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Abstract Open channel bends have fascinated engineers

and scientists for decades while providing water for

domestic, irrigation and industrial consumption. The pres-

ence of curvature in a channel impacts the flow pattern,

velocity and water surface profile. Simulating flow vari-

ables such as velocity and water surface depth is one of the

most important matters in the design and application of

open channel bends. This study investigates a new neural

network method using the radial basis function (RBF)

based on decision trees (DT-RBF) to predict velocity and

free-surface water profiles in a 90� open channel bend. In

this study, 506 flow depth and 520 depth-averaged velocity

field data obtained at 5 different discharges (5, 7.8, 13.6,

19.1 and 25.3 l/s) in a 90� sharp bend were used for

training and testing purposes. The obtained results showed

that the proposed DT-RBF models were more accurate than

RBF models in estimating flow depth and depth-averaged

velocity in the bend. The RBF root-mean-square error

(RMSE), mean absolute error (MAE) and relative error (d)
were reduced by 20, 24 and 23.5%, respectively, when

using the hybrid DT-RBF model to estimate the depth-

averaged velocity. For water surface prediction, the RMSE,

MAE and d decreased by 33, 27.5 and 37%, respectively,

when using the proposed DT-RBF hybrid model. For the

longitudinal profiles of water surface profile prediction at

the outer edge, MAE (0.018) improved to MAE (0.0084)

with DT-RBF. It was found that the hybrid decision tree-

based method significantly improved RBF neural network

performance in forecasting the velocity and free-surface

water profiles in a 90� open channel sharp bend.

Keywords Radial basis function (RBF) � Decision tree

(DT) � 90� bend � Velocity � Flow depth

1 Introduction

The presence of curvature in rivers and artificial channels

impacts flow patterns. Secondary flow of Prandtl’s first

kind causes changes in the velocity component and water

surface profile at different points in the bend. Investigating

flow patterns in sharp bends is much more complicated

than in mild bends [1]. Therefore, numerous experiments

have been done in recent years to study the flow properties

in curved channels. Shukry [2] and Rozovskii [3] were the

first to carry out a wide range of studies on bend flow

patterns. They evaluated the profile velocity distribution

and velocity displacement in sharp and mild bends. It was

found that in sharp bends, the maximum velocity remained

adjacent to the inner channel wall until the end bend sec-

tions. DeVriend and Geoldof [4] and Steffler et al. [5] used

experimental models in 90� and 270� mild bends, respec-

tively, to study the free-surface water pattern and pointed

out the linearity of free-surface water transverse profiles.

Ye and McCorquodale [6] performed several experimental

studies on curved channel flow patterns and transverse and

longitudinal changes of water surface. They pointed out the

increasing water surface in the sections before the bend.

Blanckaert and DeVriend [7] experimentally studied sec-

ondary circulating cells, the kinetic energy transfer and

velocity redistribution in a 120� sharp bend. Their results

indicated that secondary flow circulating cells in bends

cause side momentum transfer and velocity redistribution
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in the bend downstream. Uddin and Rahman [8] experi-

mentally studied rotational flows and their effect on the

velocity distribution and shear stress in curved channels.

Barbhuiya and Talukdar [9] carried out an experimental

study of 3D flow pattern and scour in a 90� bend. The

results indicated that the maximum measured velocity was

1.61 times the mean velocity. Naji et al. [10] evaluated the

velocity components, secondary flow and streamlines in a

90� mild bend experimentally and numerically. Secondary

flows are considered to be the main cause of velocity

component changes. Moreover, in mild bends, the maxi-

mum velocity transfers to the outer channel wall almost

after the middle of the bend. Akhtari et al. [11] and

Ramamurthy et al. [12] performed extensive experimental

research on the flow patterns in a 90� sharp bend. Their

results demonstrated the nonlinearity of free-surface water

transverse profiles in sharp bends. Gholami et al. [13]

evaluated the maximum velocity position in a 90� sharp

bend and stated that in sharp bends, the maximum velocity

in the end sections and after bend transferred to the outer

channel wall. Vaghefi et al. [14] did experimental studies

on the velocity distribution in a 180� sharp bend and stated

that the longitudinal velocity values at distances of 5 and

95% from the bed showed a 60% increase in flow velocity

from the area near the bed to the area near the water

surface.

