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Abstract In recent years, hybrid genetic algorithms (GAs)

have received significant interest and are widely being used

to solve real-world problems. The hybridization of

heuristic methods aims at incorporating benefits of stand-

alone heuristics in order to achieve better results for the

optimization problem. In this paper, we propose a

hybridization of GAs and Multiagent Reinforcement

Learning (MARL) heuristic for solving Traveling Sales-

man Problem (TSP). The hybridization process is imple-

mented by producing the initial population of GA, using

MARL heuristic. In this way, GA with a novel crossover

operator, which we have called Smart Multi-point cross-

over, acts as tour improvement heuristic and MARL acts as

construction heuristic. Numerical results based on several

TSP datasets taken from the TSPLIB demonstrate that

proposed method found optimum solution of many TSP

datasets and near optimum of the others and enable to

compete with nine state-of-the-art algorithms, in terms of

solution quality and CPU time.

Keywords Hybrid genetic and multiagent reinforcement

learning algorithm (GA ? MARL) � Traveling salesman

problem � Smart Multi-point crossover (SMX) � MARL

heuristic

1 Introduction

The traveling salesman problem is the most well-known

combinatorial optimization problem. Traveling Salesman

Problem (TSP) is used to find a routing of a salesman who

starts from a home location, visits a prescribed set of cities

and returns to the original location in such a way that the

total distance travelled is minimized and each city is visited

exactly once. TSP is solved very easily when there is less

number of cities, but as the number of cities increases it is

very hard to solve, as large amount of computation time is

required. The numbers of fields where TSP can be used

very effectively are traffic and military.

There are two classes of algorithms for solving the TSP:

exact algorithms and heuristic algorithms. Exact algorithms

are algorithms that always solve an optimization problem

to optimality and guarantee to terminate with an optimal

solution. Heuristics are designed to solve problems in a

faster and more efficient fashion than traditional methods

by sacrificing optimality, accuracy, precision or com-

pleteness for speed. These algorithms are most often

employed when approximate solutions are sufficient and

exact methods are rather computationally expensive.

Approximate algorithms for the TSP may be subdivided

into three classes: tour construction, tour improvement and

hybrid algorithms [1].

Dynamic programming, branch and bound, linear pro-

gramming, cutting plane methods are exact methods with

different complexities to solve TSP problems but they all

not applicable for large-scale problems [2].
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Tour construction algorithms iteratively extend a con-

nected partial tour or iteratively combine tour fragments of

the best tour. Greedy-type or nearest neighbor construction

heuristics starts with a vertex randomly chosen, and each

vertex is connected to the vertex with minimal distance.

Although nearest neighbor heuristic does not find high-

quality solutions, it is integrated with perturbative search

methods by which one or more solution components are

modified in each step [3–5].

The tour improvement algorithms start with a given tour

and replace two or more links of the tour with other links to

obtain a shorter tour. 2-opt, 3-opt and k-opt local search
methods used as a mutation operator in tour improvement

algorithms. They remove some edges from the tour and

insert the new edge if the new tour is shorter [3].

Hybrid algorithms include both construction and

improvement modes. Population-based heuristics such ant

colony optimization (ACO) algorithms [6–11], neural

networks [12–16], evolutionary algorithms [17–19], simu-

lated annealing [20–24], tabu search [21, 23, 25, 26],

artificial bee colony algorithm [9, 27, 28] and particle

swarm optimization [20, 29] are also used to solve com-

binatorial problems by employing tour construction and

tour improvement operators.

The ACO algorithm for the traveling salesman problem

has been introduced by Dorigo and Gambardella based on

the fact that ants are able to find the shortest route between

their nest and a source of food. A major deficiency of their

algorithm is the premature stagnation of the search.

Afterward, they used a different state transition rule and

added a local pheromone updating rule to improve the

performance of primary ACO [6–8].

Dong et al. [10] presented a hybrid approach, called

cooperative genetic ant system (CGAS) which combines

GA and ACO for solving TSP. The information exchange

between ACO and GA is performed at the end of the each

iteration. This exchange is used to ensure the selection of

the best solutions for next iteration. Through this cooper-

ation, the algorithm has a better chance to reach a global

optimum. The experimental results show that CGAS out-

performs the other GA/ACO algorithms on the TSP

instances.

Gündüz et al. [9] presented a new hierarchic method

based on the ACO algorithm and the artificial bee colony

(ABC) algorithm. ACO is used for the path construction,

and ABC is used for the path improvements. Thus, their

hierarchic method was proposed to achieve a good solution

in a reasonable time. The experimental results show that

ACO-ABC algorithm has better performance than indi-

vidual approaches of ACO and ABC.

Yong [11] presented a hybrid max–min ant system

(HMMA) with a local search algorithm. First, the max–min

ant system is used to find an approximate solution.

Afterward, the local paths of adjacent four vertices in the

approximate solution are converted into the local optimal

paths with the four vertices and three lines inequality to get

the better approximate solution. HMMA is experimented

with small- and large-scale TSP instances.

GA is one of the computational models inspired by

evolution in the nature, which has been used to a large

number of real-world problems. Also, GA is used to get

approximate solutions for TSP. High adaptability and the

generalizing feature of GA help to execute the TSP by a

simple structure [17–19].

