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Abstract Support vector regression (SVR) and neural

network (NN) models were used to predict average daily

gain (ADG), feed efficiency (FE), and feed intake (FI) of

broiler chickens during the starter period. Input variables

for construction of the models were levels of dietary pro-

tein and branched-chain amino acids (BCAA; valine, iso-

leucine, and leucine). Starting with 241 lines, the SVR and

NN models were trained using 120 data lines and the

remainder (n = 121) was used as the testing set. The SVR

models were developed using different kernel functions

including: linear, polynomial (second and third order),

radial basis function (RBF), and sigmoidal. In order to

evaluate the SVR models, their performance was compared

to that of multilayer perceptron (MLP)- and RBF-type NN

models. Results indicated that MLP-type NN models were

the most accurate in predicting the investigated output

variables (R2 for ADG in training and testing = 0.81 and

0.81; FE = 0.87 and 0.87; FI = 0.68 and 0.62). Among the

different SVR kernels, best performance was achieved with

the RBF (R2 for ADG in training and testing = 0.76 and

0.76; FE = 0.85 and 0.87; FI = 0.46 and 0.48) and poly-

nomial (third order) function (R2 for ADG in training and

testing = 0.77 and 0.77; FE = 0.85 and 0.87; FI = 0.46

and 0.39), whose prediction ability was better than that of

the RBF-type NN (R2 for ADG in training and test-

ing = 0.75 and 0.75; FE = 0.82 and 0.82; FI = 0.41 and

0.39) models. Sigmoidal SVR models provided the poorest

prediction. The work demonstrates that, through proper

selection of kernel functions and corresponding parame-

ters, SVR models can be considered as an alternative to NN

models in predicting the response of broiler chickens to

protein and BCAA. This type of model should also be

applicable in poultry and other areas of animal nutrition.

Keywords Support vector regression � Neural networks �
Broiler response � Branched-chain amino acids

1 Introduction

Leucine, isoleucine, and valine have similar structures and

are commonly referred to as the branched-chain amino acids

(BCAA). Antagonism among these amino acids has been

established in avian species such as chickens and turkeys [1].

The interactions among the BCAA have shown that dietary

leucine content influences both valine and isoleucine

requirements of broilers. Dietary protein is often the most

expensive component of a broiler diet. Reducing dietary

protein in an effort to decrease production costs can be

accomplished via supplementation with crystalline amino

acids such as lysine, methionine, and threonine. In low

protein diets, adequate dietary valine is critical for support-

ing optimal growth, feed conversion, and carcass traits [2].

Mathematical modeling stands as a powerful tool to

explore information further and to orient future research

programs in animal nutrition. Among different mathemat-

ical approaches, neural networks (NN) have become pop-

ular for predicting and forecasting in a broad area of

sciences [3]. Similar to the physiological nervous system, a
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NN model can ‘learn’ and therefore be trained to find

solutions, recognize patterns, classify data, and forecast

future events [4].

A multilayer perceptron (MLP) network, sometimes

called a back-propagation (BP) network, is probably the

most popular NN for nonlinear mapping and has been

referred to as a ‘universal approximator’ [5]. It consists of

an input layer, one (or more) hidden layer and an output

layer. The network needs to be trained using a training

algorithm (e.g., back propagation, cascade correlation,

conjugate gradient). In radial basis function (RBF) net-

works, as the name implies, a radially symmetric basis

function is used as an activation function for the hidden

nodes. Training of the network parameters (weights)

between the hidden and output layers occurs in a super-

vised fashion based on target outputs [6]. Despite frequent

reports of successful applications of NN for modeling

purposes, concerns still exist about their construction and

exploitation. The main concern is about network structure.

What the optimal NN structure is and how it can be

determined are still issues requiring further investigation.

In recent years, the support vector machine (SVM) has

been introduced as a new technique for solving a variety of

learning, classification, and prediction problems [7]. Sup-

port vector regression (SVR), the regression version of

SVM, has been developed recently to estimate regression

relationships. As with SVM, SVR is capable of solving

nonlinear problems using kernel functions [3]. SVR is a

nonparametric statistical learning technique in which no

assumption is made about the underlying data distribution

[7, 8]. Due to its capability to generalize, SVR has attracted

the attention of many researchers and has been applied

successfully in a range of disciplines [9].

This study set out to predict the response of broiler

chickens [average daily gain (ADG), feed efficiency (FE),

and feed intake (FI)] to different levels of dietary protein

and BCAA. For this purpose, SVR response models with

different kernel functions were developed and their pre-

dictive performance compared with that of MLP and RBF

types of NN model. The reader is referred to two recent

textbooks for review of the pros and cons of the two

approaches [10, 11].