In most studies, it is observed that transverse water

surface changes at the inner and outer walls and also the

velocity distribution in the bend (maximum and minimum

velocity at the inner and outer walls) are due to existing

secondary flows in bends. Some clarification can be used to

amend these measures. For example, to amend the maxi-

mum velocity at the inner wall, a convergence channel

(gradually decreasing channel width along the bend) can be

used [15] or a spur dike can be employed at the outer wall

[16]. Moreover, to reduce the separation zones inside the

bend, in addition to the above cases, internal and along wall

in the downstream bend channels can be used [17–19]. In

recent years, intelligent techniques such as artificial neural

networks (ANN), genetic programming (GP), support

vector machines (SVMs), fuzzy logic have been employed

to solve different nonlinear problems in sciences, particu-

larly in water engineering, hydraulics and hydrology

structures [20–30]. One of the most widely utilized artifi-

cial intelligence techniques is the ANN model. The ANN

model can be further improved by adopting alternative

architectures such as RBF, adaptive neuro-fuzzy inference

system (ANFIS), generalized regression neural network

(GRNN) or an optional training algorithm [31–34].

Regarding the application of artificial intelligence models

in bends, Bonakdari et al. [35] studied the performance of

multilayer perceptron neural network (MLPNN) and

genetic algorithm (GA) models in predicting the velocity

field in curved open channels. According to their results,

both models showed good ability in predicting the velocity

components in bends. But compared to MLPNN, the GA

model was more accurate. Baghalian et al. [36] investi-

gated the computational fluid dynamics (CFD), analytical

solution and MLP models performance in bends. The

results indicated that in most cases, the MLP and CFD

models outperformed the analytical solution. Sahu et al.

[37] applied ANN modeling to study and predict the

velocity values within a meandering open channel. It was

found that the model showed good accuracy in predicting

the velocity values. Gholami et al. [38] evaluated ANN and

CFD model performance in predicting the velocity and

water surface depth parameter in a 90� sharp bend.

According to the results, the ANN model was more accu-

rate than the CFD model. Gholami et al. [39] used gene

expression programming (GEP) modeling to predict the

velocity fields in 5 different hydraulic conditions in a 90�
bend. The results indicated that the proposed GEP model

had good accuracy in flow velocity prediction. An explicit

equation for the evaluation of channel bend flow velocity

was presented as well.

One of the major benefits of soft computing methods in

open channel bends is the transfer of discrete laboratory

measurements to a continuous velocity field. The differ-

ence from Gholami et al.’s study [38, 39] is that in this

study, the ability of two other soft computing methods

(RBF and DT-RBF models) in velocity and water surface

simulation prediction in a 90� sharp bend is evaluated.

Therefore, two models, RBF and DT-RBF, were used to

simulate the flow variables in comparison with experi-

mental values in the hydraulic laboratory of University of

Mashhad. Another purpose of this study is to enhance RBF

model accuracy by presenting a hybrid RBF model based

on decision trees (DT). 506 water surface and 520 depth-

averaged velocity field data obtained for 5 different

hydraulic conditions in the laboratory were employed by

the authors in this study to train and test the models. The

coordinates of each point in the bend and discharge are

considered input data to the 4 models to predict velocity

and flow depth in the bend. The performance of RBF and

DT-RBF in predicting the velocity and water surface pro-

files is analyzed for each discharge rate.

2 Experimental setup

Experiments were carried out at the hydraulic laboratory of

Ferdowsi University of Mashhad, Iran [11, 13]. The

channel section was 40.3 9 40.3 cm (width 9 height).

The upstream entrance was followed by a 3.6-m-long

straight channel. The setup comprised a sharp, open

channel bend (Rc/b = 1.5\ 3) with a 90� central angle and
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60.45 cm radius, followed by a 1.8-m-long straight exit

channel. At the channel entrance, a pump conveyed the

flow into the entrance reservoir (reservoir 1). After

adjusting the flow discharge and channel water depth,

velocity measurements were taken. A one-dimensional

propeller velocity flow meter measured the axial velocity in

the flume with 2 cm/s accuracy. A velocity meter was

placed by vernier ruler in the transverse direction with an

accuracy of 0.5 mm and by analog caliper in the depth

direction with 0.1 mm accuracy. The water surface level

was measured with a micrometer (mechanical bathometer)

(0.1 mm accuracy). This way, the analog caliper with a

needle pointer was placed in the necessary position; the

needle was tangent to the water surface where a sign can

occur on it. To remove the unbalance effect of the vernier

ruler, in the same position, the caliper was submerged in

water, the channel bed level was determined, and the flow

depth was calculated from the differences between the read

bed height and water surface height. Experimental tests

were carried out for 5 different flow discharge rates. The

hydraulic characteristics of flow used in the laboratory are

shown in Table 1. The hydraulic and geometric charac-

teristics of the studied channel are presented in Fig. 1, and

the laboratorial model scheme is presented in Fig. 2.

