
ORIGINAL ARTICLE

Drone Squadron Optimization: a novel self-adaptive algorithm
for global numerical optimization

Vinı́cius Veloso de Melo1 • Wolfgang Banzhaf2

Received: 4 April 2016 / Accepted: 10 February 2017 / Published online: 27 February 2017

� The Natural Computing Applications Forum 2017

Abstract This paper proposes Drone Squadron Optimiza-

tion (DSO), a new self-adaptive metaheuristic for global

numerical optimization which is updated online by a hyper-

heuristic. DSO is an artifact-inspired technique, as opposed

to many nature-inspired algorithms used today. DSO is

very flexible because it is not related to natural behaviors or

phenomena. DSO has two core parts: the semiautonomous

drones that fly over a landscape to explore, and the com-

mand center that processes the retrieved data and updates

the drones’ firmware whenever necessary. The self-adap-

tive aspect of DSO in this work is the perturbation/move-

ment scheme, which is the procedure used to generate

target coordinates. This procedure is evolved by the com-

mand center during the global optimization process in

order to adapt DSO to the search landscape. We evaluated

DSO on a set of widely employed single-objective

benchmark functions. The statistical analysis of the results

shows that the proposed method is competitive with the

other methods, but we plan several future improvements to

make it more powerful and robust.

Keywords Global numerical optimization � Hyper-
heuristic � Metaheuristic � Self-adaptive � Genetic
programming � Coevolution

1 Introduction

Metaheuristics [23, 31] are derivative-free general opti-

mization methods used to solve a variety of combinatorial

and numerical optimization problems. They are usually

employed when derivatives are costly or impossible to

obtain and can deal with problems that are non-differen-

tiable, irregular, noisy, or dynamic. Otherwise, if heuristics

or derivatives are available, specialized methods may be

orders of magnitude faster and more accurate than meta-

heuristics, because the former make few or no assumptions

about the problem being optimized. Many metaheuristics

are nature-inspired, and one of the most popular class of

algorithms is the class of Evolutionary Algo-

rithms (EAs) [36], one of whose representatives is the

Genetic Algorithm (GA) [24]. GAs are based on Darwinian

evolution, where individuals compete against each other to

mate and propagate their genes to their offspring. As the

comparably fitter individuals survive, the population

improves over the generations, getting closer to the opti-

mum solution.

Another important class of metaheuristics is that of the

swarm algorithms [10], introduced with the Ant Colony

Optimization (ACO) [17] method for combinatorial opti-

mization. Often this can be couched in terms of finding

good paths through graphs: Virtual ants move on the graph

and deposit virtual pheromone on their path. Initial moves

are random, but when ants find pheromone, they intend to

follow the trail, consequently reinforcing the deposited

pheromone. As shorter paths receive more pheromone, the

shortest one will likely be found. Later, the Particle Swarm

Optimization (PSO) algorithm [18] was proposed to solve

continuous problems. Swarm algorithms like the PSO have

a population of agents that interact locally with one another

and with the environment, leading to the emergence of

& Vinı́cius Veloso de Melo

vinicius.melo@unifesp.br

Wolfgang Banzhaf

banzhaf@msu.edu

1 Institute of Science and Technology, Federal University of

São Paulo, São José dos Campos SP, Brazil

2 Department of Computer Science and Engineering,

BEACON Center for the Study of Evolution in Action,

Michigan State University, East Lansing, MI 48864, USA

123

Neural Comput & Applic (2018) 30:3117–3144

https://doi.org/10.1007/s00521-017-2881-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-2881-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-2881-3&domain=pdf
https://doi.org/10.1007/s00521-017-2881-3

intelligent global behavior commonly seen in bird flocks.

PSO has inspired the creation of many nature-inspired

algorithms such as the Bee Algorithm [44], Artificial Bee

Colony [30], the Gravitational search algorithm [51],

Glowworm swarm optimization [32], and more recently

the Dragonfly Algorithm [38] and the Human behavior-

based optimization [1]. In general, these methods present

different recipes for how to combine information from a

population, and sometimes other modifications. Fister Jr

et al. [19] provide a short review and a list of such

methods.

Nature-inspired metaheuristics are developed to follow

strict rules regarding the generation of solutions because

they aim to mimic some behavior abstracted from a natural

system. However, it may be beneficial to consider opti-

mization methods with relaxed rules that can automatically

improve over time. Such improvement may occur, for

instance, when some characteristic of the search space is

detected that can lead the search to a promising region.

In order to achieve such flexibility, here we change the

source of inspiration. Instead of adopting a natural para-

digm, we propose an artifact-inspired algorithm,1 that is, it

is inspired by something artificially created (human-made),

more specifically here, drones. In this paradigm, such an

algorithm is not bound by a particular realization at hand;

drones are flexible machines (in several respects), not

biological entities. Instead, it can use a variety of different

mechanisms/procedures without losing its core

characteristics.

An important aspect of the technique proposed here is

that it is self-adaptive regarding code modification, not

only regarding the parameter configuration. Therefore, the

technique can manipulate the procedures that the drones

use to generate solutions, meaning that it can itself to a

degree evolve during the search. Some researchers inves-

tigated similar approaches, but there are significant dif-

ferences, which are discussed later in this paper.

Self-adaptation is one of the characteristics that can

provide large improvements in performance [6, 41, 48, 61].

However, most techniques existing today use human-de-

veloped adaptation schemes that cannot cover every

problem and may be unable to perform well in dynamic

situations. Thus, methods that can learn and self-adapt are

of great value.

The technique proposed here for single-objective opti-

mization, named Drone Squadron Optimization (DSO), is a

hybrid approach that employs coevolution to improve its

own code. The key contributions of this paper are:

• the proposal of an artifact-inspired paradigm that is not

tied to any natural phenomenon or behavior, but that

could automatically act like any of them;

• a novel self-adaptive metaheuristic that can itself

evolve on-the-fly and behave similar to an evolutionary

or swarm algorithm;

• the introduction of an explicit separation between the

controller and the semiautonomous exploration entities

of a team approach.

The remaining of the paper is structured as follows: Sect. 2

presents our proposal. In Sect. 3, we present related works.

Section 4 demonstrates the strength of the method with

computational experiments. Section 5 presents conclusions

and some future work.

2 Drone Squadron Optimization

Drones, like submarines or the well-known flying machi-

nes, such as balloons, airplanes, helicopters, quadcopters,

can navigate autonomously or remotely. They have sen-

sors, can communicate over vast distances, can use solar

power, and—one of the most important features—can be

upgraded or improved not only concerning hardware but

also by changing their software (the firmware). Therefore,

since these machines have software (firmware) to control

their behavior, researchers are free to add mechanisms to

the algorithm as simple software upgrades. Below, we

adopt this technique. Later, more details on the components

are provided.

Drone Squadron Optimization (DSO) may be related to

Particle Swarm Optimization, the Artificial Bee Colony

algorithm, or any other swarm algorithm because it is

based on the movement of entities in the search space.

However, as explained before, the swarm movement is not

derived from behavior observed in nature. DSO’s approach

allows it to automatically choose to use recombination and/

or variation of solutions with distinct procedures, making it

act as an evolutionary algorithm, swarm algorithm, prob-

abilistic algorithm, or other, according to how it performs

in the search landscape. Nevertheless, it is not choosing

from pre-coded algorithms [43, 49, 61]; it generates the

actual code on-the-fly.

The DSO algorithm as presented here is composed of a

drone squadron with different teams and a command cen-

ter. The command center uses information collected by/

from the drones to perform two operations (1) to maintain

partial control of the search and (2) to develop new firm-

ware for controlling the drones (see Fig. 1). A drone is not

a solution; it moves to a coordinate (the actual solution).

The firmware contains the procedures (codes) and config-

urations used by teams to search the landscape. In this

1 The terminology employed in this work is using the artifact as a

metaphor which—by way of analogy—can facilitate its

understanding.

3118 Neural Comput & Applic (2018) 30:3117–3144

123

work, the perturbation procedure is an actual source code, a

string to be parsed and executed by the drone.

Conceptually, the command center is a central place for

carrying out orders and for supervising tasks. It receives

inputs, processes data, and generates outputs from internal

decisions. The command center can update the firmware of

drones whenever it decides, dynamically adapting a team’s

behavior to the problem.

A group of drones is divided into teams of the same size

(necessary for the selection mechanism), where each team

has its firmware that controls the movement of each drone;

there is distinct firmware for each team, which means that

each team has a distinct way of sampling the search space

from the same current set of solutions.2

In the analogy, the drones have a search mission (the

objective function) to locate a particular target on the

landscape, whose value is obtained by the drone’s sensors.

The teams are not necessarily multiple groups searching

distinct and distant regions of the landscape. In fact, all

drones move from specific departure points that may be the

same for some teams, but not for others. As the teams have

distinct firmware, even though they move from the same

departure points they may get to distinct coordinates, but

may overlap in search regions. Moreover, a team does not

have to follow another team, unless the command center

encodes such behavior in the firmware.

Onemay observe inAlgorithm1 thatDSO ismore complex

than traditional nature-inspired methods as it has several

components to deal with the command center, the teams, the

firmware adaptation, among others. We chose to propose an

elaborate algorithm instead of a very simple one that would be

slightly enhanced in further researches. More detailed expla-

nations canbe seen in ‘‘Appendix’’. For a better understanding,

amapping fromDSOtoEvolutionaryAlgorithms (EA)maybe

useful.We also provide a Glossary with the terms necessary to

understand the remaining of the paper (see Table 1).

• Coordinates: a numerical solution (array);

• Scan the landscape: calculate the objective function;

obtain the fitness value;

• Firmware: distinct rules/configurations to evolve the

population;

• Team: group of agents that share a firmware but

operate on possibly different data;

• Squadron: group of teams with different firmwares.

2.1 Command center

The command center is the ‘‘intelligent’’ part of DSO

because it is responsible for producing and giving the

orders, while the drones execute the orders to return the

results. By using the information collected by the drones,

the command center modifies the firmware to update the

teams. To do that, the command center uses a hyper-

heuristic approach to generate the firmware code.

Drones use new firmware and all data distributed by the

command center to control their behavior. Conceptually,

cheap data analysis may be performed on the drones due to

their limited computing power, while expensive analysis is

done at the command center to be accessed by the drones.

The command center may be equipped with mechanisms to

learn from the search to generate better firmware.

Fig. 1 High-level DSO abstraction showing the two main modules of DSO: the command center and the teams of drones. The command center

uses information provided by the teams to update their firmware when necessary

2 It should be noted that teams are not like species nor niching in

evolutionary algorithms.

Neural Comput & Applic (2018) 30:3117–3144 3119

123

2.2 The firmware

For the current DSO version, the firmware contains only

the mechanism to generate new trial coordinates (TC)

through perturbation; thus, this perturbation scheme is the

core of the drone’s firmware. A new firmware is generated

based on the well-known perturbation scheme of a biased

random walk:

P ¼ Departureþ OffsetðÞ; ð1Þ

TC ¼ calculateðPÞ; ð2Þ

where Departure is a coordinate (a solution point in the

search space), Offset is a function that returns the actual

perturbation movement (a numerical value), and P is the

complete perturbation formula that has to be calculated to

return the trial coordinates.3

Both the Departure coordinates and the function that pro-

duces theOffset are modified, that is, distinct teams may have

distinct ways of choosing departure coordinates and how to

calculate the offset. As examples, suppose the two following

perturbations for teams 1 and 2, where C1 is a user-defined

constant, G(0, 1) is a scalar sampled from a Gaussian distri-

bution with zero mean and unit standard deviation, and

Uð0; 1ÞD is an array of D numbers sampled from a uniform

distribution with minimum 0 and maximum 1.

P1 : GBC
��!þ ðC1 � ðGBC��!� CBCdrone

�����!ÞÞ: ð3Þ

P2 : CBCdrone
�����!þ ðGð0; 1Þ � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uð0; 1ÞD
q

þ CBCdrone
�����!ÞÞ: ð4Þ

As one may observe, the two Departures are the arrays

GBC
��!

and CBCdrone
�����!

, while the added expressions are the

Offsets. The pattern of moving from a Departure point is

important because it avoids shrinking the search space

toward the origin.4 In fact, even if the Offset is shrinking to

zero, there is still noise applied to the Departure coordi-

nates, which results in a neighborhood search.

