after g = 7, we are con-

sidering [0, 7] as the domain of the problem instead of [0,

?). We have chosen the following nomenclature for

converting the boundary value problem to the initial value

problem consisting of five first-order ordinary differential

equations.

f ¼ y1; f
0 ¼ y2; f

00 ¼ y3; h ¼ y4; h
0 ¼ y5 ð16Þ

The coupled nonlinear momentum and heat equations are

transformed into the following system of five first-order

differential equations along with initial conditions.

y01 ¼ y2; y1ð0Þ ¼ 0

y02 ¼ y3; y2ð0Þ ¼ 1þ by3ð0Þ

y03 ¼
½�y1y3ð1þ 2by2Þþ y22�Mðe� y2þby1y3Þ� e2�

1�by21
; y3ð0Þ ¼ s

y04 ¼ y5; y4ð0Þ ¼ 1

y05 ¼
Pry1y5ðcy2� 1Þ

1� cPry21
: y5ð0Þ ¼ t

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð17Þ

We apply the Runge–Kutta method of order four to solve

the above initial value problem. To refine the values of s

and t, we apply the Newton’s method until we meet the

following criteria.

maxfjy2ð7Þ � ej; jy4ð7Þ � 0jg\e; ð18Þ

where e[ 0 is a small positive real number. All the

numerical results in this paper are achieved with e = 10-5.

4 Results and discussion

In this article, we utilized the upper-convectedMaxwell fluid

with Cattaneo–Christov heat flux model to explore the

boundary layer flow and heat transfer above a stretching

plate with velocity slip boundary condition. Although we

have achieved almost the same numerical results for differ-

ent quantities of interest by two different techniques, for

more gratification, we feel a need to validate our MATLAB

code by implementation on some published work of the

similar nature. For this purpose, we reproduced the numer-

ical values of skin friction for the models investigated by

Sadeghy et al. [22] and Abel et al. [28]. An impressively

convincing agreement of our results with those of Sadeghy

et al. and Abel et al. is given in Table 1. Table 2 presents the

values of skin friction and Nusselt number for different

emerging parameters. Temperature gradient at the sheet

shows increasing behavior for the stretching ratio parameter,

Prandtl number and thermal relaxation time, while it depicts

inverse behavior for elasticity number, slip coefficient and

magnetic parameter. Similarly skin friction seems to have an

increasing trend for elasticity number and magnetic param-

eter and decreasing for slip coefficient and stretching ratio

parameter.

A relation between upper-convected Maxwell and New-

tonian fluid models is set up by an elastic term. Heat transfer

and fluid flow are influenced by elastic force. Figures 2 and 3

depict the influence of elasticity number b on velocity and

temperature profile. Viscoelastic fluid turns into Newtonian

fluid by ignoring the effects of elastic force b. With an

increase in the value of b, the elastic forces strengthen up. By
enhancement in b, velocity profile shows decreasing and

temperature distribution possesses an increasing flow pat-

terns in the viscous fluid. It is because of the fact that an

increase in the elasticity number leads to the stronger viscous

force which opposes the fluid motion and as a result the

velocity displays decreasing pattern. Figures 4 and 5 illus-

trate the influence of magnetic parameterM on velocity and

temperature boundary layer flow. Magnetic field is applied

along normal to the fluid flow. It is observed that magnetic

field opposes the fluid motion and enhances the temperature

distribution. Figures 6 and 7 present the slip effects on

velocity and temperature profile. Velocity shows the

decreasing behavior for increment in the value of b and

converse for the temperature profile. Figures 8 and 9 show

the effect of stretching ratio e over velocity and temperature

distribution. With the increase in the stretching ratio, we

experienced an increase in the velocity profile and decrement

in the thermal boundary layer. When e\ 1, the stretching

sheet velocity axis is greater than the velocity of the far

Table 1 Comparison of numerical values of –f00(0) with [15] and [21]
for M = e = c = b = 0 and Pr = 1

b -f00(0)