3 Numerical methods

3.1 Radial basis function neural network

The radial basis function (RBF) neural network is one of

the most applicable neural networks employed as a

regression method in various hydraulic engineering prob-

lems [40]. An RBF contains three layers (Fig. 3), i.e.,

input, hidden and output layers. The input variables of the

considered problem are introduced to the RBF neural net-

work as the input-layer neurons. The input neurons are then

transferred to the hidden layer. The hidden layer is the core

of the RBF neural network, which contains the hidden

neurons. The hidden neurons collect the input neurons

using their weighted summation and transfer them into a

non-dimensional future using the RBF. By definition, RBF

is a function that only depends on the distance from the

origin [40]. The RBF is represented by u(x, c), where x and
c are the input variable and function’s center, respectively.

Thereupon, the results of the function change with the

radial distance (r) as follows:

r ¼ x� ck k ð1Þ

The nonlinear projection of hidden neurons serves to

reduce the results’ dimensionality course. Therefore, N-

dimensional RBFs are created as follows [40]:

u x� xik kð Þji ¼ 1; 2; . . .;Nf g ð2Þ

The output layer of the RBF neural network accumulates

the hidden-layer neurons as a linear regression and pre-

pares the model output as follows:

f xð Þ ¼
XN

i¼1

ciu x� xik kð Þ ð3Þ

In this study, trial and error is applied to define the

number of hidden-layer neurons and amount of spread [41].

3.2 Decision tree-based radial basis function

The DT classification method is used in this study to

evaluate the hybrid DT-RBF method [42]. DT has a class

variable Y, which has a maximum class number k. The

purpose of DT is to predict the Y variable by using the input

variables of the considered problem. DT is made up of

decision nodes, which have branches to other decision trees

and leaf nodes in order to classify the considered problem.

At the beginning of the DT procedure, all input samples are

examined to find the most appropriate split position. The

first model split is called the root decision node. Subse-

quently, this procedure is done recursively for the branch

decision nodes until one of the termination criteria is

achieved.

In the hybrid DT-RBF method, DT optimizes the RBF

power allocation to the dataset. Thus, instead of using the

RBF model’s power for the entire dataset, it is shared

among the separate dataset segments. In the first step of the

DT-RBF method, DT should be trained with the training

dataset. DT training is vital to DT-RBF performance.

Nonetheless, high training precision is likely caused by

overtraining the model. Overtraining occurs when training

Table 1 Hydraulic properties in the experiments

Test no. Normal depth Y (cm) Discharge Q (l/s) Velocity (m/s) Froude number Reynolds number

1 4.5 5 0.273 0.42 12,460

2 6 7.8 0.321 0.42 18,460

3 9 13.6 0.374 0.4 28,940

4 12 19.1 0.394 0.36 36,860

5 15 25.3 0.419 0.34 44,705
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dataset classification accuracy is far better than that of

testing. On the other hand, low training precision is most

likely caused by lower regression performance of the DT-

RBF model. Therefore, the DT-RBF method determines

the classification precision via trial and error. The DT

algorithm splits the dataset into k classes. Following

dataset splitting, the first largest RBF neural network is

divided into k smaller models. In order to make a fair

comparison between the RBF and DT-RBF models, the

maximum allowable number of hidden neurons in an RBF

model is considered equal to the sum of the smaller RBF

neural networks employed in the DT-RBF model. As

mentioned in the previous section, the number of hidden

neurons in the largest RBF and smaller DT-RBF neural

Fig. 1 Experimental model geometry and various water surface depths

Fig. 2 Laboratorial model scheme Fig. 3 RBF neural network structure
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networks is determined via trial and error. The final step of

the DT-RBF method entails result collection. Here, the

smaller RBF results employed in the DT-RBF method are

combined in order to export the final model result. The

most suitable number of classes differs for each problem

and must be determined by trial and error. In the present

study, five different classes, i.e., ‘‘very low,’’ ‘‘low,’’

‘‘medium,’’ ‘‘high’’ and ‘‘very high,’’ are considered for

free-surface water prediction, and three classes, i.e., ‘‘low,’’

‘‘medium’’ and ‘‘high,’’ are considered for velocity pre-

diction. The DT-RBF procedure is presented in Box 1.

4 Data analysis

In this study, a new hybrid DT-RBF model is designed by

modifying an RBF model with decision tree (DT). The

performance of the proposed DT-RBF model in estimating

water surface and depth-averaged velocity in a 90� curved
channel is investigated and compared with a simple RBF

model. Velocity and water depth were measured at 5 dif-

ferent flow discharge rates: 5, 7.8, 13.6, 19.1 and 25.3 l/s in

the experiments and applied in the training and testing

networks. In order to measure velocity and water surface

depth, 13 sections in the channel width and 8 cross sections

were selected (Fig. 4). The value of each velocity is the

depth-averaged velocity measured at the point where it is

located (5 9 13 = 104 data for each discharge). In flow

depth prediction, 3 points at the inner wall of the cross

sections located at 22.5�, 45� and 67.5� were removed due

to experiment errors. 506 water surface and 520 depth-

averaged velocity field data obtained in 5 different

hydraulic conditions in a 90� sharp bend were used in this

study to train and test the models randomly. In both data-

sets, 70 and 30% were used for testing and training the

networks, respectively. In the velocity and water surface

prediction models, the point coordinates in two directions

(X, Y) and flow discharge (Q) were considered inputs, while

depth-averaged velocity and water depth corresponding to

these points were the outputs, separately.