In this work, we implemented the perturbation scheme us-

ing a tree-structure representation with terminal and non-

terminal nodes, similarly to related works [45, 52]. The

scheme always follows the pattern shown in Eq. 1, i.e., a sum

of two terms, where the first one is selected from a particular

subset of the terminals, and the second one is an expression

grown using the available terminals and non-terminals.

At the outset perturbation schemes were randomly

generated (arbitrary equations). However, after preliminary

experiments, it was realized that a completely random set

of initial perturbation schemes shows poor performance,

requiring a warming up period. To overcome this issue, a

set of reference perturbations was defined, that is, equa-

tions used as initial perturbations for the teams, but that

may be replaced during the optimization process. For more

details, please see ‘‘Appendix’’ section.

2.3 Drone movement

The drones use an autonomous system to calculate target

positions, move to them, and collect information that is

sent back to the command center. The mechanisms

3 It is important to note that all solutions are one-dimension arrays;

therefore, all operations present in this work are element-wise.
4 Many well-known benchmark functions have their global optimum

at the origin, and there are algorithms that exploit this characteristic to

achieve high performance.

Table 1 Glossary

Term Meaning

l Mean

r Standard deviation

C A user-defined constant

CBC A 2D structure containing the current best

coordinates

CBOFV
�����! Array of current best coordinates objective function

values

Coordinates
��������! A solution (an array)

CR Differential Evolution algorithm crossover rate

parameter

D Number of dimensions (variables) of the objective

function

F Differential Evolution algorithm amplification

factor parameter

G The Gaussian distribution

GBC
��! Global best coordinates, the best solution found so

far

GBOFV Global best objective function value

LB
�! Array with the objective function lower bounds

MaxIt Maximum number of iterations

MaxStagnation Maximum number of iterations without

improvement

MVNS Multivariate normal sampling

N Number of drones in each team

P A perturbation formula

Pacc Probability of accepting a solution worse than the

ones in CBC
��!

std�dev Standard deviation

t Number of teams

TC A 2D structure containing the trial solutions’

coordinates

TeamQuality
��������! Array containing the quality of the teams

TmC A 2D structure containing a team’s coordinates

TmOFV
�����! Array with a team’s objective function values

U The uniform distribution

UB
�! Array with the objective function upper bounds

3120 Neural Comput & Applic (2018) 30:3117–3144

123

available to DSO to calculate target positions are employed

in various optimization techniques, evolutionary or non-

evolutionary. Each mechanism, such as recombination and

variation, may have more than one implementation, giving

DSO many exploration and exploitation capabilities. More

details are shown in ‘‘Appendix’’.

The goal of this step is to generate the target positions of

each drone in each team (TmCteam;drone). After each drone

runs the perturbation step and generates trial coordinates

(TCdrone), it performs either a recombination with the best

coordinates found so far to generate TmC or no recombi-

nation at all (TmC ¼ TC). Currently, the choice is random,

and all recombination procedures available to the drones

have the same probability of being selected. Also, recom-

bination is performed after perturbation, but changing the

order is a perfectly plausible option; this changes the

behavior of the method without invalidating the original

proposal.

Finally, the drones may be allowed to move only inside

a particular perimeter. Therefore, if coordinates in TmC are

outside such perimeter (a violation), then a correction must

be made. A few correction procedures are available to be

chosen and there is no bias in the current DSO to privilege

either of them. The violations are calculated as:

violationteam ¼
X

N

drone¼1

X

D

j¼1

jTmCteam;drone;j � UBjj
þ

jLBj � TmCteam;drone;jj

8

>

<

>

:

; ð5Þ

where N is the number of drones per team, D is the prob-

lem’s dimension, UB is the upper bounds array, and LB is

the lower bounds array. This calculation considers only

cases where TmCteam;drone;j [UBj or TmCteam;drone;j\LBj,

i.e., when there is a violation. Therefore, the violations are

accumulated for each team, considering all of its drones.

After the drones move and calculate the objective

function, their results are sent to the command center to

make decisions, such as updating the firmware.

2.4 Firmware update

At this stage, if necessary, the hyper-heuristic takes over.

The command center uses two pieces of information to

measure the quality of a team: (1) its rank regarding the

objective function value (see Table 2) and (2) the degree of

out-of-bound coordinates that they generated. Thus,

TeamQualityi ¼ Ranki þ violationi, for i ¼ 1; . . .; t. It is

important to take violations into account because good

solutions may be generated by the correction procedures

just by chance, while TmC had, in fact, large violations.

TeamQuality is calculated every iteration; it can be accu-

mulated or averaged after a series of iterations to be

compared with a threshold.

As soon as a firmware update criterion is reached

(amount of iterations, for instance), the command center

replaces the w worst firmware by variations of the w best

firmware, i.e., for w ¼ 1 the team with the worst accu-

mulated rank has its firmware updated with a variant

(random sub-tree replacement) of the best team’s firm-

ware. There is no recombination of codes, and the new

variant must satisfy the following rules:

1. The size S of the new perturbation Pk, where S is the

number of nodes in the tree data structure, and k is the

index of the worst of the t teams, has to be

SðPkÞ[smin and SðPkÞ\smax, where smin and smax

are user-defined parameters;

2. The new perturbation has to be distinct from the

original one, but the current version only detects

syntactic differences, not semantic ones;

3. A function is not allowed to receive the same argument

for the two parameters, for instance, subðShift; ShiftÞ;
4. The w reference perturbations must not be replaced;

thus, they are fixed perturbations;

5. The perturbation scheme of Eq. 1 must hold.

Consequently, one expects a performance improvement after

replacing the firmwarewith theworst results by a variation of

the firmware that achieved the best results. Concerning the

fixed perturbations, this mechanism is to provide at least one

firmware with reasonable search capability. A fixed pertur-

bation may be one that favors exploration, whereas others

may be free to perform exploitation.

2.5 Selection for next iteration, stagnation detection

and treatment

When exploiting a particular region of the landscape, the

drones may generate identical or almost identical target

Table 2 Example of ranking on a minimization problem for two

teams with three drones: (a) Objective Function Values per Team and

(b) Ranks and averages

TmOFV1 TmOFV2

(a) Values

4.0 4.0

2.0 3.0

8.0 9.0

Rank1 Rank2

(b) Average ranks

1.0 1.0

1.0 2.0

1.0 2.0

Rank 1.0 1.67

Neural Comput & Applic (2018) 30:3117–3144 3121

123

coordinates. Convergence avoidance mechanisms, which

are not present in most evolutionary algorithms, may help

the drones to escape from local optima. The use of scaling

(Gaussian, Uniform, etc.), detection and treatment of stag-

nation, and generation of opposite coordinates enable moves

to regions far from the neighborhood. While this may slow

down reaching the optimum solution and/or reduce its

accuracy, it can expand the exploration capability of the

method to locate promising regions in the search space.

After all drones return what they found on the landscape

(the objective function values), the command center deci-

des which information is important to keep in the search

plan in order to be used in the future. A hard selection

mechanism (as shown in Algorithm 1) chooses the best

3122 Neural Comput & Applic (2018) 30:3117–3144

123

between the current solution and the new one, considering

the objective function values. However, stagnation must be

treated.

Stagnation is detected when the objective function value

of the current best solution at a particular index remains

the same after a certain number of iterations. Then, DSO

uses soft selection to allow further exploration:

if ðTmOFVdrone;bestIdx\CBOFVdroneorUð0; 1Þ\PaccÞ

thenCBCdrone
�����! ¼ TmCdrone;bestIdx

���������!
;

where bestIdx is the index of the best drone (rank 1 con-

sidering all teams), U(0, 1) is a random number from a

uniform distribution between zero and one, and Pacc is the

probability of accepting a worse solution. Thus, coordi-

nates that resulted in lower-quality solutions can be inser-

ted in the search plan, replacing higher-quality solutions.

Elitism concept is applied here to keep the best solution in

CBC.

As one may note, DSO employs several mechanisms to

generate better sampling procedures, to investigate differ-

ent regions of the search space, to correct solutions, among

others. The next section briefly presents some related work

that constitute successful attempts at using hyper-heuristics

or multiple schemes to improve traditional metaheuristics.

2.6 Example of an iteration

Here we provide a simple example iteration showing how

DSO works (see Algorithm 1).

1. Current configuration/state (the abbreviations are

shown in the Glossary):

• Minimize f ðxÞ ¼
PD

j¼1 xj with D ¼ 2 variables;

• LB
�! ¼ 0:0 0:0½ � and UB

�! ¼ 5:0 5:0½ �;
• t ¼ 2 teams with N ¼ 2 drones each;

• The two firmware have perturbations P1 ¼
CBC�1:0 for team 1 and P2 ¼ CBC � 2:0 for

team 2;

• GBC
��! ¼ 1:0 2:0½ � and GBOFV ¼ 3:0;

• CBC ¼ 1:0 2:0
3:0 4:0

� �

and CBOFV
�����! ¼ 3:0 7:0½ �.

2. Generate TCteam for each of the two teams:

TC1 ¼ calculateðP1Þ ¼
0:0 1:0

2:0 3:0

� �

and

TC2 ¼ calculateðP2Þ ¼
2:0 4:0

6:0 8:0

� �

:

3. Recombine TC and CBC as TmCteam; drone
��������!

¼ TCteam; drone; 1 CBCdrone; 2½ �, drone ¼ 1; . . .;N:

TmC1 ¼
0:0 2:0

2:0 4:0

� �

and TmC2 ¼
2:0 2:0

6:0 4:0

� �

:

4. Check for violations and correct the coordinates

according to the problem’s bounds (LB
�!

and UB
�!

),

also accumulating the violations for later use:

TmC1 ¼
0:0 2:0

2:0 4:0

� �

; TmC2 ¼
2:0 2:0

5:0 4:0

� �

;

violations
������! ¼ 0:0 1:0½ �:

5. Calculate the objective function values for each

drone in the team TmOFVteam; drone:

TmOFV1
�����! ¼ 2:0 6:0½ � and TmOFV2

�����! ¼ 4:0 9:0½ �:

6. Calculate the rank offspring each drone in the team

TmOFVteam; drone:

Rank1
���! ¼ 1:0 1:0½ � and Rank2

���! ¼ 2:0 2:0½ �:

7. Update the coordinates CBCdrone and GBC
��!

with the

new best values of each drone ¼ 1; . . .;N, if

necessary:

• CBC ¼ 0:0 2:0
2:0 4:0

� �

and CBOFV
�����! ¼ 2:0 6:0½ �;

• GBC
��! ¼ 0:0 2:0½ � and GBOFV ¼ 2:0.

8. Because GBOFV has improved, there is no need to

apply stagnation control;

9. Calculate TeamQuality as the average rank of

TmOFV
�����!

plus the violations:

TeamQuality
��������! ¼ 1:0 2:5½ �:

10. Update the firmware of the lowest quality team:

P2 ¼ CBC � 1:0=2:0:

3 Related work

In this Section, we compare DSO with well-known popular

metaheuristics and with other approaches for automated

improvement of metaheuristics.

3.1 Popular population-based metaheuristics

In Particle Swarm Optimization (PSO, [18]), a velocity

equation is used to move a single population of particles

over the search space. Each particle has a current position

and a historically (local) best position. The particle’s

movement is influenced by both the local (cognitive) and

global (social, considering the neighborhood) positions.

Neural Comput & Applic (2018) 30:3117–3144 3123

123

The velocity equation shown in Eq. 6, where vi is the

velocity of particle i, c1 and c2 are user-defined constants,

Uð0; 1Þ is a uniform distribution, xi is the position of

particle i, local besti is the best position found by particle

i (memory), global best is the best solution found up to the

current iteration.

vi ¼ vi þ c1 � Uð0; 1Þ � ðxi � local bestiÞ þ c2

� Uð0; 1Þ � ðxi � global bestÞ:
ð6Þ

All particles move every iteration, as there is no selection

mechanism to move only specific particles. In the canoni-

cal PSO, there is a single and fixed equation, a single

population, and no mechanism to escape from local optima,

although large velocity values may help. On the other hand,

small values are necessary for exploitation and fine tuning

of solutions. Researchers have proposed velocity equa-

tions [25] and mechanisms to adapt PSO configuration on-

the-fly, making it adaptive [67] in order to reduce prema-

ture convergence and improve solution quality.