The combination of local search heuristics and genetic

algorithm is a capable approach for finding near-optimum

solutions to the TSP. Merz and Freisleben [30] offered an

approach in which local search techniques are used to find

local optima in a given TSP search space, and genetic

algorithms are used to search the space of local optima in

order to find the global optimum. They utilized new genetic

operators for realizing the proposed approach, and the

quality and efficiency of the solutions obtained for a set of

symmetric and asymmetric TSP instances are discussed.

White and Yen [31] give details the development of a

hybrid evolutionary algorithm for solving the TSP. The

stratagem of the algorithm is to broaden the successful

results of a genetic algorithm using a distance preserving

crossover (DPX) by including memory in the form of ant

pheromone during the city selection process. The syner-

gistic combination of the DPX-GA with city selection

based on probability found out by both distance and pre-

vious success adds additional information into the search

mechanism. This combination into a hybrid GA facilitates

finding quality solutions for TSP problems with lower

computation complexity.

Machado and Lopes [32] proposed hybrid approach

that joins PSO, genetic algorithms and fast local search

for the TSP. The positions of the particles represent TSP

tours as permutations of |N| cities. The value assigned to

each particle (fitness) is the rate between a constant Dmin

and the cost of the tour represented in the particle’s

position.

Yang et al. [33] used generalized chromosome genetic

algorithm (GCGA) to solve the classical TSP, which was

previously proposed for solving generalized TSPs (GTSP)

by these authors. Numerical experiments show the advan-

tages of the GCGA for solving a large-scale TSP.

Chen and Chien [20] presented a new method, called the

genetic simulated annealing ant colony system with parti-

cle swarm optimization techniques (GSAP), for solving the

traveling salesman problem. They use the ant colony sys-

tem to generate the initial solutions of the genetic algo-

rithms. Then, use the genetic simulated annealing

techniques to generate better solutions based on the initial

solutions. After a predefined number of cycles, the system
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uses the particle swarm optimization techniques to

exchange the pheromone information between groups.

Wang proposed a new hybrid genetic algorithm with

two local optimization strategies (HGA) to solve the

STSP [34]. Two local search methods are applied to

improve the genetic algorithm. The first local search is a

four vertices and three lines inequality applied to local

Hamiltonian paths to generate shorter tours. The second

local search is then executed to reverse the local Hamil-

tonian paths with more than two vertices, which also

generates shorter tours.

Deng et al. [35] offered an approach in which new initial

population strategy based on the k-means algorithm (KIP)

is used to improve the genetic algorithm for solving TSP.

The results show that KIP can decrease best error value of

random initial population strategy and greedy initial pop-

ulation strategy with the ratio of approximately between

29.15 and 37.87%, average error value between 25.16 and

34.39% in the same running time.

In addition, the other intelligent algorithms are com-

bined with GA to improve its performance. Lima et al. [36]

used a technique of reinforcement learning, the Q-learning

algorithm, for the constructive phase of the GRASP

metaheuristic and to generate the initial population of a

genetic algorithm. The proposed methods are applied to the

symmetrical traveling salesman problem.

Liu and Zeng [37] proposed a new genetic algorithm

with reinforcement learning (RMGA) to solve the TSP.

Their method uses reinforcement mutation to improve the

GA. The experimental results show that RMGA outper-

forms the known EAX-GA and LKH in the quality of

solutions and the running time.

Santos et al. [38] proposed a parallel hybrid GRASP/GA

using reinforcement learning to solve the symmetric TSP.

They improved the performance of a metaheuristic using

multiple search trajectories, which act competitively and/or

cooperatively and also reinforcement learning is applied

for guiding the metaheuristic to regions of promising

solutions using the acquisition of information on the

problem.

In this paper, we propose a hybrid algorithm including,

GA with a novel crossover operator, Smart Multi-point

crossover (SMX), as tour improvement heuristic and

Multiagent Reinforcement Learning (MARL) [39], as tour

construction heuristic to solve traveling salesman problem.

In this way, initial population of GA is generated using

MARL heuristic, and then, these tours are improved by GA

as tour improvement heuristic in order to achieve better

solutions based on the given initial solutions.

The paper is organized as follows. After this introduc-

tion, some necessary preliminaries about the TSP and GA

are listed in Sect. 2. Section 3 gives some details about the

MARL heuristic for TSP. Section 4 describes the proposed

hybrid algorithm. Section 5 presents the obtained experi-

mental results and its comparison to the other heuristic

methods. Finally, Sect. 6 states the conclusion of our

paper.

2 Preliminaries

2.1 Traveling salesman problem (TSP)

The TSP can be generally defined as the consideration of a

set N of nodes representing the cities, and a set E of edges

that fully connect the nodes N, where W i; jð Þ is the distance
between cities i and j (length of the edge i; jð Þ 2 E), with

i; j 2 N. The TSP is the problem of finding a minimal

length Hamiltonian tour on the undirected graph

G ¼ N;Eð Þ, where an Hamiltonian tour of graph G is a

closed tour that entails visiting once and only once all the

n ¼ Nj j nodes of G, and where its length is given by the

sum of the lengths of all the edges of which it is composed

[40]. The aim of solving TSP is to minimize the total

closed tour length f and is defined as Eq. (1).

f ¼
Xn�1

i¼1

W i; iþ 1ð Þ þW n; 1ð Þ ð1Þ

where n is the total number of cities.

2.2 Genetic algorithm

The genetic algorithm (GA) is a heuristic search algorithm

which has been used to solve search and optimization

problems. It is based on the principle of ‘‘the survival of the

fittest,’’ given by Charles Darwin. It is said to simulate the

natural evolution carried out in living beings [41].