4.1 Model performance evaluation

The results of the artificial intelligence methods (RBF and

DT-RBF) are explained in this section along with the

regression-based equations, the mean absolute error

(MAE), root-mean-square error (RMSE), determination

coefficient (R2) and average absolute deviation (d) statis-
tical parameters employed in this study. These indexes are

calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Oi � tið Þ2

N

s

ð4Þ

MAE ¼ 1

N

XN

i¼1

Oi � tij j ð5Þ

R2 ¼ 1�
PN

i¼1 Oi � tið Þ2
PN

i¼1 Oi � Oi

� �2 ð6Þ

d ¼
PN

i¼1 Oi � tið Þ2
PN

i¼1 Oi

� 100 ð7Þ

where ti is the output observational parameter, Oi is the

parameter predicted by the RBF and DT-RBF models, Oi is

the mean neural models’ parameter, and N is the number of

Box 1 DT-RBF algorithm Start
for MPS = Initial to max

Train the DT
for Class = 1 to maximum number of classes

Provide the dataset for the present class
for Hidden neurons = Initial to max

for Spread = Initial to max
Train the RBF
Spread = Spread + Δ Spread

end
Hidden neurons = Hidden neurons + Δ Hidden neurons

end
Class = Class + 1

end
MPS = MPS + ΔMPS
end

Save the optimum model that has the minimum error
Combine the results of the classes’ RBF
Finish
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parameters. The benefits of both absolute error indices,

RMSE and MAE, are that the results of these two errors

have the same scale and experimental model units. The

ideal value of RMSE and MAE is zero; an index value

closer to zero shows greater model accuracy. The RMSE

index can provide a good measure of model performance

for high flow. The MAE index shows the real difference in

value between observed and modeled data. The index is

more sensitive than predicted error values for fewer data

values and less sensitive to error values in large quantities.

For this reason, errors are not squared in this index. R2

provides a measure of how well the observed outcomes are

replicated by the model. R2 is the linear regression line

between the values predicted by the neural network models

(RBF and DT-RBF) and the observed values to determine

the network application. In order to investigate the per-

formance of the considered models in practical situations

with different ranges of input and output variables, non-

dimensional statistics are used. d is the non-dimensionality

that facilitates comparing different models regardless of

dimensions and size.

5 Results and discussion

5.1 Evaluation of the velocity prediction models

In this section, the depth-averaged velocities predicted by

the RBF and DT-RBF models are presented. As mentioned

above, three classes, namely ‘‘low,’’ ‘‘medium’’ and

‘‘high,’’ were considered in the velocity simulation. Box 2

shows the DT classification results for velocity prediction.

Figure 5 presents the scatter plots of the velocity values

predicted by the DT-RBF model for the experiments with

the training and testing datasets. It can be seen from the

figure that the RBF and DT-RBF models had the ability to

predict the flow velocity with both training and testing

datasets [for the test dataset, R2 = 0.6623 (RBF model)

and 0.7087 (DT-RBF model)]. Both models simulated the

continuous velocity well compared to discrete laboratory

measurements of velocity [for the test dataset,

RMSE = 4.5 (RBF model) and 4.17 (DT-RBF model)].

This modified DT model predicted the velocity in a 90�
bend more accurately than the simple RBF model, whereby

R2 increased in testing and training by 20.5 and 7%,

respectively. The fitted line is determined with the linear

Fig. 4 a 3D view of cross

sections, b 13 transverse

sections in the cross sections

Box 2 DT classification results for velocity prediction

Q < 6.4 : class = LOW

Q > 6.4

Q < 10.7

X < 2.55 : class = LOW

X >= 2.55 : class = MED

Q >= 10.7

Y < 2.55

X < 2.42 : class = HI

X >= 2.42

Y < 2.25

X < 2.5 : class = MED

X >= 2.5 : class = HI

Y >= 2.25 : class = MED

Y >= 2.55 : class = MED
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equation y = C1x ? C2. If the C1 and C2 values are close

to 0 and 1, respectively, the model exhibits superior

accuracy. The values of C1 with RBF increased from

(0.6488, 0.6383) to (0.78, 0.7316) with the DT-RBF model

for the training and testing datasets, respectively; thus, with

such increasing values, C1 is close to 1. For both datasets,

the value of C2 with the DT-RBF model decreased more

than the RBF model. In addition, if the fit line is on the left

side of the exact line, the model demonstrates overesti-

mation, and if it is on the right of the exact line, the model

signifies underestimation. Both models made diminutive

underestimations, but that of the RBF model was greater.