Differential Evolution ([47], DE) is a population-based

metaheuristic in which two or more solutions are randomly

selected to be combined through mutation to result in a trial

vector and then recombined with a particular solution of

the population. In the mutation strategy in Eq. 7 (rand/1),

vi is the trial vector of solution i, F is the user-configured

amplification factor, xr1, xr2, and xr3 are randomly chosen

solutions.

vi ¼ xr1 þ F � ðxr2 � xr3Þ: ð7Þ

There are many mutation strategies, each producing a

different search behavior, and basically two recombination

operators. Mutation strategies and adaptive versions of DE

have been proposed over the years, achieving better per-

formance than the original algorithm [12, 14].

Covariance Matrix Adaptation Evolutionary Strategies

(CMA-ES, [28]) are also categorized as an Estimation of

Distribution Algorithm [33] because offspring is sampled

from a model instead of randomly combined with other

solutions. In CMA-ES, the model (see Eq. 8) is a multi-

variate normal distribution with the mean (l), the step-

size (r), and the covariance matrix (Cov) of the successful

individuals in the population (the best ones, according to

their fitness value), which is used to generate solution xi.

xi ¼ Nðl; r2CovÞ: ð8Þ

The idea behind sampling a model is to increase the

probability of successful candidate solutions, reducing the

chance of sampling in low-quality regions of the search

space. CMA-ES has several parameters that are automati-

cally adjusted by the algorithm using specific equations,

making it a powerful adaptive optimization method.

Researchers have investigated restarts [3], multiple popu-

lations [26], and different parameter adjustments [60].

As can be noticed, the well-known methods presented

above use human-made equations to generate new solu-

tions. Following the No Free Lunch Theorem [63], we

assume that there is no equation and parameter configura-

tion that will achieve the best performance on all opti-

mization problems. For that reason, we developed DSO to

try different equations and constants during the search

process. Procedures for allowing DSO to escape from local

optima and dealing with stagnation are also present in this

first version of the algorithm. Other related work is pre-

sented next.

3.2 Automated improvement of metaheuristics

Here we consider only the most closely related work, i.e.,

work that employs some mechanism to evolve a meta-

heuristic regarding the mutation/perturbation operator. We

can separate the research into two basic evolutionary

branches: offline and online. In offline evolution, the main

method is a hyper-heuristic [11], such as a GP-like

method [8, 9], responsible for generating new code for the

metaheuristic and running it for a number of repetitions on

one or more benchmark problems. The statistical result of

the runs is sent back to the hyper-heuristic as the fitness

value. In online evolution, on the other hand, the hyper-

heuristic and the metaheuristic work in cooperation, which

means that there is a single metaheuristic run, not a set of

repetitions, and the metaheuristic’s code is evolved during

the optimization by the hyper-heuristic. Therefore, while in

the offline approach the hyper-heuristic tries to find the best

static code to solve a single problem or various problems,

in the online approach the code is evolved for the particular

problem in a particular run.

Regarding the offline approach, GP was used by Poli

et al. [45] to evolve optimal velocity updating equations

for PSO. The authors tested the approach on 30 random

problems taken from two classes of landscapes: the city-

block sphere and the Rastrigin function. The problems

were evaluated for two and ten dimensions. The conclusion

was that GP can quickly evolve better velocity equations

than those designed by experts, even though GP used only

the four basic arithmetic operations and constants. Being an

offline approach, the method is executed to find the opti-

mum equations for the problems used in the objective

function. Therefore, a single equation is used in a complete

PSO run.

Pavlidis et al. [42] evolved mutation strategies for the

Differential Evolution (DE) algorithm, also using GP as a

hyper-heuristic. They performed tests on some of the

3124 Neural Comput & Applic (2018) 30:3117–3144

123

training benchmark problems used in our experiments. The

algorithm used three problems during the training phase

and other two on the test phase. In the comparison, the

evolved strategies performed better than the classical ones,

suggesting that they were not specialized. Thus, this paper

provides evidence that the automatic development of

algorithms is feasible.

Melo and Carosio [15] extended the work of Pavlidis

et al. [42], evolving DE for a single benchmark problem

and evaluating it on a set of 20 benchmark functions (the

same used here). The evolved strategy significantly out-

performed the canonical one (rand/1/bin) for the large

majority of problems. Also, the evolved strategy was

employed for training an MLP neural network to solve

regression and classification problems, outperforming the

canonical strategy for this task as well.

Hong et al. [29] used GP to automatically design

mutation operators (probability distributions) for the Evo-

lutionary Programming (EP) algorithm to replace the

classical Gaussian, Cauchy, and Lévy distributions. The

approach was tested on ten function classes. The authors

report that, for all problems, the probability distributions

discovered by GP outperformed both the Gaussian and

Cauchy distributions. However, they also state that they

can outperform standard mutation operators just by

changing r of the Gaussian distribution, reducing it to fine

tune the solutions. Therefore, there is no need to generate a

new equation, just adapt r.
Woodward and Swan [64] employed Iterated Local

Search to automatically generate mutation operators for

Genetic Algorithms (GA) and tune them to problem

instances drawn from a given problem class. Machine-de-

signed mutation operators were tested on seven problem

classes and outperformed the human-designed operators.

One important aspect of the framework is the actual use of

human-designed operators as starting solutions; thus, the

proposed method tries to improve an existing heuristic

instead of evolving one from scratch.

Miranda and Prudêncio [37] proposed GEFPSO, a

framework using Grammatical Evolution (GE) to auto-

matically generate effective PSO designs. GE searches for

not only structures but also parameter values (e.g.,

acceleration constants, velocity equations, and different

particles’ topology). Tests in 16 well-known benchmark

problems showed that GEFPSO achieved competitive

solutions when compared to well-succeeded algorithms

from the literature, but achieving specialized algorithms.

In future works, such specializations can later be used in

problems presenting a similar structure (fitness

landscape).

Only a few online approaches are reported in the liter-

ature. Rashid and Baig [52] proposed PSOGP, an extension

of [45] that works online, evolving the code during the

optimization. Each particle in the population has its force

generating function, which is evolved by GP. This

approach gave PSO better exploration abilities by slowing

convergence and increasing chances of escaping from local

optima. In a similar approach, Si et al. [54] replaced GP by

GDE (Grammatical Differential Evolution [40]) and also

achieved better performance than the PSO version used in

the comparison.

3.3 Other metaheuristics

DSO employs ideas of several distinct frameworks and

does not belong to any specific one. DSO can adapt its

parameters to produce better performance during the opti-

mization process, as similar adaptive tech-

niques [48, 59, 62, 68]. However, DSO does more than

that.

In DSO, the perturbation operator is also modified, not

just the parameters. In this case, DSO can be seen as a

generative hyper-heuristic approach [11], where code is

evolved instead of parameters. However, in a standard

hyper-heuristic application, the generation of codes is the

main procedure, while in DSO it is a component of the

method. Thus, DSO is a hybrid approach with coevolution

of solutions to (1) the problem being optimized and (2) the

procedures to optimize such problem.

DSO has independent teams operating on current solu-

tions, which is similar to distributed EAs

(dEAs) [2, 35, 58]. Nonetheless, most dEAs employ the

same algorithm on all subpopulations (either with the same

or different control parameters). On the other hand, in DSO

distinct teams may use the same Departure coordinates

(same population), but with distinct ways of calculating the

offset. At other times, the teams may have the same offset

formulation, but distinct Departures. Also, while one team

may use recombination, the other one may not use it. Given

that the teams may have distinct perturbation and recom-

bination procedures, resulting in different behaviors, they

could be seen as distinct algorithms.

In dEAs the parallel algorithms have their own popu-

lations searching distinct regions of the search space, and a

migration procedure is adopted to try to escape from local

optima and to speedup search. On the other hand, the teams

in DSO are not subpopulations. Hence, no migration is

required.

Another important argument why migration is not used

is because DSO’s teams are neither directly coevolving nor

cooperating to each other. In fact, the selection mechanism

considers the solutions of all teams; therefore, they are

primarily competing to each other, even though all teams

may improve the same shared information. Nevertheless, a

comparison between competition and cooperation is out of

the scope of this paper.

Neural Comput & Applic (2018) 30:3117–3144 3125

123

By using distinct algorithms at the same time, DSO

could be a portfolio [43] of evolving (adapting) evolu-

tionary processes. Most differences for dEAs can be

applied to the portfolio framework, but in portfolios and

other similar methods, such as AMALGAM [61] and

A-Teams [49], distinct populations use distinct algorithms.

However, again, these algorithms are previously coded and

are not improved during the optimization.

Finally, it is important to recall that DSO’s teams are

semiautonomous; they must obey the command center. The

command center can upgrade the firmware, select the

solutions found by the teams, change the amount of teams

and drones in each team, restart the drones’ positions,

among other possibilities.

4 Experimental results

To evaluate the performance of DSO, it is applied to

minimize a set of 38 scalable unconstrained (box-con-

strained) single-objective continuous global optimization

benchmark functions that are widely used in the literature.

The results are statistically compared with those of well-

succeeded evolutionary and swarm optimization methods.

4.1 Benchmark functions

The benchmark functions for both experiments are pre-

sented in next subsections.

4.1.1 Experiment 1

A definition of the test problems is presented in Table 3, a

short description of their characteristics is presented next,

andmore details can be found in [65]. The entire set contains

23 functions, but for this contribution we selected only those

that can be scaled, thus ignoring the low dimensional prob-

lems. For all problems, all methods are allowed to perform a

maximum of D� 10; 000 objective function evaluations.

1. Unimodal Functions

(a) Separable, scalable: f1, f2, f5, and f6. f5 is the

Rosenbrock function which is unimodal for D ¼
2 and 3 but may have multiple minima in high

dimension cases;

(b) Non-separable, scalable: f3 and f4;

(c) Non-separable, scalable, narrow valley from

local to global optimum: f7;

Table 3 Benchmark function definitions

Function definitions Bounds Optimum value

f1ðxÞ ¼
PD

i¼1 x
2
i ½�100; 100�D 0

f2ðxÞ ¼
PD

i¼1 jxij þ
QD

i¼1 jxij ½�10; 10�D 0

f3ðxÞ ¼
PD

i¼1ð
Pi

j¼1 xjÞ
2 ½�100; 100�D 0

f4ðxÞ ¼ maxifjxij; 1� i�Dg ½�100; 100�D 0

f5ðxÞ ¼
PD�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2�, ½�30; 30�D 0

f6ðxÞ ¼
PD

i¼1ðbxi þ 0:5cÞ2 ½�100; 100�D 0

f7ðxÞ ¼
PD

i¼1 ix
4
i þ Uð0; 1Þ ½�1:28; 1:28�D 0

f8ðxÞ ¼
PD

i¼1 �xi sinð
ffiffiffiffiffiffi

jxij
p

Þ ½�500; 500�D �418:9828872724339� D

f9ðxÞ ¼
PD

i¼1½x2i � 10 cosð2pxiÞ þ 10� ½�5:12; 5:12�D 0

f10ðxÞ ¼ �20 exp �0:2
ffi

D�1
PD

i¼1 x
2
i

q

� �

� expð1
D

PD
i¼1 cos 2pxiÞ þ 20þ e

½�32; 32�D 0

f11ðxÞ ¼ ð1=4000Þ
PD

i¼1 x
2
i �

QD
i¼1 cos xi=

ffiffi

i
p� 	

þ 1 ½�600; 600�D 0

f12ðxÞ ¼ 1
D
p 10 sin2ðpy1Þ þ

PD�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyD � 1Þ2

n o

þ
PD

i¼1 uðxi; 10; 100; 4Þ yi ¼ 1þ ðxi þ 1Þ=4; uðxi; a; k;mÞ ¼
kðxi � aÞm; xi [a;

0; �a� xi � a;
kð�xi � aÞm; xi\� a;

8

<

:

½�50; 50�D 0

f13ðxÞ ¼ sin2ð3px1Þ þ
PD�1

i¼1 ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ�
n o

=10þ ðxD � 1Þ
½1þ sin2ð2pxDÞ�=10þ

PD
i¼1 uðxi; 5; 100; 4Þ

½�50; 50�D 0

D, number of dimensions, was set differently for each sub-experiment

3126 Neural Comput & Applic (2018) 30:3117–3144

123

2. Multimodal Functions

(a) Separable, scalable, numerous local optima: f8–

f13.

These problems are currently considered of low diffi-

culty, but remain very popular. Achieving good perfor-

mance on them is mandatory, but it is also imperative to

evaluate the method on a more challenging experiment.

4.1.2 Experiment 2

For this second experiment it selected the 25 functions

from the benchmark problem set from CEC’ 2005 Spe-

cial Session in Real Parameter Optimization [57]. Those

problems present a diverse set of features, such as

multimodality, ruggedness, ill-conditioning, interdepen-

dency. In our experiments, all the functions were solved

in 10 dimensions, with a maximum of 100,000 objective

function evaluations, and all configurations suggested

in [57].