GA begin with various problem solutions which are

encoded into population, a fitness function is applied for

evaluating the fitness of each individual, after that a new

generation is created through the process of selection,

crossover and mutation. After the termination of genetic

algorithm, an optimal solution is obtained. If the termina-

tion condition is not satisfied, then algorithm continues

with new population. The basic steps of genetic algorithm

used are given below:

Initialization An initial population is generated from

many individual solutions. A problem depends upon size of

the population that contains several hundreds or thousands

of possible solutions. The search space contains all the

possible solutions from which the population is generated

randomly. However, the solutions are seeded in the areas

from where the optimal solutions are likely to be found. In

this, if there are N numbers of cities, then N! possible

number of solution can be made.
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Encoding scheme In this, we represent each city with

number, for example if there are 10 cities then each city is

represented from number 1 to 10 such as 9 1 10 2 4 3 6 7 5

8, and no number will be repeated. For N number of cities,

the cities are represented by permutation of integers from 1

to N.

Selection This operator is used to select the fitter chro-

mosomes from the population for next breeding. The

selected chromosomes are called parent chromosomes. The

chromosomes selected with largest fitness value.

Crossover operator Crossover operators are the backbone

of the genetic algorithm. Reproduction makes clones of

good strings but does not create new ones. Crossover

operators are applied to mating pool with hope that it

creates a better offspring. There are varieties of crossover

and mutation operators which differ from each other in

aspects like having fixed or variable length, being ordered

or not and gene repetition. Among them, partially mapped

crossover (PMX), order crossover (OX) and cycle cross-

over (CX), edge recombination (ER) and multipoint

crossover (MX).

• PMX method PMX builds an offspring by choosing a

subsequence of a combination from one parent and

preserving the order and position of as many param-

eters as possible from the other parent [42]. A

subsequence of a combination is selected by choosing

two random cut points, which serve as boundaries for

swapping operations. The PMX crossover exploits

important similarities in the value and ordering simul-

taneously when used with an appropriate reproductive

plan. However, there is a disadvantage with this

crossover that happens when there is a tie in mapping.

• OX method OX builds offspring by choosing a subse-

quence of combination from one parent and preserving

the relative order of parameters from the other parent

[43].

• CX method CX builds offspring in such a way that each

parameter (and its position) comes from one of the

parents [44]. The CX preserves the absolute position of

the elements in the parent sequence.

• ER method ER transfers more than 95% of the edges

from the parents to the single offspring [45]. ER had the

fastest convergence and converged on better solutions

than other operators when optimizing a number of

combinatorial problems of size 30–75 parameters.

• MX method In MX method, N cutoff points between 1

and length of chromosome are randomly selected to

divide each parent chromosome into N ? 2 parts, then

odd parts of the first parent and even parts of the second

parent generate the first offspring and odd parts of the

second parent and even parts of the first parent generate

the second offspring [46].

Mutation operator The mutation operator enhances the

ability of the GA to find a near optimal solution to a given

problem by maintaining a sufficient level of genetic variety

in the population, which is needed to make sure that the

entire solution space is used in the search for the best

solution. In a sense, this operation avoids premature con-

vergence and escape algorithm from local optima. The

mutation operator generates a new offspring by randomly

swapping genes. The probability of the mutation is a

parameter of the genetic algorithm.

Evaluation The system evaluates the fitness value of each

chromosome based on a fitness function, after the crossover

operation and the mutation operation.

Termination The termination criteria can be character-

ized by the maximum number of iterations, the computa-

tion time or the number of iterations with no improvement.

If the termination criteria are reached, the chromosome

with the highest fitness value is the best solution. Other-

wise, system continues.

3 MARL heuristic for TSP

In this work, we used the MARL heuristic [39] for con-

structing the primary tour of TSP, and then, 2-opt and

nearest insertion into the convex hull local search (NICH-

LS) [47] improve the given primary tour.

The MARL approach for solving TSP starts by creating

a graph of TSP instance and placing m cooperative agents

at that graph. Each agent is a traveling salesman and its

tour is constructed by incrementally selecting cities (nodes

or states) until all cities have been visited and coming back

at first city of the tour. The MARL model consists of the

learning environment, the learning algorithm and a reward

function to evaluate the effectiveness of the agents learning

[48, 49].

For each agent a scenario like this occurs: Initially,

agent randomly placed at one of the graph’s nodes as a first

city of the tour. As a result, candidate list of first city plays

roll of the agent’s actions which now placed at that city.

Candidate list cities have not been visited yet. Agent

chooses one of its actions based on one of the selection

methods. Then, agent moves at the selected city. The

process of selecting an action and moving the agent at that

city is repeated until a tour is created, this means, every

node of the graph is visited and coming back at starting city

(or making a feasible tour is impossible).
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An iteration is finished, once the m agents have created

their own tours. Then, best of the tours created by m agents

in current iteration is selected, and the environment uses

the length of this tour to produce its response. This

response, depending on whether it is favorable or unfa-

vorable, causes the selected actions of all states along the

traversed path be rewarded if it is favorable according to Q-

learning algorithm. This updating encourages the use of

shorter routes and increases the probability that future

routes will use the links along the best solutions. This

process is repeated for a predetermined number of itera-

tions, and after each iteration, all the tours created by m

agents, which have shorter length than the best tour from

last iterations, are inserted into candidate solutions set as

initial population of the next stage. Of course, before

adding the tours to candidate solutions set, they are opti-

mized using 2-opt and NICH-LS.