In the testing dataset, both models exhibited greater

underestimation than in training. The RBF and DT-RBF

model evaluation for the entire, training and testing data-

sets in velocity prediction is shown in Table 2. The model

is more accurate when R2 is closer to 1. Low RMSE, MAE

and d values, and a high R2 value, represent high model

estimation accuracy, which is in accordance with the

experimental data. The RMSE, MAE and d for all three

datasets with the DT-RBF model were lower, and R2 was

higher than that for the RBF model. Thus, for all datasets

with the RBF model, the DT-RBF model was more accu-

rate with RMSE, MAE, R2 and d of 20, 24, 51 and 23.5%,

respectively. The modified DT model was superior to the

simple model with the training dataset compared with the

testing dataset. The maximum R2 percentage difference for

training was 57%, signifying that the modified DT model

(R2 = 0.72) predicted velocity better than RBF

(R2 = 0.458). Hence, the structure modified with DT

(MAE = 2.86) to predict channel bend velocity reduced

the error value by 24% compared to the simple RBF model

(MAE = 3.54).

In Fig. 6, the velocity values predicted by the DT-RBF

and RBF models are compared with corresponding exper-

imental data for the testing dataset. Both soft computing

models performed quite adequately and showed good

agreement with the experimental values. The RBF and DT-

RBF models transferred the discrete laboratory measure-

ments to the continuous velocity field well. In most parts,

both models predicted the highest value for the maximum

peak data and lowest value for the minimum peak data. The

minimum points of the DT-RBF model were in better

accord with the experimental data than those of the RBF

model. The two models were almost identical, except for a

few points where they displayed good agreement between

the remaining points and experimental data. The DT model

predicted the peak points at 105–140, and the minimum

points overlapped better with the experimental data than

the RBF model. It should be mentioned that the RBF model

predicted depth-averaged velocities with greater error, and

the model’s accuracy increased when the structure was

Fig. 5 Scatter plots of the RBF

and DT-RBF models for

predicting velocity with the

training and testing datasets

Table 2 Performance evaluation of the RBF and DT-RBF models in predicting velocity with the training, testing and entire datasets

Index Training datasets Testing datasets Entire datasets

RBF DT-RBF Difference % RBF DT-RBF Difference % RBF DT-RBF Difference %

RMSE 4.53 3.56 27 4.5 4.17 8 4.52 3.76 20

MAE 3.56 2.73 30 3.51 3.16 11 3.54 2.86 24

R2 0.46 0.72 57 0.66 0.7 6 0.46 0.7 51

d 9.18 7.06 30 9.05 8.11 11.5 9.12 7.38 23.5
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modified with the decision tree (DT). The RBF and DT-

RBF equations for predicting the depth-averaged velocity

are presented in Boxes 3 and 4, respectively.

It can be seen from Fig. 6 that the DT model predicted

the velocity values (especially at minimum and maximum
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points) more accurately. The maximum velocity at sharp

bends from the initial bend sections was located at the inner

wall and remained until the end section of the bend. In the

sections after bend, the maximum velocity transferred to

the outer wall. Therefore, there were contraction zones in

the maximum velocity positions (inner bank) and separa-

tion zones in the minimum velocity positions (outer bank).

Thus, it can be said that the inner and outer banks in bends

are at risk of erosion and sedimentation, respectively. The

low error value of the hybrid-DT model indicates good

performance in velocity prediction. It can be said that using

the hybrid-DT algorithm leads to improved RBF model

performance in these areas, and the reduction of other

bending effects (including the presence of secondary flows

after the bend areas) is very effective.

In curved channels, the depth distribution of velocity is

not logarithmic, in contrast to straight channels. The

comparison results of the logarithmic distribution of flow

velocity with depth distribution of the RBF model for

sections 0�, 67.5�, 90� and 80 cm after a 90� bend are

shown in Fig. 7. In this figure, the incompliance between

depth velocity distribution and logarithmic distribution at

the outer and inner walls is evident. In areas that tend to

have flow separation (adjacent to the inner wall), the non-

compliance becomes greater, as in section 67.5� at

x = 17.5 cm, the incompliance with logarithmic distribu-

tion is evident. However, further along the channel, more

channel width at the inner wall is exposed to the velocity

reduction and tends to incur flow separation, as in the

section 80 cm after the bend, more than two-thirds of the

channel is exposed to this phenomenon, which is unlike the

velocity logarithmic distribution. The two areas for the

velocity profile are seen as well. In the final sections of the

bend, in the vicinity of the inner wall (simultaneously with

maximum velocity transfer from this wall to the outer wall)

the velocity profile distribution is changed.