4.2 Implementation and configuration

of the algorithms

The experiments were executed on an

Intel(R) Xeon(R) X5550@2.67 GHz with 8 GB RAM,

Linux enterprise 3.14.1-gentoo i686. We implemented and

executed DSO in MATLAB R2012b. Its configuration for

Experiment 1 is shown in Table 4 and was empirically

chosen after a few runs with distinct configurations. Con-

stants C1, C2, and C3 are not used in the reference per-

turbations, but are available for DSO to compose new

perturbations to update the firmware. DSO was not tuned to

solve the problems as it should be able to automatically

adapt most parameters.

The other methods used in our comparison were con-

figured as follows. The MATLAB source codes were

obtained online, mainly on the Web sites of the original

authors. We did not tune the parameters of these methods,

but used the configuration reported on the literature as

suggestion to achieve good performance. Therefore, one

must suppose that, based on published reports, with these

configurations the methods will achieve high-quality

results. The configurations are the same for all problems in

this experiment.

• Covariance Matrix Adaptation Evolution Strategy

(CMA-ES): default configuration proposed in [27] and

in the original source code, with initial r ¼ 0:25,

l ¼ 50, k ¼ 100.

• Cuckoo Search (CS): default configuration proposed

in [20] and in the original source code, pa ¼ 0:25,

popsize = 50 (it is a dual-stage algorithm), nests = 25.

• Differential Evolution (DE): default configuration pro-

posed in [56], F ¼ 0:5, CR ¼ 0:9, rand/1/bin.

• Gravitational search algorithm (GSA): default config-

uration proposed in [51] and in the original source

code.

• Particle Swarm Optimization (PSO) with Constriction

Factor: default configuration proposed in [13]:

C1 ¼ 2:05, C2 ¼ 2:05, K ¼ 0:729, vMax ¼ 2,

vMin ¼ �2.

All methods were configured to generate 100 solutions

every iteration. It is important to notice that DSO has 4

teams of 25 members, giving the overall sample size of

100, while the other methods have 100 solutions used to

generate 100 new solutions. A larger population may pro-

vide better exploration capability and increase the chances

of finding the global optimum. Consequently, one could

Table 4 Run and evolutionary parameter values for DSO in Exper-

iment 1

Parameter Value

C1, C2, C3 0.5, 0.4, 0.9

Teams 4

Reference perturbation rand{/}1 using F ¼ C1, MVNSþ Step

Firmware update every iteration

w (# of firmware updated) 1

Fixed perturbation rand / 1 using F ¼ C1

Stagnation 50 iterations

Elitism when stagnated 1

Prob. acc. worse sol. (Pacc) 10%

Tree-size (min, max) 5, 20

pBest 25%

CR U(0.4, 0.9)

Table 5 Run and evolutionary parameter values for DSO in Exper-

iment 2, CEC 2005 problems

Parameter Value

C1, C2, C3 0.5, 0.4, 0.9

Teams 4

Reference perturbation rand/1 using F ¼ C1, MVNSþ Step

Firmware update every iteration

w (# of firmware updated) 1

Fixed perturbation rand / 1 using F ¼ C1

Stagnation 50 iterations

Elitism when stagnated 1

Prob. acc. worse sol. (Pacc) 10%

tree-size (min, max) 5, 20

pBest 25%

CR U(0.4, 0.9)

Neural Comput & Applic (2018) 30:3117–3144 3127

123

suppose, in advance, that DSO is likely to get stuck into

local optima more often than the other methods.

For experiment 2, DSO was slightly tuned to achieve

better performance on the harder functions. We did only a

few tests to find good parameter settings (see Table 5).

Extensive tests could to find configurations able to out-

perform the other methods, but this is not the goal of this

work.

The results are compared to those that were selected on

that Special Session and are taken from Table 13 in [21],

which considers only the average error for each problem.

The optimization methods in the comparison are: Hybrid

Real-Coded Genetic Algorithm with Female and Male

Differentiation (BLX-GL50 [22]), Real-Coded Memetic

Algorithm (BLX-MA [39]), Cooperative Evolution EA

(CoEVO [46]), canonical Differential Evolution (DE [53]),

Dynamic multi-swarm particle swarm optimizer with local

search (DMS-L-PSO [34]), Estimation of Distribution

Algorithm (EDA [66]), Covariance Matrix Evolution

Strategy and Restarting method (G-CMA-ES [5]), Steady-

State Evolutionary Algorithm (K-PCX [55]), Covariance

Matrix Evolution Strategy Improved with Local Search (L-

CMA-ES [4]), Self-adaptive differential evolution algo-

rithm for numerical optimization (L-SaDE [48]), and

Steady-State Genetic Algorithm (SPC-PNX [7]).

4.3 Performance comparison

For experiment 1, results are calculated over 50 indepen-

dent runs and are organized by the problem’s dimension (5,

10, 50, or 100). In the tables, they are presented in two

rows per function, in terms of median error (row above)

and success rate (row below). Since for some cases the

resulting distributions are quite asymmetric, average and

standard deviation would not allow a correct interpretation

of the behavior. The two bottom lines in the tables are the

average ranking (Rank) of each optimization method and

the average success performance (SR). Error values below

Table 6 Results for Experiment 1 with D ¼ 5

Fun Measure DSO DE CMA-ES CS GSA PSO

f1 Median 0.0000E?00 0.0000E?00 9.2242E-31 * 4.2581E-12 * 1.3716E-19 * 1.0888E-35 *

SR 1 1 1 1 1 1

f2 Median 0.0000E?00 9.1562E-72 * 1.7870E-15 * 2.8971E-06 * 7.1512E-10 * 1.5416E-19 *

SR 1 1 1 0 1 1

f3 Median 0.0000E?00 0.0000E?00 * 8.6736E-30 * 6.4733E-10 * 1.6316E-19 * 1.7250E-29 *

SR 1 1 1 1 1 1

f4 Median 0.0000E?00 5.3816E-68 * 6.6692E-16 * 1.4119E-04 * 2.9035E-10 * 2.9066E-17 *

SR 1 1 1 0 1 1

f5 Median 1.2173E-09 0.0000E?00 4.0800E-28 * 1.0930E-01 * 1.5620E?00 * 1.2884E-01 *

SR 0.82 0.62 1 0 0 0

f6 Median 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SR 1 1 1 1 1 1

f7 Median 4.1239E-04 2.3274E-04 * 7.2166E-03 * 1.6539E-03 * 8.7901E-04 * 2.3624E-04 *

SR 1 1 0.6 1 1 1

f8 Median 1.1368E-12 1.1844E?02 * 1.1844E?02 4.6663E?00 * 1.1392E?04 * 2.3688E?02 *

SR 1 0.32 0.48 0 0 0.08

f9 Median 0.0000E?00 1.4924E?00 * 0.0000E?00 * 1.4631E-01 * 0.0000E?00 * 0.0000E?00 *

SR 1 0.18 0.62 0 0.7 0.9

f10 Median 8.8818E-16 4.4409E-15 * 1.9216E?01 * 1.1377E-03 * 7.4869E-10 * 4.4409E-15 *

SR 1 1 0.44 0 1 1

f11 Median 0.0000E?00 3.9423E-02 * 0.0000E?00 * 3.6040E-02 * 4.0790E-01 * 1.7236E-02 *

SR 1 0.02 0.58 0 0 0.06

f12 Median 1.1342E-30 9.4233E-32 * 5.7319E-31 9.8027E-09 * 7.6149E-21 * 9.4233E-32 *

SR 1 1 1 0.5 1 1

f13 Median 1.2191E-29 1.3498E-32 * 1.5137E-30 2.2228E-10 * 1.7697E-20 * 1.3498E-32 *

SR 1 0.98 1 1 1 1

Rank 1.7692 2.0769 3.1538 4.7692 4.4615 2.6154

SR 0.9862 0.7785 0.8246 0.4231 0.7462 0.7723

The bold values indicate the best absolute values

3128 Neural Comput & Applic (2018) 30:3117–3144

123

1:0E � 100 were converted to 0:0E þ 00. For the success

rate calculation, the value-to-reach was 1E � 02 for f7, and

1:0E � 08 for the remaining problems. The rank for each

row is the ascending order of the methods with respect to

the median error, where ties consider the minimum rank,

i.e., if two methods present the lowest value (0:0E þ 00),

then both get rank 1.

We also applied a two-sided Wilcoxon’s rank sum test

between DSO and each method used in the comparison.

The null hypothesis is that the samples compared are

independent, but from identical continuous distributions

with equal medians. The symbol ’*’ was added whenever

the null hypothesis was rejected at the significance level

a ¼ 0:05, meaning that the lowest median is the best.

As the reader will notice, for some cases the null

hypothesis was not rejected (there is no ’*’) although the

medians (DSO versus Another method) were very distinct,

meaning that the statistical test did not detect a significant

difference between the samples. This is an important issue

and the reason why we also present violin/dot plots for a

visual analysis of the distributions and comment on the

results.

For experiment 2, results are calculated over 36 runs

(instead of 25 as the other methods) because DSO was

executed on a cluster and we decided to use all available

computing nodes. The rank analysis is first done by

Friedman rank sum test. Then, when a statistical difference

among the methods was detected, we employed the pair-

wise post hoc test for Multiple Comparisons of Mean Rank

Sums for unreplicated blocked data (Nemenyi’s test) to

identify differences between DSO (as the control method)

and each method used in the comparison.

Computing time is not a criterion to be investigated

here. The current DSO is slower than all methods used in

comparison as it generates code (perturbation schemes)

during the optimization process; the perturbation

Table 7 Results for Experiment 1 with D ¼ 10

Fun Measure DSO DE CMA-ES CS GSA PSO

f1 Median 0.0000E?00 0.0000E?00* 4.8851E-30* 2.2845E-13* 4.2917E-19* 2.5748E-54*

SR 1 0.96 1 1 1 1

f2 Median 0.0000E?00 4.0618E-23* 5.4302E-15* 4.6081E-06* 2.0108E-09* 1.3797E-29*

SR 1 0.82 1 0 1 1

f3 Median 0.0000E?00 9.8852E-15* 1.1092E-28* 1.0214E-06* 8.5368E-19* 2.8589E-28*

SR 1 0.72 1 0 1 1

f4 Median 4.6349E-70 2.0988E-02* 1.2377E-15* 1.7950E-03* 4.5770E-10* 2.4699E-21*

SR 1 0.04 1 0 1 1

f5 Median 4.9087E-07 8.3357E?00* 2.6740E-27* 8.2580E-01* 5.4257E?00* 5.0054E-01*

SR 0.34 0 1 0 0 0

f6 Median 0.0000E?00 0.0000E?00* 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SR 1 0.54 1 1 1 1

f7 Median 7.4231E-04 4.4823E-04* 1.0664E-02* 4.2571E-03* 1.5599E-03* 6.2642E-04

SR 1 1 0.48 0.98 1 1

f8 Median 7.7123E-10 7.5012E?02* 2.3688E?02* 5.1762E?02* 1.0836E?04* 9.5054E?02*

SR 0.78 0 0.08 0 0 0

f9 Median 0.0000E?00 1.1940E?01* 9.9496E-01* 6.7089E?00* 9.9496E-01* 3.9798E?00*

SR 1 0 0.22 0 0.24 0.02

f10 Median 8.8818E-16 7.9936E-15* 1.9237E?01* 7.8745E-03* 9.1242E-10* 4.4409E-15*

SR 1 0.76 0.4 0 1 1

f11 Median 0.0000E?00 1.0703E-01* 0.0000E?00 4.2075E-02* 0.0000E?00* 5.8998E-02*

SR 1 0 1 0 0.56 0

f12 Median 1.6634E-29 8.2686E-05 1.6592E-30 1.3139E-06* 7.3727E-21* 4.7116E-32*

SR 1 0.4 1 0 1 1

f13 Median 7.5251E-28 1.3498E-32* 8.1455E-30* 8.2380E-11* 3.7753E-20* 1.3498E-32*

SR 1 0.82 1 1 1 1

Rank 1.6154 3.7692 2.9231 4.6923 3.8462 2.6154

SR 0.9323 0.4662 0.7831 0.3062 0.7538 0.6938

The bold values indicate the best absolute values

Neural Comput & Applic (2018) 30:3117–3144 3129

123

scheme might be evaluated (parsed and compiled) to pro-

vide the desired results. Once compiled, the perturbation

scheme is as fast as the other codes. However, if the per-

turbation scheme is changed often, then a slowdown is

clearly noticeable.