NICH-LS improves the given tour by locally manipu-

lating the order of nodes in the partial tours of the given

tour via creating convex hull of the nodes in the partial tour

and adding remaining nodes using nearest insertion

method, and if the length of manipulated partial tour is

smaller than the primary partial tour, then partial tour is

replaced with manipulated partial tour, which reduces the

length of the primary tour. The outline of the MARL

algorithm is shown in Fig. 1.

4 Proposed hybrid algorithm (GA 1 MARL)

The suggested algorithm combines the advantages of

MARL and GA; hence, MARL heuristic drives the

exploration of the search space, thus, focusing on the

global optimization task and produces an acceptable solu-

tion, and then, this solution is optimized using the GA

improvement heuristic by visiting the promising subregions

of the solution space. Thus, MARL is used as construction

heuristic, and some of the best solutions obtained by

MARL are given to the GA as initial population.

In this section, we propose an improvement heuristic

based on GA and try to improve the tours in the candidate

solutions set, taken from MARL ? NICH-LS by using GA

in order to increase quality of the solution.

4.1 Chromosome representation

The solutions of TSP problem (tours) can be represented by

chromosomes that consist of genes. Each chromosome

gene indicates a city. The values of these genes and their

position in the ‘‘gene string’’ tell the genetic algorithm

what solution the individual represents. TSP problem has

been solved in different chromosome representations such

as binary strings and matrices by the GA algorithm. The

binary- and matrix-based representations usually use the

Fig. 1 Modified MARL

algorithm

Neural Comput & Applic (2018) 30:2935–2951 2939

123



binary alphabets for the tour representation. The path

representation is the most natural representation of a tour.

In this representation, a path is a list of n cities, and if the

city x is the y-th element of the list, then city x will be the y-

th city to be visited. For example, path 7� 3� 5� 6�
4� 2� 1 is represented as it is, that is via

7� 3� 5� 6� 4� 2� 1. In this paper, we considered

path representation for encoding the chromosomes.

4.2 Population initialization

As mentioned earlier, in the proposed hybrid algorithm, the

initial population is taken from MARL heuristic [39]. On

the other words, some of the best solutions obtained by

MARL (tours in the candidate solutions set) are given to

the GA as initial population.

4.3 Evaluation of fitness function

Since GA is generally applied on maximization problems

and the TSP is a minimization problem, the inverse of tour

length is considered as the fitness function.

4.4 Selection

Through selection operation step, parents are selected for

crossover. Here, the roulette wheel selection method is

selected.

4.5 Crossover operator

The main purpose of this component is to create offspring

using a given pair of solutions chosen through the selection

operation procedure. This paper proposes a new crossover

operator. Details of the proposed crossover operator and

hybrid GA are explained in Sect. 4.8.

4.6 Mutation operator

Mutation operator is performed to the new chromosomes

after crossover. It is used to preserve the genetic diver-

sity of chromosomes at each generation of population. In

this paper, exchange mutation operator (EM) is used.

The EM randomly selects two cities in a tour and

exchanges them. The mutation probability PM is taken

as 0.1.

4.7 Termination criteria

In the proposed approach, the maximum number of itera-

tions (MNSMX) is used as the termination criterion. After

reaching the termination criteria, the chromosome with the

highest fitness value is the best solution.

4.8 Proposed smart multipoint crossover operator

The proposed SMX receives two individuals (parent

chromosomes) to be recombined and returns a new indi-

vidual (offspring chromosome) created based on recombi-

nation of the parent chromosomes. The outline of SMX is

as shown in Fig. 2.

The recombination of genes occurs as follows: Secific

sequences of genes are inserted into the offspring between

both chromosomes. To better understand, Fig. 3 presents

two individuals to be recombined: Parent1 and Parent2.

• At stage II, random number m = 2 is generated;

therefore, Parent1’s genes belonging to sequence 1–2

(two genes of Parent1 from pnp to pnp ? 1) are

inserted into offspring (genes 2,5).

• At stage III, parent is a Parent2, pno = 3, random

number m = 4 is generated, position of the last inserted

gene of offspring (gene 5) is 4 at Parent2; therefore,

pnp = 5 and Parent2’s four genes after position 4

which not exist in the offspring are inserted circularly

into offspring (genes 3,9,4,7).

• At stage IV, parent is a Parent1, pno = 7, random

number m = 1 is generated, position of the last inserted

gene of offspring (gene 7) is 7 at Parent1; therefore,

pnp = 8 and Parent1’s one gene after position 7 which

not exist in the offspring is inserted circularly into

offspring (gene 1).

• At stage V, parent is a Parent2, pno = 8, random

number m = 3 is generated, position of the last inserted

gene of offspring (gene 1) is 2 at Parent2; therefore,

pnp = 3 and Parent2’s maximum three genes after

position 2 which not exist in the offspring is inserted

circularly into offspring (genes 6,8).

If the length of generated offspring is smaller than the

best individual length (individual with smallest length in

the population), then first this favor offspring is optimized

using 2-opt and NICH-LS, next this offspring is added to

the population pool, otherwise discard it. This process

continues for predefined numbers of iterations (MNSMX).