5.2 Evaluation of models in predicting water

surface depth

The results for water surface in an open channel bend are

presented in this section. As noted above, the most

appropriate number of classes for this dataset is five.

Therefore, the dataset was classified using the DT-RBF

method into ‘‘very low,’’ ‘‘low,’’ ‘‘medium,’’ ‘‘high’’ and

‘‘very high.’’ Box 5 represents the DT classification results

for free-surface water prediction.
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Fig. 7 Logarithmic distribution of flow velocity compared with depth distribution of the RBF model results for the sections a 0�, b 67.5�, c 90�
and d 80 cm after a 90� bend

Box 5 DT classification results for free-surface water prediction

Q < 22.2

Q < 6.4 : class = V-LOW

Q >= 6.4

Q < 10.7 : class = LOW

Q >= 10.7

Q < 16.35 : class = MED

Q >= 16.35 : class = HI

Q < 22.2 : class = V-HI
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Fig. 8 Scatter plots of RBF and

DT-RBF models in water

surface depth prediction with

the training and testing datasets

for total discharge, and separate

results for the discharge rates of

a 5, b 7.8, c 13.6, d 19.1 and

e 25.3 l/s
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The scatter plots in Fig. 8 represent the water surface

predicted by RBF and DT-RBF models in each and total

discharge. In water surface prediction, both RBF and DT-

RBF models performed well with R2 of 0.9981 and 0.9987

(close to 1), respectively. Although both models per-

formed nearly the same, flow depth varied for each dis-

charge rate (in the range of 4.5–15 cm). Therefore, the

obtained results for each separate discharge had a better

result comparison. Discharge is an effectual parameter

influencing hydraulic flow in curved channels. Hence, the

results of the corresponding experimental results were

compared with each discharge value separately. In fact,

only the flow discharge results were separate, but all

models were derived from one run of the models. Table 3

displays the evaluation of the RBF and DT models in

predicting water surface depth with the training, testing

and entire datasets for each discharge and total discharge.

At low discharge (part a) and with the testing dataset, R2

increased from 0.4219 to 0.8095 with the RBF and DT-

RBF models, respectively, signifying a 91.5% increase in

accuracy. With the training dataset, the DT-RBF model

increased by 77.5% in accuracy from 0.3848 to 0.683 and

thus performed much better than the RBF model. Table 3

presents the entire dataset, where MAE (0.07) with RBF

increased to 0.04 in the DT-RBF model, meaning a 38%

improvement in accuracy; the d value decreased from

1.52 to 0.94 with the DT-RBF model, signifying a 62%

rise in accuracy. With the test dataset, the MAE value of

the DT-RBF model reduced by about 64%. The hybrid-

DT model predicted the water depth at low discharge with

substantially greater accuracy (91.5%). At 7.8 l/s dis-

charge, the DT-RBF model showed 38.5% accuracy

improvement with the testing dataset and 30% improve-

ment with the training dataset. At this discharge rate, the

DT-RBF model with lower MAE and RMSE values by

30% (from 0.078 to 0.06) and 23% (from 0.134 to 0.109),

respectively, was more accurate than the RBF model. At

the median discharge rate of 13.6 l/s, the RBF and DT-

RBF models performed the same. At 19.1 l/s, the DT-

RBF model demonstrated increased precision by 26.2 and

19% in R2 value for the testing and training datasets,

respectively. For the entire dataset, the accuracy of the

DT-RBF model was greater than that of the RBF model

by about 40 and 30.7% for the RMSE (0.154–0.11) and

MAE (0.102–0.078) values, respectively. The d value of

the RBF model was 0.85, which decreased to 0.65 with

the DT-RBF model. This indicates that the modified DT

model deviated less (31%) than the simple model and

predicted water surface depth more accurately. At a

higher discharge rate (25.3 l/s), the DT-RBF model dis-

played increased accuracy of about 41 and 3.5% in R2

value with the testing and training datasets, respectively.