4.4 Experiment 1: results and discussion

Results of the experiments are shown in Tables 6, 7, and 8, and

Figs. 2, 4, and 6. For D ¼ 5, one can notice in Table 6 that

DSO performs well for most problems, achieving the best

solution for the majority of runs. Many problems, i.e.,

f1 � f4; f6; f9; f11, reached a very small error. Function f5 was

solved to the optimum only by DE, while CMA-ES achieved

100%of success rate. Function f7 was the hardest problem,with

solutions around 1E�04, but VTR is 1E�02; thus, the results

were close to the expected precision. DSO achieved both the

best Rank and SR. The worst method in both criteria was the

Cuckoo Search (CS). One may also notice that significant dif-

ferenceswere detected formost cases.When that occurs, but the

medians are equal, one should check the success rate and also

the violin/dot plot (Fig. 2) to choose the best solution. For

instance, for function f3, both DSO and DE had equal medians

and success rate, but the violin/dot plot shows that DSO found

lower-quality solutions in some runs, meaning that DE was

better than DSO.

Regarding the performance curves in Fig. 3, one may

observe that DSO was the fastest method for functions

f1 � f4, f8, f9, and f11. A characteristic thatmust be noted is the

noise (peak) present in some of DSO’s curves (see f2 close to

generation 200, f3 close to generation 300). This noise hap-

pens because DSO restarts if stagnation is detected. When it

restarts, the median solution quality gets worse.

With dimension D ¼ 10 (see Table 7), the performance

of the metaheuristics deteriorated and became less robust,

with a wider distribution of the results (see Fig. 4). DSO

achieved very high precision for functions f1 � f4; f6; f9, and

Table 8 Results for Experiment 1 with D ¼ 50

Fun Measure DSO DE CMA-ES CS GSA PSO

f1 Median 0.0000E?00 8.5187E?03* 1.2086E-28* 1.7082E-05* 5.9191E-18* 4.7641E-70*

SR 1 0 1 0 1 1

f2 Median 0.0000E?00 4.1127E?01* 8.6894E-14* 1.3322E?02* 1.5728E-08* 1.7298E-20*

SR 1 0 0.64 0 0 1

f3 Median 0.0000E?00 8.3081E?03* 7.5232E-26* 1.2226E?03* 4.5695E?01* 5.6020E-04*

SR 1 0 1 0 0 0

f4 Median 0.0000E?00 3.6649E?01* 5.8117E-15* 2.2843E?00* 1.1316E-09* 1.1277E-02*

SR 1 0 1 0 1 0

f5 Median 2.0293E-08 4.6132E?06* 1.0389E-25* 4.5175E?01* 4.0751E?01* 3.1881E?01*

SR 0.46 0 0.84 0 0 0

f6 Median 0.0000E?00 7.5502E?03* 1.3903E-28* 1.5081E-05* 0.0000E?00* 3.0815E-33*

SR 1 0 1 0 1 1

f7 Median 6.1744E-04 3.5498E-02* 2.8957E-01* 2.8254E-02* 6.4154E-03* 1.0604E?02*

SR 1 0.02 0 0 0.96 0.02

f8 Median 3.5531E?02 1.0351E?04* 8.7375E?03* 6.6746E?03* 1.7177E?04* 1.0677E?04*

SR 0 0 0 0 0 0

f9 Median 0.0000E?00 1.6661E?02* 3.7858E?02* 1.4430E?02* 9.9496E?00* 1.1790E?02*

SR 1 0 0 0 0 0

f10 Median 8.8818E-16 1.2631E?01* 1.9510E?01* 3.9461E?00* 1.4384E-09* 1.0271E?00*

SR 1 0 0 0 1 0.44

f11 Median 0.0000E?00 7.8454E?01* 0.0000E?00* 3.6353E-04* 0.0000E?00* 9.1868E-02*

SR 1 0 0.96 0 0.72 0.16

f12 Median 4.9290E-19 5.6869E?05* 2.7799E-29* 6.5139E-01* 2.2864E-20* 3.1101E-02

SR 1 0 0.92 0 1 0.5

f13 Median 8.4691E-18 7.6647E?06* 6.6538E-28* 6.8833E-03* 5.3259E-19 3.5068E-32

SR 1 0 0.8 0 1 0.54

Rank 1.692 5.462 2.923 4.462 2.923 3.308

SR 0.8815 0.0015 0.6277 0 0.5908 0.3585

The bold values indicate the best absolute values

3130 Neural Comput & Applic (2018) 30:3117–3144

123

1e−84

1e−63

1e−42

1e−21

1e−83

1e−61

1e−39

1e−17

1e−84

1e−63

1e−42

1e−21

1e−83

1e−61

1e−39

1e−17

1e−83

1e−60

1e−37

1e−14

1e−100

1e−04

1e−02

1e−10

1e−06

1e−02

1e+02

1e−83

1e−60

1e−37

1e−14

1e−12

1e−08

1e−04

1e+00

1e−82

1e−59

1e−36

1e−13

1e−27

1e−21

1e−15

1e−09

1e−27

1e−20

1e−13

1e−06

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

Method

E
rr

or
 (l

og
10

)
f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

Fig. 2 Violin/dot plots of the error distribution (log-scale) for Experiment 1 with D ¼ 5. DSO showed very good performance, except for f5. The

variance is DSO is mostly due to the different firmwares generated each run

f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

1e−82

1e−58

1e−34

1e−10

1e−83

1e−60

1e−37

1e−14

1e−82

1e−58

1e−34

1e−10

1e−83

1e−60

1e−37

1e−14

1e−81

1e−56

1e−31

1e−06

1e−82

1e−58

1e−34

1e−10

0.01

1.00

1e−09

1e−05

1e−01

1e+03

1e−83

1e−60

1e−37

1e−14

1e−12

1e−08

1e−04

1e+00

1e−83

1e−60

1e−37

1e−14

1e−24

1e−15

1e−06

1e+03

1e−24

1e−14

1e−04

1e+06

0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0

0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0

0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0 0 10
0

20
0

30
0

40
0

50
0

Generations

M
ed

ia
n

er
ro

r
va

lu
e

(lo
g1

0)

Method
CMA−ES
CS

DE
DSO

GSA
PSO

Fig. 3 Median curves of the error distribution (log-scale) for Experiment 1 with D ¼ 5. DSO was the fastest and most precise method for most

functions

Neural Comput & Applic (2018) 30:3117–3144 3131

123

1e−83

1e−61

1e−39

1e−17

1e−83

1e−61

1e−39

1e−17

1e−82

1e−59

1e−36

1e−13

1e−83

1e−60

1e−37

1e−14

1e−21

1e−13

1e−05

1e+03

1e−83

1e−60

1e−37

1e−14

0.001

0.100

1e−09

1e−05

1e−01

1e+03

1e−83

1e−60

1e−37

1e−14

1e−12

1e−08

1e−04

1e+00

1e−82

1e−59

1e−36

1e−13

1e−25

1e−17

1e−09

1e−01

1e−26

1e−18

1e−10

1e−02

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

Method

E
rr

or
 (l

og
10

)
f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

Fig. 4 Violin/dot plots of the error distribution (log-scale) for Experiment 1 with D ¼ 10. DSO shows less performance degradation than the

other methods when compared with D ¼ 5

f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

1e−82

1e−58

1e−34

1e−10

1e−82

1e−58

1e−34

1e−10

1e−82

1e−58

1e−34

1e−10

1e−53

1e−38

1e−23

1e−08

1e−21

1e−13

1e−05

1e+03

1e−82

1e−58

1e−34

1e−10

0.01

1.00

1e−06

1e−02

1e+02

1e−83

1e−60

1e−37

1e−14

1e−12

1e−08

1e−04

1e+00

1e−83

1e−60

1e−37

1e−14

1e−24

1e−14

1e−04

1e+06

1e−24

1e−14

1e−04

1e+06

0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00

0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00

0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00 0 25
0

50
0

75
0

10
00

Generations

M
ed

ia
n

er
ro

r
va

lu
e

(lo
g1

0)

Method
CMA−ES
CS

DE
DSO

GSA
PSO

Fig. 5 Median curves of the error distribution (log-scale) for Experiment 1 with D ¼ 10. DSO still shows the fastest performance for most

problems

3132 Neural Comput & Applic (2018) 30:3117–3144

123

f11. f8 was also best solved by DSO, but with a substantial

reduction in quality. Functions f5 and f12 were best solved

by CMA-ES, and PSO was the best method for functions f6
(along with GSA) and f13. Finally, DSO was the best

method concerning both Rank and SR.

In the next dimension considered (D ¼ 50, Table 8),

DSO maintained the quality for f1–f4,f9, and f11, presenting

some deterioration in the other problems. However, DSO

still showed better than median performance for functions

f5, f8, f12, and f13. DSO found the best solutions for f7 and

f10. Interestingly, while the other techniques suffered a

large impact in f7, mainly PSO, DSO maintained the best

performance. Again, for f6, the best method was GSA,

while DSO was the best overall method w.r.t. both Rank

and SR. An issue for functions f12 and f13 was the com-

parison of DSO, GSA, and PSO, because the null

hypothesis was not rejected even though the medians were

clearly distinct. The success rate aids in understanding the

phenomena for PSO, which achieved only 50% of success

rate; thus, the other half of runs was trapped in low-quality

optima. On the other hand, GSA presented an order of

magnitude better median solution than DSO. However,

DSO’s results were spread (larger variance) as shown in the

violin/dot plot (Fig. 6), achieving higher precision than

GSA.

Finally, for D = 100, the median quality of the

solutions achieved by DSO for f1–f4, f6, f7, f9, f10, and

f11, were still on par with those obtained for lower

dimensions, that is, DSO was able to properly adapt to

those functions. DSO found the best solutions for f5 and

f12 in some runs, but CMA-ES was the best for f12 and

f13. Once more, DSO was the best method when con-

sidering both Rank and SR.

As summarized above, DSO was consistently the best

method to solve functions f1-f4, f7, f9, f10, and f11. These

functions, as explained before, have distinct characteristics

that make some of them harder than the others. It is

interesting to notice that even the ‘‘easier’’ separable uni-

modal problems (f1 and f2) were not properly solved by the

other methods used in the comparison. That could be an

issue of the method’s configuration, but recommended

settings from literature were employed here, using the

open-source code provided by the authors of the methods

(Fig. 5).

For many problems, DSO achieved much better results

than the other algorithms. One of DSO’s characteristics

that could be used to explain the results is the convergence

1e−82

1e−58

1e−34

1e−10

1e−81

1e−56

1e−31

1e−06

1e−82

1e−58

1e−34

1e−10

1e−83

1e−60

1e−37

1e−14

1e−11

1e−05

1e+01

1e+07

1e−82

1e−58

1e−34

1e−10

1e−03

1e−01

1e+01

1e−06

1e−03

1e+00

1e+03

1e−83

1e−60

1e−37

1e−14

1e−12

1e−08

1e−04

1e+00

1e−83

1e−60

1e−37

1e−14

1e−25

1e−15

1e−05

1e+05

1e−24

1e−14

1e−04

1e+06

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

Method

E
rr

or
 (l

og
10

)
f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

Fig. 6 Violin/dot plots of the error distribution (log-scale) for Experiment 1 with D ¼ 50. The performance degradation of the other methods is

more visible now, with a larger D

Neural Comput & Applic (2018) 30:3117–3144 3133

123

avoidance mechanism, the employment of information

such as Opposition, matInterval, and scalings to force

exploration. Another reason, though with a smaller impact,

is the stagnation control that pauses the hill-climbing

approach by accepting solutions that are worse than current

ones (Table 9; Fig. 7).

With respect to average ranks, DSO was clearly the

best method for D ¼ 10, 50, and 100, but for D ¼ 5 DE

took the first position and DSO was the second best.

With the increase in the number of variables, DE

became the worst method, followed by CS. The opposite

behavior is shown by CMA-ES, achieving better position

in the ranks when D increased. An important point here

is that DSO was configured with 4 teams, and the first

one—that was set as constant, was a DE rand / 1, as

shown in Table 4. Obviously, there are differences in the

parameters (F, CR, crossover method); however, DE

rand/1/bin performance is unlikely to be so largely

improved and outperform CMA-ES and DSO. On the

other hand, we may also argue that DSO suffered an

impact in its performance by using DE rand/1 as the

main reference team. Still, while the objective of this

work is not to find the best reference, the current

implementation is good enough to outperform some

widely employed metaheuristics (Figs. 8, 9).