When stopping criteria are satisfied, GA improvement

heuristic stops and shows the best individual which is the

best tour that has been created by the heuristic. The outline

of our GA improvement heuristic for TSP is shown in

Fig. 4. In Fig. 5, the working diagram of proposed hybrid

algorithm is depicted.

5 Experimental results

In this section, we report on experimental results obtained

with proposed hybrid algorithm, on 34 standard benchmark

instances (datasets) from the TSPLIB [50]. Since proposed
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algorithm have a stochastic component, thus may produce

different solutions over multiple runs on the same dataset.

Therefore, each experiment was performed 20 independent

runs, and the best, worst and average were recorded for

each run and the presented results are the average of 20

runs, for each dataset.

The proposed algorithm has been implemented using

Microsoft Visual studio.net 2013 under 64-bit Windows

Fig. 2 Outline of SMX

I)

parent1  2 5 4 8 6 3 7 1 9

parent2    8 1 2 5 3 9 4 7 6

offspring

II) parent = parent1 
pnp=1, pno=1, m=2

parent1 2 5 4 8 6 3 7 1 9

offspring 2 5
III) parent = parent2
pnp=5, pno=3 , m= 4

parent2    8 1 2 5 3 9 4 7 6

offspring 2 5 3 9 4 7
IV) parent = parent1
pnp=8, pno=7, m= 1

parent1 2 5 4 8 6 3 7 1 9

offspring 2 5 3 9 4 7 1
V) parent = parent2
pnp=3, pno=8, m= 3

parent2    8 1 2 5 3 9 4 7 6

offspring 2 5 3 9 4 7 1 6 8

Fig. 3 Recombination of two

individuals using SMX operator
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8.1 operating system. Experiments are conducted on a

laptop with Intel Core-i5-4200U, 1.6 GHz CPU and 4 GB

of RAM. In the proposed algorithm, the values of param-

eters are selected based on some preliminary trials. The

selected parameters are those values that gave the best

results concerning both the solution quality and the com-

putational time needed to reach this solution. Table 1

shows the parameter settings of the proposed method.

When developing autonomous learning agents, the per-

formance depends crucially on the selection of reasonable

learning parameters, for example, learning rates or explo-

ration parameters [51]. In other words, successful rein-

forcement learning highly depends on the careful setting of

learning parameters in reinforcement learning. Generally

speaking, it is crucial that all the learning parameters are

carefully tuned to elicit good performance in advance [52].

Figure 6 shows the results of running MARL algorithm

on dataset eil101 with different values of learning param-

eters. For each experiment, a run of 10000 iterations

(MNLI) is performed and algorithm was executed 20 times

independently.

Fig. 4 Outline of GA

improvement heuristic for TSP

Fig. 5 Working diagram of proposed hybrid algorithm

(GA ? MARL)
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Figure 6a shows the results obtained by MARL algo-

rithm on different learning rates (a [ [0,1]). A small value

of a means the learning process will proceed at a low

speed, while a too high value of a might affect the con-

vergence property of the algorithm. Obviously, an appro-

priate a is very important to the performance of the whole

algorithm. The results show that for a particular range of

learning rates the algorithm performs better than other

ranges and performance (average tour length) increases as

a is increased to 0.75. But, when a is increased to more

than 0.75, the performance reduced gradually. Therefore,

we experimented in learning rate 0.75 in proposed

algorithm.

In Fig. 6b, when reward (rd) is around 1, algorithm is

showing satisfactory results. But, when rd is less than 1 and

as much as approaches to zero, the performance of algo-

rithm is reduced significantly. Also, increasing the value of

rd to more than 1 causes somewhat negative performance

impacts. Therefore, we experimented in reward 1 in pro-

posed algorithm.

Beta (b) is a parameter which determines the relative

importance of heuristic value W�1 i; jð Þ (W i; jð Þ is distance
between cities i and j) versus the Q-values. If b = 0, only

Q-value affects on PðajscÞ (probability with which agent at

city sc selects action a), and with increasing the value of b,
we favor the choice of edges which are shorter. However,

increasing the b to more than a certain value, we neglect

the importance of Q-values gradually and this may cause

negative effects on the learning process. According to

Fig. 6c, when b is around 2, MARL algorithm shows sat-

isfactory results. Therefore, we set the parameter b to 2.

In 2-greedy action selection method, a greedy action is

selected most of the time (one of the learned optimal

actions is selected greedily with respect to the Q-values)

and—using a small probability—a random action is chosen

once in a while. This ensures that after many learning

Table 1 Parameter settings for

hybrid algorithm
Parameter Value Meaning

Beta (b) 2 Distance ratio

EG 0.85 [-greedy action selection probability

SM 1 - EG Softmax action selection probability

rd 1 Reward

Alpha (aÞ 0.75 Learning rate

MNLI 1000 Maximum number of learning iterations

m 5 Number of agents

MSL n Maximum substring length

MNSMX 100� log10 nð Þ2 Maximum number of SMX iterations

PM 0.1 Mutation probability
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Fig. 6 Results of running

MARL algorithm on dataset

eil101 with different values of

a the learning rates (a), b the

rewards (rd), c the Beta (b) and
d the [-greedy action selection

probability (EG)
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episodes, all the possible actions will be tried a high

number of times, leading to an optimal policy. In contrast,

Softmax action selection method differs from 2-greedy in

the way the random action is selected. A weight is assigned

to each of the actions depending on their estimated values.