Sadeghy [15] Abel [21] Present

0.0 1.0000 0.999962 1.0001725

0.2 1.0549 1.051948 1.0519731

0.4 1.10084 1.101850 1.1019446

0.6 1.0015016 1.150163 1.1501584

0.8 1.19872 1.196692 1.1967224

1.2 – 1.285257 1.2853239

1.6 – 1.368641 1.3673413

2.0 – 1.447617 1.4463152
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stream cx. Figure 10 presents the effects of thermal relax-

ation time c on temperature profile. Temperature profile

shows decreasing behavior for enhancement in the thermal

relaxation time. Fourier’s Law can be deduced from the

present model by applying c = 0. It is noticed that the

temperature in Cattaneo–Christov heat flux model is smaller

than the Fourier’s model. Figure 11 shows that with the

increase in Prandtl number Pr the temperature boundary

layer becomes thinner, because Prandtl number has an

inverse relationship with the thermal diffusivity. Figure 12

represents the relationship of Nusselt number in accordance

with the Prandtl number Pr and thermal relaxation time c,

with the increase in the Prandtl number Pr thermal relaxation

time c depicts an increasing behavior. All the calculations are
performed in hp(i5) machine with 4 GB RAM, and it takes

1.561 s to plot a single graph.

5 Concluding remarks

The present model addresses the magnetic effects in stag-

nation point flow on upper-convected Maxwell fluid along

with the Cattaneo–Christov heat flux model. To solve the

Fig. 2 Influence of b on f0(g)
Fig. 3 Influence of b on h(g)

Table 2 Numerical values of

-(1 ? b)f00(0)and –h
0
(0) for

different parameters

e Pr c b b M Shooting bvp4c

-(1 ? b)f00(0) -h
0(0) -(1 ? b)f00(0) -h

0(0)

0.1 1 0.1 0.1 0.1 0.05 0.968554 0.575354 0.968554 0.575354

0.2 0.915324 0.602832 0.915324 0.602832

0.3 0.845289 0.630777 0.845289 0.630777

0.1 0.5 0.968554 0.368480 0.968554 0.368480

1.5 0.968554 0.744492 0.968554 0.744492

2.5 0.968554 1.017927 0.968554 1.017927

1 0.2 0.968554 0.583098 0.968554 0.583098

0.4 0.968554 0.599482 0.968554 0.599482

0.5 0.968554 0.608089 0.968554 0.608089

0.2 1.077807 0.600289 1.077807 0.600288

0.4 1.305184 0.585631 1.305184 0.585631

0.8 1.790399 0.561494 1.790399 0.561494

0.2 1.554512 0.540975 1.554512 0.540975

0.5 1.134616 0.498868 1.134161 0.498868

0.9 0.848754 0.463693 0.848754 0.463693

0.5 0.933687 0.424693 0.933687 0.424693

1 1.002469 0.395878 1.002469 0.395878

1.5 1.054939 0.375867 1.054939 0.375867
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Fig. 4 Impact of M on f0(g)

Fig. 5 Influence of M on h(g)

Fig. 6 Impact of b on f0(g)

Fig. 7 Influence of b on h(g)

Fig. 8 Effect of e on f0(g)

Fig. 9 Effect of e on h(g)
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system of coupled ordinary differential equations, we

adopted shooting method. To strengthen the results, we

also employed MATLAB built-in function bvp4c. The

main observations are summarized as follows:

• By increasing the magnetic field intensity, velocity

profile exhibits decreasing pattern and opposite behav-

ior is seen in thermal boundary layer.

• Increase in the elasticity number and slip coefficients

causes the decrease in velocity phenomenon and

opposite behavior is observed in temperature profile.

• Enhancement in the stretching ratio parameter results in

decrease in wall shear stress and an increment in

Nusselt number.

• By increasing the thermal relaxation time, temperature

raises up.
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