4.5 Experiment 2: results and discussion

In this section, we evaluate DSO on the benchmark prob-

lem set from CEC’ 2005 Special Session in Real Parameter

Optimization [57], with focus on the dimension D ¼ 10.

This problem set is known to be more challenging than the

previous one. Thus, techniques that are good at solving that

previous problem set may not necessarily perform well on

Table 9 Results for Experiment 1 with D ¼ 100

Fun Measure DSO DE CMA-ES CS GSA PSO

f1 Median 0.0000E?00 4.3174E?04SR 2.9680E-28SR 9.8542E-07SR 1.4943E-17SR 2.2944E-36SR

SR 1 0 1 0 1 1

f2 Median 0.0000E?00 1.4794E?02SR 7.5512E-10SR 1.0000E?10SR 3.4861E-08SR 1.2372E-10SR

SR 1 0 0.58 0 0 0.78

f3 Median 0.0000E?00 3.7035E?04SR 8.7114E-26SR 9.0556E?03SR 2.9561E?02SR 4.4198E?00SR

SR 1 0 1 0 0 0

f4 Median 0.0000E?00 5.0450E?01SR 1.0020E-14SR 5.1268E?00SR 2.0181E-09SR 7.1167E-01SR

SR 1 0 1 0 1 0

f5 Median 2.5036E-11 4.9444E?07SR 5.8845E-25SR 9.3117E?01SR 8.6467E?01SR 1.2285E?02SR

SR 0.86 0 0.82 0 0 0

f6 Median 0.0000E?00 4.5110E?04SR 3.5339E-28SR 8.6322E-07SR 0.0000E?00SR 4.9612E-31SR

SR 1 0 1 0 1 1

f7 Median 4.4336E-04 5.9559E?00SR 4.3644E-01SR 5.5418E-02SR 1.3808E-02SR 9.9994E?02SR

SR 1 0 0 0 0.04 0

f8 Median 1.0661E?03 2.5797E?04SR 1.7454E?04SR 1.5811E?04SR 3.6440E?04SR 2.2076E?04SR

SR 0 0 0 0 0 0

f9 Median 0.0000E?00 5.3275E?02SR 7.2433E?02SR 3.0480E?02SR 2.2884E?01SR 3.0200E?02SR

SR 1 0 0 0 0 0

f10 Median 8.8818E-16 1.6148E?01SR 1.9474E?01SR 3.1408E?00SR 1.6017E-09SR 2.6281E?00SR

SR 1 0 0 0 1 0

f11 Median 0.0000E?00 3.7882E?02SR 0.0000E?00SR 1.8750E-06SR 0.0000E?00SR 1.3338E-01SR

SR 1 0 0.98 0 0.66 0.22

f12 Median 1.0736E-16 2.0124E?07SR 1.2646E-29SR 4.8271E-01SR 2.9002E-20SR 3.1101E-02

SR 1 0 0.92 0 0.94 0.48

f13 Median 6.5661E-16 1.0805E?08SR 6.5108E-28SR 9.0035E-04SR 1.4986E-18SR 1.0987E-02SR

SR 1 0 0.76 0 1 0.34

Rank 1.615 5.615 2.769 4.308 2.769 3.692

SR 0.9123 0 0.62 0 0.5108 0.2938

The bold values indicate the best absolute values

3134 Neural Comput & Applic (2018) 30:3117–3144

123

Fig. 7 Median curves of the error distribution (log-scale) for Experiment 1 with D ¼ 50. DSO achieves even better performance now, losing

only in functions f12 and f13

1e−82

1e−58

1e−34

1e−10

1e−81

1e−56

1e−31

1e−06

1e−82

1e−58

1e−34

1e−10

1e−83

1e−60

1e−37

1e−14

1e−21

1e−12

1e−03

1e+06

1e−82

1e−58

1e−34

1e−10

1e−03

1e−01

1e+01

1e+03

1e−04

1e−01

1e+02

1e+05

1e−82

1e−58

1e−34

1e−10

1e−12

1e−08

1e−04

1e+00

1e−82

1e−58

1e−34

1e−10

1e−25

1e−15

1e−05

1e+05

1e−22

1e−13

1e−04

1e+05

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

CM
A−
ES CS DE DS

O
GS
A

PS
O

Method

E
rr

or
 (l

og
10

)

f1 f2 f3 f4 f5

f6 f7 f8 f9 f10

f11 f12 f13

Fig. 8 Violin plots of the error distribution (log-scale) for Experiment 1 with D ¼ 100. CMA-ES and GSA are still the only methods that

outperformed DSO (at least partially), and only for problems f12 and f13. The refinement process was considerably better for these two methods

than for DSO (larger variance)

Neural Comput & Applic (2018) 30:3117–3144 3135

123

this one. The results, shown in Table 10, are compared to

those selected on that Special Session and are taken

from Table 13 in [21], which considers only the average

error for each problem. A more detailed statistical

description of the results is in ‘‘Appendix’’ (see Table 12).

To analyze the results, and since the original results are

not available for running the Wilcoxon’s test, we did run

the Friedman rank sum test to compare the 12 techniques’

averages, assuming significance level a ¼ 0:05. As the

Friedman test indicates significant difference (v2 (11) =

51.8873, p ¼ 2:858e� 07\a), it is meaningful to conduct

multiple comparisons in order to identify differences

between the techniques on the 25 problems. For that pur-

pose, we employed Nemenyi’s post hoc test, and the

comparisons regarding DSO’s wins, ties, and losses, as

well as the p value, are presented in Table 11.

Once again, we are investigating the hypothesis whether

a method that self-generates perturbation schemes can

outperform hand-made specialized methods that partici-

pated in a renowned competition. In this case, even ties

could be considered a success for DSO as it generates

perturbation schemes that produce poor quality (infeasible)

solutions, meaning that a considerable number of evalua-

tions is wasted.

On the one hand, concerning the W/T/L values, DSO had

more wins than the methods BLX-MA, CoEVO, EDA,

K-PCX, and SPC-PNX. On the other hand, as can be noticed

by the p values, no significant differences (p\a) were

detected by the post hoc analysis for a ¼ 0:05, even though

G-CMA-ES won 20 out of 25 times (lower average error),

and DSO won 19 times when compared to CoEVO. The

significance for G-CMA-ES versus DSO would be detected

for a ¼ 0:1. The differences detected by Friedman’s test are

for G-CMA-ES as the control method, but Table 11 shows

only DSO as the control method. Therefore, one may con-

clude that DSO is as good as the methods selected for that

Special Session, although it is based on an online hyper-

heuristic which sometimes generates very poor quality

expressions that waste precious evaluations, while other

methods are hand-made specialized developments.

One may also check the performance curves of DSO in

‘‘Appendix’’ section. Unfortunately, we don’t have access

to the curves of the other methods for comparison.

5 Summary, conclusions, and future works

Drone Squadron Optimization (DSO), introduced in this

paper, is a novel method for global numerical optimization.

It is an evolutionary algorithm, but not nature-inspired.

Because it is artifact-inspired, it was developed to be a very

flexible technique, allowing the insertion and removal of

Fig. 9 Median curves of the error distribution (log-scale) for Experiment 1 with D ¼ 100. Again, CMA-ES was substantially better than all other

methods in functions f12 and f13, but DSO was the best in all other functions

3136 Neural Comput & Applic (2018) 30:3117–3144

123

Table 10 Average error obtained in CEC’2005 Special Session in dimension 10

Algorithm f1 f2 f3 f4 f5 f6 f7

DSO 1.000E-09 1.000E-09 7.697E?01 1.000E-09 5.968E-03 3.322E-01 6.526E-02

BLX-GL50 1.000E-09 1.000E-09 5.705E102 1.000E-09 1.000E-09 1.000E-09 1.172E-02

BLX-MA 1.000E-09 1.000E-09 4.771E104 1.997E208 2.124E202 1.490E100 1.971E201

CoEVO 1.000E-09 1.000E-09 1.000E-09 1.000E-09 2.133E100 1.246E101 3.705E-02

DE 1.000E-09 1.000E-09 1.940E-06 1.000E-09 1.000E-09 1.590E-01 1.460E201

DMS-L-PSO 1.000E-09 1.000E-09 1.000E-09 1.885E203 1.138E-06 6.892E-08 4.519E-02

EDA 1.000E-09 1.000E-09 2.121E?01 1.000E-09 1.000E-09 4.182E-02 4.205E201

G-CMA-ES 1.000E-09 1.000E-09 1.000E-09 1.000E-09 1.000E-09 1.000E-09 1.000E-09

K-PCX 1.000E-09 1.000E-09 4.150E-01 7.940E207 4.850E101 4.780E-01 2.310E201

L-CMA-ES 1.000E-09 1.000E-09 1.000E-09 1.760E106 1.000E-09 1.000E-09 1.000E-09

L-SaDE 1.000E-09 1.000E-09 1.672E-02 1.418E205 1.200E202 1.199E-08 2.000E-02

SPC-PNX 1.000E-09 1.000E-09 1.081E105 1.000E-09 1.000E-09 1.891E101 8.261E202

Algorithm f8 f9 f10 f11 f12 f13 f14

DSO 2.005E?01 4.698E-01 1.365E?01 3.830E?00 5.665E?01 4.984E-01 3.042E?00

BLX-GL50 2.035E101 1.154E100 4.975E?00 2.334E?00 4.069E102 7.498E201 2.172E?00

BLX-MA 2.019E101 4.379E-01 5.643E?00 4.557E100 7.430E101 7.736E201 2.030E?00

CoEVO 2.027E101 1.919E101 2.677E101 9.029E100 6.046E102 1.137E100 3.706E100

DE 2.040E101 9.550E201 1.250E?01 8.470E-01 3.170E?01 9.770E201 3.450E100

DMS-L-PSO 2.000E?01 1.000E-09 3.622E?00 4.623E100 2.400E?00 3.689E-01 2.360E?00

EDA 2.034E101 5.418E100 5.289E?00 3.944E100 4.423E102 1.841E100 2.630E?00

G-CMA-ES 2.000E?01 2.390E-01 7.960E-02 9.340E-01 2.930E?01 6.960E201 3.010E?00

K-PCX 2.000E?01 1.190E-01 2.390E-01 6.650E100 1.490E102 6.530E201 2.350E?00

L-CMA-ES 2.000E?01 4.490E101 4.080E101 3.650E?00 2.090E102 4.940E-01 4.010E100

L-SaDE 2.000E?01 1.000E-09 4.969E?00 4.891E100 4.501E-07 2.200E-01 2.915E?00

SPC-PNX 2.099E101 4.020E100 7.304E?00 1.910E?00 2.595E102 8.379E201 3.046E100

Algorithm f15 f16 f17 f18 f19 f20 f21

DSO 2.491E?02 1.222E?02 1.171E?02 5.983E?02 5.638E?02 6.324E?02 5.237E?02

BLX-GL50 4.000E102 9.349E?01 1.090E?02 4.200E?02 4.490E?02 4.460E?02 6.893E102

BLX-MA 2.696E102 1.016E?02 1.270E102 8.033E102 7.628E102 8.000E102 7.218E102

CoEVO 2.938E102 1.772E102 2.118E102 9.014E102 8.445E102 8.629E102 6.349E?02

DE 2.590E102 1.130E?02 1.150E?02 4.000E?02 4.200E?02 4.600E?02 4.920E?02

DMS-L-PSO 4.854E?00 9.476E?01 1.101E?02 7.607E102 7.143E102 8.220E102 5.360E?02

EDA 3.650E102 1.439E102 1.568E102 4.832E?02 5.644E?02 6.519E?02 4.840E?02

G-CMA-ES 2.280E?02 9.130E?01 1.230E102 3.320E?02 3.260E?02 3.000E?02 5.000E?02

K-PCX 5.100E102 9.590E?01 9.730E?01 7.520E102 7.510E102 8.130E102 1.050E103

L-CMA-ES 2.110E?02 1.050E?02 5.490E102 4.970E?02 5.160E102 4.420E102 4.040E102

L-SaDE 3.200E?01 1.012E?02 1.141E?02 7.194E102 7.049E?02 7.130E?02 4.640E?02

SPC-PNX 2.538E102 1.096E?02 1.190E102 4.396E?02 3.800E?02 4.400E?02 6.801E102

Algorithm f22 f23 f24 f25

DSO 7.316E?02 6.664E?02 2.083E?02 3.784E?02

BLX-GL50 7.586E102 6.389E?02 2.000E?02 4.036E102

BLX-MA 6.709E?02 9.267E102 2.240E102 3.957E102

CoEVO 7.789E102 8.346E102 3.138E102 2.573E?02

DE 7.180E?02 5.720E?02 2.000E?02 9.230E?02

Neural Comput & Applic (2018) 30:3117–3144 3137

123

components without disrupting the original concept. For

instance, DSO may or may not apply recombination, and

any kind of data recombination is permitted. On the other

hand, a Genetic Algorithm without crossover may not be

considered an actual Genetic Algorithm by some. More

importantly, DSO is self-adaptive from its first version,

because this is the role played by the command center.