A random action is selected based on the weight associated

with it, ensuring that worst actions are unlikely to be

chosen [53]. In proposed algorithm, each agent chooses one

of its actions based on 2-greedy with probability of EG%

and Softmax with probability of SM% (equal to 1- EG),

selection methods. As shown in Fig. 6d, when parameter

EG is around 0.8 to 0.9, algorithm is showing satisfactory

results. Therefore, we set the parameter EG to 0.85.

In order to see the effect of maximum number of

learning iterations (MNLI) and maximum number of SMX

iterations (MNSMX) to the convergence of the dataset

eil101, let us see Fig. 7, which contains convergence

graphs of the proposed algorithm on this dataset. In each

graph, average running times in seconds are presented

above the data label.

In Fig. 7a, we visualized the effect of different values

for parameter MNLI. As we can see, after 1000-th iteration

of proposed algorithm, the results have not generally

shown notable improvements in average tour length pro-

portional to the relatively high increase in running time of

the algorithm. In other words, none of the runs have pro-

vided considerable convergence after the 1000-th iteration

of learning according to intense growth of learning cycles.

For this reason, at the rest of paper we set the parameter

MNLI to 1000.

From Fig. 7b, we observe that the convergence rate of

the proposed algorithm clearly reduces after iteration about

40000. In other words, none of the runs have not provided

significant convergence after the 40000-th iteration of

SMX ( 100� log10 nð Þ2). For this reason, at the rest of

paper we set the parameter MNSMX to 100� log10 nð Þ2

and after 100� log10 nð Þ2-th cycle, working of the GA

improvement heuristic will be stopped.

Table 2 summarizes the experiment results of different

stages of our algorithm on 34 TSP datasets for TSPLIB,

where the first column shows the name of the dataset and

the optimal solution length taken from the TSPLIB into the

parenthesis, and the column ‘‘Method (stage)’’ shows the

results of different stages of proposed hybrid algorithm.

For example, average solution found by MARL ? NICH-

LS algorithm, ‘‘MARL ? NICH-LS’’ for dataset eil101, is

645.47, which takes 0.76 s and its PDavg is 2.62. And

average solution found by proposed hybrid algorithm,

‘‘GA-MARL ? NICH-LS’’ (after applying GA improve-

ment on candidate solutions taken from MARL ? NICH-

LS) on this dataset, is 642.6, which takes 1.08 s (total time

needed to MARL ? NICH-LS ? GA) and its PDavg is

2.16. The column ‘‘C.S.S./P. size’’ shows the average size

of candidate solutions set and population, which, respec-

tively, are produced by MARL ? NICH-LS and GA. The

column ‘‘best’’ shows the length of the best solution found

by algorithm, the column ‘‘average’’ gives the average

solution length of the each algorithm, the column ‘‘worst’’

shows the length of the worst, the column ‘‘CPU time(s)’’

shows the average running times in seconds for each

algorithm, the column ‘‘PDbest’’ gives the percentage

deviation of the best solution length over the optimal

solution length and the column ‘‘PDavg’’ denotes the per-

centage deviation of the average solution length over the

optimal solution length. Percentage deviation of the best

found solution to the best known solution PDbest and the

percentage deviation of the average solution to the best

known solution PDavg and are defined as Eq. (2).

PDbest ¼
Best solution� best known

Best known
� 100

PDavg ¼
Average solution� best known

Best known
� 100

ð2Þ

The average PDbest for MARL ? NICH-LS and GA-

MARL ? NICH-LS are 0.99 and 0.65%, respectively. The

average PDavg for MARL ? NICH-LS and GA-

MARL ? NICH-LS are 2.00 and 1.54%, respectively. The

average running times for MARL ? NICH-LS and GA-

MARL ? NICH-LS are 23.00 and 29.71, respectively.

According to PDbest of the GA-MARL ? NICH-LS, we

can say that 85.29% of the values of PDbest are less than
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Table 2 Computational results of proposed hybrid algorithm’s stages for 34 TSP datasets

Dataset (optimal) Method (stage) C.S.S./P. size Best Average Worst CPU time(s) PDbest PDavg

bayg29

(9073)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.3

9.37

9073

9073

9074.1

9073.4

9094

9077

0.16

0.22

0

0

0.01

0

bays29

(2020)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.2

8.43

2020

2020

2026.43

2024.33

2041

2033

0.16

0.22

0

0

0.32

0.21

att48

(33522)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.2

9.83

33522

33522

33,638.73

33,581.03

33,958

33,803

0.3

0.41

0

0

0.35

0.18

gr48

(5046)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.3

10.2

5046

5046

5102.13

5069.33

5189

5119

0.30

0.42

0

0

1.11

0.46

eil51

(426)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.5

9.47

426

426

428.67

427.4

437

432

0.31

0.44

0

0

0.63

0.33

berlin52

(7542)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.2

9.3

7542

7542

7557.4

7550.7

7749

7749

0.34

0.46

0

0

0.2

0.12

st70

(675)