At this discharge rate, the modified DT structure exhibited

11% greater precision with the testing dataset than with

the training dataset. Also, R2 for the entire dataset was

0.91 and 0.97 for the DT-RBF and RBF models, respec-

tively, signifying the higher accuracy rates compared with

the other datasets. The DT hybrid algorithm resulted in

greater model accuracy at lower discharge than at higher

discharge, and using this algorithm was more effective at

lower discharge. With the testing dataset, the accuracy of

the DT-RBF model at 5 and 25.3 l/s discharge increased

by 91.5 and 41%, respectively. With the training dataset

and at 5 l/s discharge, the DT-RBF model accuracy

increased by 77.5%, while at 25.3 l/s, there was only a

slight increase of about 3.5%. For the total discharge flow,

the RMSE, MAE and d reduced by 21.5, 17 and 16.5, and

34, 34 and 32.3% compared to the RBF model with the

Table 3 Performance evaluation for the RBF and DT-RBF models in predicting water surface with the training, testing and entire datasets for

total discharge, and separate results for each discharge rate of (a) 5, (b) 7.8, (c) 13.6, (d) 19.1 and (e) 25.3 l/s

Discharge (l/s) Model Train datasets Test datasets Entire datasets

RMSE MAE R2 d RMSE MAE R2 d RMSE MAE R2 d

5 RBF 0.123 0.098 0.127 2.14 0.118 0.101 0.309 2.21 0.122 0.07 0.41 1.52

DT-RBF 0.083 0.06 0.535 1.33 0.062 0.049 0.73 1.08 0.078 0.04 0.665 0.94

7.8 RBF 0.136 0.109 0.217 1.8 0.128 0.097 0.191 1.61 0.134 0.078 0.39 1.28

DT-RBF 0.11 0.084 0.546 1.38 0.108 0.089 0.364 1.48 0.109 0.06 0.656 0.98

13.6 RBF 0.161 0.127 0.463 1.42 0.163 0.127 0.44 1.43 0.161 0.09 0.62 1.01

DT-RBF 0.164 0.127 0.2 1.43 0.158 0.121 0.31 1.36 0.162 0.09 0.45 1.02

19.1 RBF 0.158 0.127 0.45 1.05 0.146 0.112 0.442 0.94 0.154 0.102 0.221 0.85

DT-RBF 0.11 0.093 0.68 0.78 0.12 0.1 0.58 0.83 0.11 0.078 0.704 0.65

25.3 RBF 0.26 0.19 0.93 1.2 0.246 0.156 0.415 1.03 0.25 0.17 0.91 1.16

DT-RBF 0.17 0.126 0.975 0.81 0.193 0.144 0.584 0.96 0.17 0.126 0.97 0.84

Qt RBF 0.174 0.13 0.997 1.39 0.164 0.117 0.998 1.27 0.173 0.125 0.998 1

DT-RBF 0.13 0.097 0.998 1.05 0.135 0.1 0.999 1.09 0.13 0.098 0.999 0.73
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testing and training datasets, respectively. Therefore, the

DT-RBF model displayed a greater accuracy increase

with the training than with the testing dataset.

For the entire datasets, RMSE and MAE were 0.173 and

0.125 with the RBF model and 0.13 and 0.098 with the DT-

RBF model. Thus, the accuracy of the DT-RBF model

compared with the simple RBF increased by RMSE and

MAE of 33 and 27.5%, respectively. Modifying the RBF

model with the decision tree (DT) resulted in up to 33%

error decrease in water surface prediction in a 90� bend

compared with the simple RBF model. The hybrid-DT

model presented in this study can be used in place of the

simple RBF to predict free-surface water and depth-aver-

aged velocity in a 90� bend.

5.3 Longitudinal water surface profiles

In Fig. 9, the longitudinal water surface profiles predicted

by the DT-RBF and RBF models compared with the

experimental results for each discharge flow are plotted

separately. It can be seen from the figure that both RBF

and DT-RBF models had good ability in predicting the

water surface profile and for all discharge rates, they were

in acceptable agreement with the experimental values.

Fig. 9 Longitudinal water surface depth profiles predicted by the RBF and DT-RBF models compared with experimental results at a 5, b 7.8,

c 13.6, d 19.1 and e 25.3 l/s
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The DT-RBF model with an average MAE value of

0.0118 outperformed the RBF model with 0.0157. Both

models also predicted the water surface pattern well.

What is remarkable is that two soft computing models

(RBF and DT-RBF model) revealed experimental studies’

defects in numerical models as continuous fields. Table 4

presents the MAE between these two models, and

experimental data are also given for the outer edge,

channel axis and the inner edge. At lower discharge (5 l/

s), the maximum error value of the RBF model was 0.028

at the outer edge, where the DT-RBF model with the

lowest error of 0.007 completely overlapped with the

experimental data; its accuracy rose by 300% compared

to the RBF. At the inner edge, the DT-RBF model pre-

sented a 17.5% accuracy increase compared to the RBF

model. At 7.8 l/s discharge, both models had the biggest

error values at the inner edge. The DT model displayed a

120% accuracy increase with the lowest error of 0.01 at

the outer edge compared with the other edges. The

median discharge of 13.6 l/s for the two models produced

the greatest error value at the inner edge. At all three

edges, the modified DT model performed more accurately

than the simple model. At 19.1 l/s discharge, both models

had greater error at the outer edge than at the other edges.