In the first experiment, DSO was evaluated on 13 well-

known continuous benchmark problems in dimensions

D ¼ 5, 10, 50, and 100 using four methodologies to ana-

lyze the results: 1) median of the final values with com-

parison via hypothesis test, 2) rank, 3) success rate given a

value-to-reach, and 4) visual analysis of the distributions

via violin/dot plots. In summary, while DSO’s performance

stays high for most problems when the problem’s dimen-

sion D is increased, other methods used in this comparison

showed a substantial reduction in the amount of good

solutions found. Finally, DSO was the best approach for the

majority of tests.

In the second experiment, DSO was evaluated on 25

well-known continuous benchmark problems (CEC 2005)

in dimensions D ¼ 10 and the results were compared to

those obtained by the papers selected to appear in the

special session. In the direct rank comparison, DSO was

better than five out of 11 techniques. After the hypothesis

test, no significant difference was found, meaning the DSO

showed competitive performance. However, it is important

to remember that DSO is a technique that itself evolves

during the optimization, meaning that it will generate poor

perturbation schemes and waste a substantial amount of

objective function evaluations.

The DSO method introduced here uses random distribu-

tions to generate scalings, to select methods for recombina-

tion and bound correction, to select lower-quality solutions

when stagnation occurs, to update the firmware, among other

aspects. We intend to employ learning procedures to reduce

such randomness avoid non-promising regions of the search

space. Other future work includes the investigation of other

procedures to generate solutions and the inclusion of the

recombination procedures into the firmware.

In this paper, DSO was evaluated in single-objective

unconstrained optimization problems. We intend to inves-

tigate improvements to develop a multi-objective version

of the method, probably starting with the Pareto front

strategy, but looking for innovative procedures. Regarding

constrained optimization, we will evaluate DSO’s perfor-

mance with the adaptive penalty function proposed in a

previous work for the CMA-ES algorithm [16].

Acknowledgements This paper was supported by the Brazilian

Government CNPq (Universal) Grant (486950/2013-1) and CAPES

(Science without Borders) Grant (12180-13-0) to V.V.M., and

Canada’s NSERC Discovery Grant RGPIN 283304-2012 to W.B.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Table 10 continued

Algorithm f22 f23 f24 f25

DMS-L-PSO 6.924E?02 7.303E102 2.240E102 3.657E?02

EDA 7.709E102 6.405E?02 2.000E?02 3.730E?02

G-CMA-ES 7.290E?02 5.590E?02 2.000E?02 3.740E?02

K-PCX 6.590E?02 1.060E103 4.060E102 4.060E102

L-CMA-ES 7.400E102 7.910E102 8.650E102 4.420E102

L-SaDE 7.349E102 6.641E?02 2.000E?02 3.759E?02

SPC-PNX 7.493E102 5.759E?02 2.000E?02 4.060E102

Results worse than DSO’s (in absolute values) are in italic and bold-face

Table 11 Comparison of the averages: the values for Wins/Ties/Losses are for DSO versus the method

BLX-GL50 BLX-MA CoEVO DE DMS-L-PSO EDA

W/T/L 9/3/13 18/2/5 19/3/3 7/3/15 8/2/15 12/3/10

p value 0.999 0.986 0.297 1.000 0.986 1.000

G-CMA-ES K-PCX L-CMA-ES L-SaDE SPC-PNX

W/T/L 2/3/20 15/2/8 10/2/13 7/2/16 13/3/9

p value 0.083 1.000 1.000 0.969 1.000

The p value was calculated by Nemenyi’s post hoc test

3138 Neural Comput & Applic (2018) 30:3117–3144

123

Appendix 1: More detailed explanation on DSO

Departure points

1. CBC: the matrix of current best solutions found so far;

2. PermutedCBC: the current best solutions found so far,

but permuted every iteration. Because of the permu-

tation, CBC can be combined with other solutions even

using the same firmware;

3. CBCpBest: the pBest solutions found, where p is a user-

defined percentage parameter. The selected solutions are

sampledwith repetition to create amatrixwithN solutions;

4. Multivariate normal sampling (MVNS): new random

solutions sampled using the average and covariance

matrix of the pBest solutions found;

5. Opposition(CBC): the opposed coordinates of the

Current Best ones, calculated as proposed in [50].

Offset

The movements from the departure points are generated

applying scaling and functions to other coordinates and

information. These items are presented below.

1. Constants: matInterval
�������! ¼ ðUB�!� LB

�!Þ and user-de-

fined values C1, C2, and C3, where matInterval
�������!

is an

array of size D;

2. Random weights: U(0, 1), U(0.5, 1), G(0, 1),

abs(G(0.5, 0.1)), and abs(G(0, 0.01)), where U is the

uniform distributions, and G the Gaussian distribution;

3. Calculated weights: std� devðCBCÞ,
std� devðCBCpBestÞ, and
StepðCBCÞ¼ r � Gð0; 1ÞN;D � matInterval�������!� Uð0; 0:5Þ,
as used in [16], where N is the number of drones in a

team;

4. Two-parameter functions: plus, times, sub, protected

division, average, where protected division returns

Numerator=ðð1e� 15Þ þ DenominatorÞ.
5. TmC: the best positions found by the teams after

calculating the target coordinates;

6. Shift: the difference between TmC and CBC, that is,

how much the drones have to move;

7. GBC
��!

: the best solution found so far;

8. OppositionðCBCpBestÞ: the opposed position of the

pBest current best coordinates.

Reference perturbation

The command center is instructed to set the initial

firmware with at least one reference perturbation. This

directive is to avoid starting with teams using completely

random perturbation. The two reference perturbations

available for this DSO are:

1. CBCr1
���!þ c1 � ðCBCr2

���!� CBCr3
���!Þ, and

2. MVNSþ StepðCBCÞ;
where r1, r2, and r3 are random and distinct solutions.

Therefore, the two reference perturbations are 1) rand / 1

from the Differential Evolution (but not linked to a par-

ticular crossover), and 2) inspired by the CMA-ES tech-

nique, but employing only sample generation and step

calculation with r ¼ 0:04� leff � jjljj. This formula is

from the CMA-ES author’s source code and was not tuned

to be used in DSO.

Recombination

After the perturbation step generates new coordinates, a

recombination with the current coordinates, representing

the best coordinates found so far, may be done. Three

possibilities are available:

1. No recombination;

2. Uniform crossover [GA] / Binomial recombination [DE];

3. One or two-point crossover [GA] / Exponential

recombination [DE].

In the current DSO, recombination is performed after

perturbation, but changing the order is also an option. That

will change the behavior of the method without invalidat-

ing the original inspiration.

Coordinates correction (bounds)

The drones may be allowed to move only inside a partic-

ular perimeter. Therefore, if the new target coordinates

(x) are outside the perimeter then a correction must be

made. Three techniques are available:

1. The coordinate is re-positioned exactly over the bound;

2. The coordinate gets a new random value inside the

feasible bounds;

3. The coordinate gets the remainder of the excess, that is

LBj þ remainder or UBj � remainder, for j ¼ 1; . . .;D.

Appendix 2: More detailed results for CEC’05

See Figs. 10, 11 and Table 12.

Neural Comput & Applic (2018) 30:3117–3144 3139

123

Fig. 10 DSO curves for functions f1–f12 (CEC’05)

3140 Neural Comput & Applic (2018) 30:3117–3144

123

Fig. 11 DSO curves for functions f13–f25 (CEC’05)

Neural Comput & Applic (2018) 30:3117–3144 3141

123

References

1. Ahmadi S-A (2016) Human behavior-based optimization: a novel

metaheuristic approach to solve complex optimization problems.

Neural Comput Appl 27:1–12

2. Alba E, Tomassini M (2002) Parallelism and evolutionary algo-

rithms. IEEE Trans Evol Comput 6(5):443–462

3. Auger A, Hansen N (2005) A restart CMA evolution strategy

with increasing population size. In: Proceedings of the 2005 IEEE

congress on evolutionary computation (CEC2005). Canberra,

8-12. IEEE Press, New York, pp 1769–1776

4. Auger A, Hansen N (2005) Performance evaluation of an advanced

local search evolutionary algorithm. In: The 2005 IEEE congress

on evolutionary computation, vol 2. IEEE, pp 1777–1784

5. Auger A, Hansen N (2005) A restart CMA evolution strategy

with increasing population size. In: Proceedings of the 2005 IEEE

congress on evolutionary computation (CEC2005), vol 2. IEEE,

pp 1769–1776

6. Bäck T (1998) An overview of parameter control methods by self-

adaptation in evolutionary algorithms. Fundam Inf 35(1–4):51–66

7. Ballester PJ, Stephenson J, Carter JN, Gallagher K (2005) Real-

parameter optimization performance study on the CEC-2005

benchmark with SPC-PNX. In: Proceedings of the 2005 IEEE

congress on evolutionary computation (CEC2005), pp 498–505

8. Banzhaf W (2001) Artificial intelligence: Genetic programming.

In: Smelser NJ, Baltes PB (eds) International encyclopedia of the

social & behavioral sciences. Pergamon, Oxford, pp 789–792

9. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic

programming—an introduction: on the automatic evolution of

computer programs and its applications. Dpunkt–Verlag and

Morgan Kaufmann, New York

10. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:

from natural to artificial systems. Number 1. Oxford University

Press, Oxford

11. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward

JR (2010) A classification of hyper-heuristics approaches. In:

Handbook of metaheuristics, volume 57 of international series in

Table 12 DSO’s results obtained in CEC’2005 Special Session in dimension 10, over 36 independent trials

Algorithm f1 f2 f3 f4 f5 f6 f7

Min 0.000E?00 7.086E-21 1.903E-07 9.389E-17 0.000E?00 1.037E-19 7.396E-03

Median 0.000E?00 4.061E-16 4.994E-02 5.241E-14 0.000E?00 4.470E-12 5.662E-02

Max 4.077E-19 6.021E-14 2.415E?03 1.512E-10 2.148E-01 3.987E?00 1.573E-01

Mean 1.132E-20 4.027E-15 7.697E?01 5.723E-12 5.968E-03 3.322E-01 6.526E-02

Std-dev 6.795E-20 1.191E-14 4.027E?02 2.574E-11 3.580E-02 1.117E?00 3.435E-02

SR 1 1 0.028 1 0.944 0.917 0.028

Algorithm f8 f9 f10 f11 f12 f13 f14

Min 2.000E?01 0.000E?00 2.985E?00 1.920E-03 1.673E-15 9.897E-02 1.620E?00

Median 2.000E?01 0.000E?00 1.343E?01 4.180E?00 1.148E-09 5.084E-01 3.125E?00

Max 2.048E?01 1.990E?00 2.786E?01 8.340E?00 1.557E?03 7.971E-01 3.780E?00

Mean 2.005E?01 4.698E-01 1.365E?01 3.830E?00 5.665E?01 4.984E-01 3.042E?00

Std-dev 1.060E-01 6.929E-01 6.164E?00 2.014E?00 2.599E?02 1.554E-01 5.519E-01

SR 0 0.639 0 0.028 0.639 0 0

Algorithm f15 f16 f17 f18 f19 f20 f21

Min 0.000E?00 9.231E?01 9.287E?01 3.000E?02 3.000E?02 3.000E?02 3.000E?02

Median 4.000E?02 1.158E?02 1.161E?02 8.000E?02 3.818E?02 8.000E?02 5.000E?02

Max 4.282E?02 1.960E?02 1.468E?02 1.025E?03 1.033E?03 1.025E?03 1.152E?03

Mean 2.491E?02 1.222E?02 1.171E?02 5.983E?02 5.638E?02 6.324E?02 5.237E?02

Std-dev 1.798E?02 2.214E?01 1.236E?01 2.909E?02 2.764E?02 2.569E?02 1.378E?02

SR 0.056 0 0 0 0 0 0

Algorithm f22 f23 f24 f25

Min 3.000E?02 5.595E?02 2.000E?02 3.662E?02

Median 7.442E?02 5.595E?02 2.000E?02 3.790E?02

Max 8.352E?02 1.208E?03 5.000E?02 3.838E?02

Mean 7.316E?02 6.664E?02 2.083E?02 3.784E?02

Std-dev 1.113E?02 2.074E?02 5.000E?01 3.694E?00

SR 0 0 0 0

Success rate considers the following precision accuracy: 1:0E � 06 for f1–f6, 1:0E � 02 for f6–f16, and 1:0E � 01 for f17–f25. Results in this

table were not cut in the 1E � 09 threshold as in Table 10

3142 Neural Comput & Applic (2018) 30:3117–3144

123

operations research and management science, 2nd edn, chap 15.