MARL ? NICH-LS

GA-MARL ? NICH-LS

7.37

8.03

675

675

681.03

679.43

690

687

0.45

0.65

0

0

0.89

0.66

eil76

(538)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.02

9.04

540

538

548.23

545.3

555

550

0.51

0.73

0.37

0

1.9

1.36

pr76

(108159)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.77

10.2

108,159

108,159

110271.63

109,556.57

112,392

111,267

0.52

0.78

0

0

1.95

1.29

rat99

(1211)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.7

10.83

1211

1211

1233.57

1223.3

1256

1235

0.74

1.06

0

0

1.86

1.02

kroA100

(21282)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.63

10.23

21,282

21,282

21,407.47

21,354.4

21,569

21,498

0.81

1.14

0

0

0.59

0.34

kroB100

(22141)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9

9.87

22,141

22,141

22360.93

22283.4

22,879

22,468

0.77

1.1

0

0

0.99

0.64

eil101

(629)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.07

10.37

629

629

645.47

642.6

655

653

0.76

1.08

0

0

2.62

2.16

lin105

(14379)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.1

10.5

14,379

14,379

14,411.63

14,385.63

14,571

14,479

0.81

1.13

0

0

0.23

0.05

pr107

(44303)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.97

10.23

44,303

44,303

44,577.1

44,424.73

44,840

44,570

0.79

1.1

0

0

0.62

0.27

pr124

(59030)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.83

10.77

59,030

59,030

59,376.53

59,208.83

59,781

59,602

0.92

1.34

0

0

0.59

0.3

bier127

(118282)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.57

11.03

118,678

118,678

119,736.43

119,437.27

120,716

120,336

1.09

1.53

0.33

0.33

1.23

0.98

ch130

(6110)

MARL ? NICH-LS

GA-MARL ? NICH-LS

7.67

9.2

6150

6132

6230

6204.17

6344

6357

1.07

1.45

0.65

0.36

1.96

1.54

ch150

(6528)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.3

11.43

6543

6528

6593.97

6547.67

6708

6640

1.27

1.84

0.23

0

1.01

0.71

kroA150

(26524)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.93

10.9

26,737

26,579

27,050.4

26,891.83

27,366

27,385

1.21

1.79

0.8

0.21

1.98

1.39

kroB150

(26130)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.47

11.63

26,287

26,130

26,588.37

26,477.33

27,025

26,986

1.23

1.84

0.6

0

1.75

1.33

kroA200

(29368)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.77

11.47

29,506

29,435

29,810.67

29,621

30,368

29,895

2.03

2.74

0.47

0.23

1.51

0.86

tsp225

(3861)

MARL ? NICH-LS

GA-MARL ? NICH-LS

10.4

13.4

3895

3865

3951.9

3925.33

4037

3992

2.11

3.13

0.88

0.1

2.35

1.67

pr226

(80369)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.5

13.6

80,426

80,369

80,847.33

80,638.6

82,088

82,031

2.3

3.29

0.07

0

0.6

0.34

Neural Comput & Applic (2018) 30:2935–2951 2945

123



1%, which means that the best solution found, of the 20

trials, approximates less than 1% of the best known

solution.

Figure 8 visualizes the PDbest, PDavg and running times

of these two algorithms according to Table 2. The results

presented in Table 2 and Fig. 8 show that the accuracy of

GA-MARL ? NICH-LS is quite promising and it can

provide good results in reasonable time for both small size

and large size datasets, although the running times are a

little greater than MARL ? NICH-LS.

To compare the proposed algorithm (GA-MARL ?

NICH-LS) with counterpart algorithms [15, 16, 20, 22,

33–36, 38] in terms of CPU time, we scale the CPU time of

each algorithm by an appropriate scaling coefficient related

to their processing systems [22]. The processing system,

programming language and their scaling coefficients are

shown in Table 3.

We compare the experimental results of the our algo-

rithm with nine state-of-the-art algorithms such as the

genetic algorithm (GCGA) [33], the adaptive simulated

annealing algorithm with greedy search (ASA-GS) [22],

the self-organizing neural network (RABNET-TSP) [15],

the memetic neural network (Memetic-SOM) [16], the

genetic simulated annealing ant colony system with parti-

cle swarm optimization techniques (GSAP) [20], the Q-

learning algorithm for initialization of the GRASP meta-

heuristic and genetic algorithm (GA-GRASP-Q-lrn) [36],

the parallel hybrid implementation using genetic algorithm,

GRASP and reinforcement learning (HPM) [38], the hybrid

genetic algorithm with two local optimization strategies

(HGA) [34] and the improved genetic algorithm with initial

population strategy (KIP) [35], and results are shown in

Table 4. The meanings of the columns in Table 4 are same

as those in Table 2 (time is in second and scaled according

to Table 3), and the best results are given in bold. Also,

average PDbest, PDavg and Time of each algorithm are

given in italic (last column, Avg.). More intuitive com-

parisons are shown in Figs. 9, 10 and 11.

With respect to Table 4, Figs. 9 and 10, it can be seen

that, when compared with the GCGA, the RABNET-TSP,

the Memetic-SOM, the GA-GRASP-Q-lrn, the HPM and

the KIP, our hybrid algorithm not only found the known

optimal solution that others succeeded, but also found that

the others failed. Also, the average of the results obtained

Table 2 continued

Dataset (optimal) Method (stage) C.S.S./P. size Best Average Worst CPU time(s) PDbest PDavg

a280

(2579)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.67

11.33

2637

2595

2684.53

2655.47

2738

2715

2.4

3.51

2.25

0.62

4.09

2.96

pr299

(48191)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.1

12.93

48,990

48,637

49,610.83

49,200.57

50,427

49,781

3.23

4.73

1.66

0.93

2.95

2.09

lin318

(42029)