At the outer and inner edges, the DT model accuracy

increased by 40 and 43.3%, respectively. At the highest

discharge (25.3 l/s), both RBF and DT-RBF models had

the maximum error values (0.014 and 0.02). At the outer

edge, the DT model had error values reduced by 180%.

The maximum error values at all flow discharge rates for

the two models were recorded near the inner edge.

Applying the hybrid-DT model at the inner edge demon-

strated less error reduction than at the other edges. By

assuming the average of all discharge rates, the DT model

outperformed the RBF model at the outer edge with 114%

accuracy. At the inner edge, the DT-RBF model

outperformed the simplified model by up to 17%, which

was evident at higher discharge rates as well. At 19.1 and

25.3 l/s discharge, the hybrid-DT model accuracy dimin-

ished by 100 and 50%, respectively, compared to the

simple model. At the inner edge, the DT-RBF model was

more accurate than the simple RBF model by 17.3 and 44%

at 5 and 25.3 l/s discharge rates, respectively. The RBF and

DT-RBF equations for free-surface water simulation are

presented in Boxes 6 and 7, respectively.

At all flow discharge rates, in the longitudinal profiles of

the three walls, the flow depth value before the bend sec-

tion increased (due to energy gained to enter the bend) and

in the sections after the bend, the flow depth returned to the

initial, normal depth. The flow depth values in each cross

section show that the water surface increased near the outer

channel wall and decreased adjacent to the inner wall. The

decrease and increase in water surface at the inner and

outer walls (super-elevation), respectively, in the three

Table 4 MAE and accuracy

increase with the DT-RBF

model compared with the RBF

model for the longitudinal water

surface profile at different

discharge rates

Discharge Outer edge Channel axis Inner edge

RBF DT-RBF RBF DT-RBF RBF DT-RBF

Q = 5 0.028 0.007 0.016 0.01 0.027 0.023

Accuracy increase of DT (%) ?300 ?60 ?17.3

Q = 7.8 0.022 0.01 0.01 0.012 0.023 0.022

Accuracy increase of DT (%) ?120 -20 ?4.5

Q = 13.6 0.013 0.01 0.007 0.01 0.026 0.024

Accuracy increase of DT (%) ?30 ?43 ?8.3

Q = 19.1 0.014 0.01 0.003 0.006 0.0129 0.009

Accuracy increase of DT (%) ?40 -100 ?43.3

Q = 25.3 0.014 0.005 0.004 0.006 0.02 0.014

Accuracy increase of DT (%) ?180 -50 ?44

Average 0.018 0.0084 0.008 0.009 0.021 0.018

Accuracy increase of DT (%) ?114 -12.5 ?17

Box 6 RBF free-surface water equation
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sections at 22.5�, 45� and 67.5� inside the bend were high.

To reduce the super-elevation, using central walls (vanes)

is very effective [17, 18].

The reduction in water surface depth prediction error at

the inner and outer walls by the hybrid-DT model indicates

thismodel’s higher accuracy in estimating thewater height at

curved channel walls, because calculating the channel wall

height in the design and implementation of irrigation chan-

nels and water transport is very effective. Therefore, using

hybrid models leads to enhanced RBFmodel performance in

water surface prediction such as velocity prediction.

6 Conclusion

In the present study, a simple RBF and a hybrid DT-RBF

model were applied to investigate the two variables of

velocity and channel depth in a 90� sharp bend. Experi-

mental data at 5 discharge rates: 5, 7.8, 13.6, 19.1 and

25.3 l/s were used to train and test the models. The

performance of the two models was compared with the

experimental results. The results signify that both RBF and

DT-RBF had the ability to predict the velocity and water

surface depth variables in the bend well. From the com-

parison of the two models, it can be said that combining a

decision tree model with RBF leads to a performance

increase of the hybrid model over a simple model. Thus,

the RMSE with the DT-RBF model for the testing dataset

decreased by 11 and 17% over the simple model in pre-

dicting velocity and flow depth, respectively. The results of

the two models in flow depth prediction demonstrate that

the increase in DT-RBF model performance at low flow

discharge (5 l/s) was greater than at high flow discharge

(25 l/s) (the R2 value increase was about 91.5 and 41%,

respectively, at flow discharge of 5 and 25.3 l/s). The

hybrid-DT model proposed in this study can be used to

estimate water velocity and depth for the design and

implementation of artificial channels as well as to calculate

wall height. Therefore, it is recommended to employ this

model for predicting flow variables (pressure, shear stress,

etc.) in curved channels.
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