Springer, Berlin, pp 449–468

12. Chakraborty UK (2008) Advances in differential evolution.

Springer Publishing Company Incorporated, New York

13. Clerc M, Kennedy J (2002) The particle swarm-explosion, sta-

bility, and convergence in a multidimensional complex space.

IEEE Trans Evol Comput 6(1):58–73

14. Das S, Nagaratnam Suganthan P (2011) Differential evolution: a

survey of the state-of-the-art. IEEE Trans Evol Comput

15(1):4–31

15. de Melo VV, Luiza CCG (2013) Automatic generation of evo-

lutionary operators: a study with mutation strategies for the dif-

ferential evolution. In: Proceedings of the 28th annual ACM

symposium on applied computing, SAC ’13, Coimbra, Portugal,

March 18–22, 2013, pp 188–193

16. De Melo VV, Iacca G (2014) A modified covariance matrix

adaptation evolution strategy with adaptive penalty function and

restart for constrained optimization. Expert Syst Appl

41(16):7077–7094

17. Dorigo M (1992) Optimization, learning and natural algorithms.

Ph. D. Thesis, Politecnico di Milano, Italy

18. Eberhart RC, Kennedy J (1995) A new optimizer using particle

swarm theory. In: Proceedings of the sixth international sympo-

sium on micro machine and human science, vol 1. New York,

pp 39–43

19. Fister I Jr, Yang X-S, Fister I, Brest J, Fister D (2013) A brief

review of nature-inspired algorithms for optimization. arXiv

preprint arXiv:1307.4186

20. Gandomi A, Yang X-S, Alavi A (2013) Cuckoo search algorithm:

a metaheuristic approach to solve structural optimization prob-

lems. Eng Comput 29(1):17–35. doi:10.1007/s00366-011-0241-y

21. Garcı́a S, Molina D, Lozano M, Herrera F (2009) A study on the

use of non-parametric tests for analyzing the evolutionary algo-

rithms’ behaviour: a case study on the cec’2005 special session

on real parameter optimization. J Heuristics 15(6):617–644

22. Garcı́a-Martı́nez C, Lozano M (2005) Hybrid real-coded genetic

algorithms with female and male differentiation. In: The 2005

IEEE congress on evolutionary computation, vol 1. IEEE,

pp 896–903

23. Glover Fred W, Kochenberger Gary A (2006) Handbook of

metaheuristics, vol 57. Springer Science & Business Media, New

York

24. Goldberg DE (1989) Genetic algorithms in search, optimization,

and machine learning. Addison-Wesley, Reading

25. Haklı H, Uğuz H (2014) A novel particle swarm optimization

algorithm with levy flight. Appl Soft Comput 23:333–345

26. Hansen N (2009) Benchmarking a bi-population CMA-ES on the

BBOB-2009 function testbed. In: Proceedings of the 11th annual

conference companion on genetic and evolutionary computation:

late breaking papers. ACM, New York, pp 2389–2396

27. Hansen N, Ostermeier A (2001) Completely derandomized self-

adaptation in evolution strategies. Evol Comput 9(2):159–195

28. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the

time complexity of the derandomized evolution strategy with

covariance matrix adaptation (cma-es). Evol Comput 11(1):1–18

29. Hong L, Woodward J, Li J, Özcan E (2013) Automated design of

probability distributions as mutation operators for evolutionary

programming using genetic programming. In: Krzysztof K,

Alberto M, Ting H, Sima E-UA, Bin H (eds) genetic program-

ming, vol 7831 of Lecture Notes in Computer Science. Springer,

Berlin, pp 85–96

30. Dervis K, Bahriye B (2007) A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm. J Global Optim 39(3):459–471

31. Kelly JP (1996) Meta-heuristics: theory and applications. Kluwer,

Norwell

32. Krishnanand KN, Ghose D (2009) Glowworm swarm optimiza-

tion for simultaneous capture of multiple local optima of multi-

modal functions. Swarm Intell 3(2):87–124

33. Larrañaga P, Lozano JA (2001) Estimation of distribution algo-

rithms: a new tool for evolutionary computation. Kluwer,

Norwell

34. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle

swarm optimizer with local search. In: The 2005 IEEE congress

on evolutionary computation, vol 1, pp 522–528. IEEE

35. Lin Shyh-Chang, Punch WF, III, Goodman Erik D (1994)

Coarse-grain parallel genetic algorithms: categorization and new

approach. In: Sixth IEEE symposium on parallel and distributed

processing, 1994. Proceedings, pp 28–37. IEEE

36. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms

for constrained parameter optimization problems. Evol Comput

4:1–32

37. Miranda PB, Prudêncio RB (2015) Gefpso: a framework for PSO

optimization based on grammatical evolution. In: Proceedings of

the 17th annual conference on genetic and evolutionary compu-

tation. ACM, New York, pp 1087–1094

38. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic

optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput Appl 27(4):1053–1073

39. Molina D, Herrera F, Lozano M (2005) Adaptive local search

parameters for real-coded memetic algorithms. In: The 2005

IEEE congress on evolutionary computation, vol 1. IEEE,

pp 888–895

40. O’Neill M, Brabazon A (2006) Grammatical differential evolu-

tion. In: IC-AI, pp 231–236

41. Osaba E, Diaz F, Onieva E, Carballedo R, Perallos A (2014)

Amcpa: a population metaheuristic with adaptive crossover

probability and multi-crossover mechanism for solving combi-

natorial optimization problems. Int J Artif Intell 12(2):1–23

42. Pavlidis NG, Tasoulis DK, Plagianakos VP, Vrahatis MN (2006)

Human designed vs. genetically programmed differential evolu-

tion operators. In: Proceedings of the 2006 IEEE congress on

evolutionary computation (CEC2006), pp 1880–1886

43. Peng F, Tang K, Chen G, Yao X (2010) Population-based algo-

rithm portfolios for numerical optimization. IEEE Trans Evol

Comput 14(5):782–800

44. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M

(2006) The bees algorithm—a novel tool for complex optimisa-

tion problems. In: Proceedings of the 2nd virtual international

conference on intelligent production machines and systems

(IPROMS 2006), pp 454–459

45. Poli R, Langdon WB, Holland O (2005) Extending particle

swarm optimisation via genetic programming. In: Proceedings of

the 8th European conference on genetic programming,

EuroGP’05. Springer, Berlin, pp 291–300

46. Pošik P (2005) Real-parameter optimization using the mutation

step co-evolution. In: The 2005 IEEE congress on evolutionary

computation, vol 1. IEEE, pp 872–879

47. Price KV, Storn RM, Lampinen JA (2005) Differential evolution

a practical approach to global optimization. Natural computing

series. Springer, Berlin

48. Qin AK, Suganthan PN (2005) Self-adaptive differential evolu-

tion algorithm for numerical optimization. In: Proceedings of the

2005 IEEE congress on evolutionary computation (CEC2005),

vol 2. IEEE, pp 1785–1791

49. Rachlin J, Goodwin R, Murthy S, Akkiraju R, Wu F, Kumaran S,

Das R (1999) A-teams: an agent architecture for optimization and

decision-support. In: Intelligent agents V: agents theories,

architectures, and languages. Springer, Berlin, pp 261–276

50. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-

based differential evolution. IEEE Trans Evol Comput

12(1):64–79

Neural Comput & Applic (2018) 30:3117–3144 3143

123

http://arxiv.org/abs/1307.4186
http://dx.doi.org/10.1007/s00366-011-0241-y

51. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a

gravitational search algorithm. Inf Sci 179(13):2232–2248

52. Rashid M, Baig AR (2008) Adaptable evolutionary particle

swarm optimization. In: 3rd international conference on innova-

tive computing information and control, 2008. ICICIC ’08,

pp 602–602

53. Rônkkônen J, Kukkonen S, Price KV (2005) Real-parameter

optimization using the mutation step coevolution. In: Proceedings

of the 2005 IEEE congress on evolutionary computation (CEC

2005), pp 506–513

54. Si T, De A, Bhattacharjee AK (2014) Grammatical swarm based-

adaptable velocity update equations in particle swarm optimizer.

In: Proceedings of the international conference on frontiers of

intelligent computing: theory and applications (FICTA) 2013.

Springer, Berlin, pp 197–206

55. Sinha A, Tiwari S, Deb K (2005) A population-based, steady-

state procedure for real-parameter optimization. In: The 2005

IEEE congress on evolutionary computation, vol 1. IEEE,

pp 514–521

56. Storn R, Price K (1997) Differential evolution—a simple and

efficient heuristic for global optimization over continuous spaces.

J Global Opt 11(4):341–359

57. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A,

Tiwari S (2005) Problem definitions and evaluation criteria for

the CEC 2005 special session on real-parameter optimization.

KanGAL Report, 2005005

58. Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2004)

Parallel differential evolution. In: Congress on evolutionary

computation, 2004. CEC2004, vol 2. IEEE, pp 2023–2029

59. Thierens D (2005) An adaptive pursuit strategy for allocating

operator probabilities. In: Proceedings of the 7th annual confer-

ence on Genetic and evolutionary computation, pages

1539–1546. ACM, New York

60. Voß T, Hansen N, Igel C (2010) Improved step size adaptation

for the MO-CMA-ES. In: Proceedings of the 12th annual con-

ference on Genetic and evolutionary computation. ACM, New

York, pp 487–494

61. Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive mul-

timethod search for global optimization in real-parameter spaces.

IEEE Trans Evol Comput 13(2):243–259

62. Whitacre JM, Pham TQ, Sarker RA (2006) Credit assignment in

adaptive evolutionary algorithms. In: Proceedings of the 8th

annual conference on genetic and evolutionary computation.

ACM, New York, pp 1353–1360

63. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

64. Woodward JR, Swan J (2012) The automatic generation of

mutation operators for genetic algorithms. In: Proceedings of the

14th annual conference companion on genetic and evolutionary

computation. ACM, New York, pp 67–74

65. Yao X, Liu Y, Lin G (1999) Evolutionary programming made

faster. IEEE Trans Evol Comput 3(2):82–102

66. Yuan B, Gallagher M (2005) Experimental results for the special

session on real-parameter optimization at CEC 2005: a simple,

continuous EDA. In: Proceedings of the 2005 IEEE congress on

evolutionary computation (CEC2005), vol 2005. IEEE,

pp 1792–1799

67. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle

swarm optimization. IEEE Trans Syst Man Cybern Part B

39(6):1362–1381 (Cybernetics)

68. Zhang J, Sanderson AC (2009) Jade: adaptive differential evo-

lution with optional external archive. IEEE Trans Evol Comput

13(5):945–958

3144 Neural Comput & Applic (2018) 30:3117–3144

123

	Drone Squadron Optimization: a novel self-adaptive algorithm for global numerical optimization
	Abstract
	Introduction
	Drone Squadron Optimization
	Command center
	The firmware
	Drone movement
	Firmware update
	Selection for next iteration, stagnation detection and treatment
	Example of an iteration

	Related work
	Popular population-based metaheuristics
	Automated improvement of metaheuristics
	Other metaheuristics

	Experimental results
	Benchmark functions
	Experiment 1
	Experiment 2

	Implementation and configuration of the algorithms
	Performance comparison
	Experiment 1: results and discussion
	Experiment 2: results and discussion

	Summary, conclusions, and future works
	Acknowledgements
	Appendix 1: More detailed explanation on DSO
	Recombination
	Coordinates correction (bounds)

	Appendix 2: More detailed results for CEC’05
	References