MARL ? NICH-LS

GA-MARL ? NICH-LS

7.87

11.03

42,760

42,255

43,244.07

42,996.63

43,778

43,526

3.53

4.93

1.74

0.54

2.89

2.3

pr439

(107217)

MARL ? NICH-LS

GA-MARL ? NICH-LS

8.47

11.57

109,116

107,833

110,559.37

109,577.87

113,336

111,348

5.63

8.33

1.77

0.57

3.12

2.2

pr1002

(259045)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.03

10.73

268,448

266,886

271,578.5

269,845.97

274,163

273,595

17.16

24.28

3.63

3.03

4.84

4.17

rl1323

(270199)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.57

12.33

279851

279462

284,088.83

282,366.27

290,231

288,415

31.31

42.71

3.57

3.43

5.14

4.5

fl1400

(20127)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.53

15.57

20,415

20,304

20,580.5

20,444.33

20,944

20,944

33.57

47.34

1.43

0.88

2.25

1.58

pr2392

(378032)

MARL ? NICH-LS

GA-MARL ? NICH-LS

10.1

10.87

397,388

397,314

400,995.13

400,171.73

404,628

403,306

83.4

108.21

5.12

5.1

6.07

5.86

fl3795

(28772)

MARL ? NICH-LS

GA-MARL ? NICH-LS

11.73

21.93

29,577

29,191

29,873.1

29,609.67

30,296

30,048

205.27

262.95

2.8

1.46

3.83

2.91

Pla7397

(23260728)

MARL ? NICH-LS

GA-MARL ? NICH-LS

9.63

10.3

24,937,384

24,264,784

25,103,181.53

24,548,808.27

25,516,196

25,062,252

375.41

473.36

5.16

4.32

5.75

5.54

MARL ? NICH-LS

GA-MARL ? NICH-LS

Average 23.00

29.71

0.99

0.65

2.00

1.54
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by our algorithm in terms of PDbest and PDavg is usually

better than these algorithms. When compared with the

ASA-GS, the GSAP and the HGA, for some instances the

best solution and average of the results obtained by these

algorithms are slightly better than our algorithm and for

some instances the results obtained by our algorithm are

slightly better. Comprehensively speaking, the perfor-

mance of our algorithm is much better than the GCGA,

the RABNET-TSP, the Memetic-SOM, the GA-GRASP-

Q-lrn, the HPM and the KIP and somewhat equal to the

ASA-GS, the GSAP and HGA in terms of PDbest and

PDavg.
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Fig. 8 Comparison graphically,

between the MARL ? NICH-

LS and GA-MARL ? NICH-

LS based on a PDbest, b PDavg

and c CPU time(s)

Table 3 Scaling coefficients for adjusting the CPU time of the counterpart algorithms with respect to the CPU time of the GA-MARL ? NICH-

LS

Counterpart algorithms Processing system Programming language Scaling coefficients

GCGA [17] 2.8 GHz C?? 0.99

ASA-GS [30] 2.8 GHz C?? 1

RABNET-TSP [31] 3.0 GHz MATLAB 1.06

Memetic-SOM [32] 2.0 GHz Java 0.71

GA-GRASP-Q-learning [36] Pentium IV, 2.80 GHz – 0.65

Hybrid parallel methods (HPM) [38] Core 2 Duo, 2.33 GHz – 0.9

Hybrid genetic algorithm (HGA) [34] 2.3 GHz C ?? 0.9

K-means initial population strategy (KIP) [35] Core i3-2120, 3.30 GHz MATLAB 1.3

Our algorithm (GA-MARL ? NICH-LS) Core-i5-4200U, 1.6 GHz .Net 2013 1.4
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Finally, we considered the average PDbest, PDavg and

running times of the proposed algorithm and counterpart

algorithms on same datasets, as shown in Fig. 11. With

respect to results, the average PDbest and running time of

our algorithm on same datasets are less than of the all nine

algorithms. Thus, our algorithm has higher performance

than these approaches in terms of PDbest, and convergence

rate of our algorithm is faster than of the all nine algo-

rithms. Also, the average PDavg of our algorithm on same

datasets is less than of the GCGA, the RABNET-TSP, the

Memetic-SOM, the GSAP, the GA-GRASP-Q-learning,

the HPM and the KIP algorithms and somewhat more than

of the ASA-GS and the HGA algorithms. Totally, we can

say our approach is superior to most of nine state-of-the-art

methods and the speed of computation of our algorithm is

considerably fast.

6 Conclusion

In this study, a hybrid algorithm to determine the optimal

solution for TSP is presented. The proposed method uti-

lizes MARL approach as tour construction heuristic, which

generates initial population of GA and GA with new

crossover operator, SMX is applied as tour improvement

heuristic.

Our algorithm is tested using 34 symmetric TSP datasets

ranging from 29 to 7397 cities. The achieved results indi-

cate that the proposed algorithm has good performance

with respect to the quality of solution and the speed of

computation and verify its validity. The GA-MARL ? -

NICH-LS performance is also compared with nine state-of-

the-art algorithms, including the GCGA, the ASA-GS, the

RABNET-TSP, the Memetic-SOM, the GSAP, the GA-
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GRASP-Q-lrn, the HPM, the HGA and the KIP. These

state-of-the-art algorithms are outperformed by GA-

MARL ? NICH-LS in terms of accuracy and/or CPU time.

It provided a better compromise between the CPU time and

solution quality.
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