2 Materials and methods

This study was carried out in four stages: (i) compilation of

data required for training and testing; (ii) training of the

different SVR and NN models; (iii) testing the models

generated with a data set not used in training; and (iv)

assessing their performance and comparing the predictive

ability of SVR and NN models.

2.1 Data source

Seven data sets were extracted from the literature, pro-

viding 241 data lines (pens of birds, average number of

birds per pen = 22). The input variables were dietary

protein, valine, isoleucine, and leucine all expressed as

g/kg of feed, and the output variables were ADG (g/bird

per day), FE (g gain to g feed intake), and FI (g/bird per

day). The data were selected based on the following cri-

teria: (i) peer-reviewed published papers were used; (ii)

the data were collected from studies in which the BCAA

concentrations in the diets were used as treatments; (iii)

the dietary levels of protein and investigated amino acids

were clearly defined; (iv) the ADG, FE, and FI were

reported or could be calculated from the published data;

and (v) all experimental data were collected from studies

conducted during the first 21 days of age of broiler

chickens. A brief description of the seven data sources

used in this study is given in Table 1. The complete data

set was randomly divided into two groups of training and

testing (50% each). The same data were used to train the

SVR and NN models, and the models developed were

tested with identical data. Therefore, differences in the

predictive performance of models were regardless of data.

The ranges of data used to develop the NN and SVR

models are summarized in Table 2, and the correlation

matrix for the variables used in the study is shown in

Table 3.

2.2 Neural network modeling

The collected experimental data were used to train and test

two NN (MLP and RBF) for predicting responses of broiler

Table 1 Data sets used in this

study
Data set Strain ME (kcal/kg) Sex Age No. of birds No. of data lines

Burnham et al. [35] ND 3100 M, F 7–21 1760 162

Waldroup et al. [36] Cobb 3200 M 1–21 468 14

Farran et al. [37] R 9 AA 3200 M 7–21 288 8

Barbour and Latshaw [38] ND 3200 M, F 1–21 288 12

Farran and Thomas [39] R 9 AA 3200 M 1–21 960 30

Tavernari et al. [40] Cobb 3000 M 8–21 1400 7

Farran and Thomas [41] R 9 AA 3200 M 1–21 192 8

ND not defined, R 9 AA Ross 9 Arbor Acres, M male, F female

2500 Neural Comput & Applic (2018) 30:2499–2508

123



chickens to dietary levels of protein and BCAA. The 241

data lines assembled were shuffled, and 120 were used for

the learning process and 121 for testing. The data set was

imported into the Statistica Neural Networks software

version 8 [12]. The data lines were the same as those used

to develop the SVR models. ADG, FE, and FI were con-

sidered as dependent variables and dietary protein, valine,

isoleucine, and leucine as independent. A common prob-

lem in NN training is over-fitting [13]. A network with a

large number of weights compared to number of training

cases available may achieve a low training error simply

through modeling a function that fits the training data well.

To circumvent this issue, the optimum architecture (i.e., the

number of hidden neurons in the network and training

algorithm) was determined using the algorithms integrated

within in the ‘intelligent problem solver’ module of Sta-

tistica software [12]. A schematic diagram of the NN

models developed in this study is shown in Fig. 1a.

2.3 Support vector regression

Here a brief description of SVR is given, following [14].

Like most linear regression procedures, the SVR algorithm,

developed by [8], is based on estimating a linear regression

function:

f ðxÞ ¼ wTxþ b w; x 2 Rdðd�dimensional input spaceÞ
� �

ð1Þ

where w and b are the slope and offset of the regression

line, respectively. The regression function (Eq. 1) is cal-

culated by minimizing:

1

2
wTwþ 1

n

Xn

i¼1

cðf ðxiÞ; yiÞ ð2Þ

where 1
2

wk k2 is the term characterizing model complexity

(i.e., smoothness of f ðxÞ, where . . .k k denotes vector

length), and cðf ðxiÞ; yiÞ) is the loss function which deter-

mines how the distance between f ðxiÞ and the target value

yi should be penalized. In this primal formulation, several

different loss functions are available, but in this paper, we

adopt the commonly used e-insensitive loss function

introduced by [7]. This loss function is given by:

cðf ðxiÞ; yiÞ ¼
0 if yi � f ðxiÞj j � e
yi � f ðxiÞj j � e; otherwise

�
ð3Þ

Equation 3 defines a tube of radius e around the hypo-

thetical regression function such that if a data point lies

within this tube the loss function equals zero, while if a

data point lies outside the tube, the loss is equal to the

distance between the data point and the radius e of the tube.
In this particular case, minimizing Eq. 2 is equivalent to

solving the goal programming problem [14, 15]:

minimize
1

2
wTwþ C

Xn

i¼1

ðni þ n�i Þ

subject to

yi � wTxi � b� eþ ni
wTxi þ b� yi � eþ n�i
e; ni; n

�
i � 0

8
><

>:

ð4Þ

where ni and n�i are slack variables and the constant C[ 0

determines the trade-off between model complexity and

tolerance of deviations larger than e. The goal program-

ming problem (Eq. 4) can be expressed in its dual form

Table 2 Ranges of the data

used to develop the SVR and

NN models

Variable Min Max Average Standard deviation

Input

Protein (g/kg of diet) 102.75 274 190.4 48.54

Isoleucine (g/kg of diet) 3.6 11.6 7.07 1.79

Leucine (g/kg of diet) 9.6 50.3 22.87 10.71

Valine (g/kg of diet) 1 17.2 10.87 3.50

Output

ADG (g/bird/day) 7.3 36.1 22.8 5.85

FE (g gain to g intake) 0.19 0.77 0.52 0.12

FI (g/bird/day) 26.63 58.6 43.53 6.41

ADG average daily gain, FE feed efficiency, FI feed intake

Table 3 Correlations among the variables used in this study

CP Ile Leu Val ADG FE FI

CP 1 0.88 0.62 0.85 0.81 0.74 0.23

Ile 0.88 1 0.43 0.65 0.73 0.78 0.02

Leu 0.62 0.43 1 0.79 0.35 0.12 0.36

Val 0.85 0.65 0.79 1 0.64 0.39 0.48

ADG 0.81 0.73 0.35 0.64 1 0.81 0.39

FE 0.74 0.78 0.12 0.39 0.81 1 -0.17

FI 0.23 0.02 0.36 0.48 0.39 -0.17 1

CP crude protein, Ile isoleucine, Leu leucine, Val valine, ADG

average daily gain, FE feed efficiency, FI feed intake
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using Lagrange multipliers [16]. In this paper, we use the

strategy outlined by [7] leading to the solution:

f ðxÞ ¼
Xn

i¼1

ðki � k�i ÞKðxi; xÞ þ b ð5Þ

where ki and k
�
i ð0� ki; k

�
i �CÞ are the Lagrangemultipliers

and Kðxi; xÞ represents the kernel function [17]. In the con-

text of Eq. 5, data points with nonzero ki and k�i values are
support vectors. A suitable kernel function makes it possible

to map a nonlinear input space to a high-dimensional feature

space where linear regression can be performed [7]. Several

kernel functions have been proposed in literature. In this

paper, different kernel functions were used, viz. linear, RBF,

polynomial (second and third order), and sigmoidal. The

kernel parametersmust be selected appropriately by the user,

as generalization performance of the SVR model depends

heavily on correct setting of these parameters. For a more

detailed description of kernel functions and parameters, the

reader is referred to [18]. A schematic diagram of SVR

models used in this study is shown in Fig. 1b.

2.3.1 Support vector regression training

SVR was implemented in the Statistica software [12]. The

SVR parameters were obtained following a tenfold cross-

validation experiment. This algorithm is a way to improve

on the holdout method which is the simplest variant of k-

fold cross-validation [19]. The data set is divided into

k subsets, and the holdout method is repeated k times. Each

time, one of these subsets is used as the test set while the

remaining subsets are assembled to form a training set.

Then the average error across all k trials is computed. The

advantage of this method is that it matters less how the data

are divided. Every data point gets to be in a test set exactly

once and gets to be in a training set k - 1 times. The

variance of the estimate is reduced as k is increased. The

disadvantage of this approach is that the training algorithm

has to be rerun from scratch k times, which means it

requires k times as much computation to make an evalua-

tion. A variant of this method is to randomly divide the

data into a test and training set k different times [20].

2.4 Performance evaluation

Goodness of fit of the NN and SVR models was based on

coefficient of determination (R2), mean square error

(MSE), mean absolute error (MAE), and bias [21]:

R2 ¼ 1�
Pn

i¼1 ðxpi � xeiÞ2
Pn

i¼1 ðxpi � �xÞ2

MSE ¼ 1

n

Xn

i¼1

ðxpi � xeiÞ2

MAE ¼ 1

n

Xn

i¼1

xpi � xei
�� ��

Bias ¼ 1

n

Xn

i¼1

ðxpi � xeiÞ

where xpi is the predicted output for observation i, xei is the

experimental output for observation i, �x is the average

Fig. 1 Schematic diagram of the models used in this study: a NN and b SVR
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value of the experimental output, . . .j j denotes modulus,

and n is the total number of observations.

3 Results and discussion

The ability of NN models to predict the response of broiler

chickens to different dietary nutrients and to predict the

energy values of concentrate feedstuffs have been

demonstrated previously [22–25]. However, little is known

about the suitability or otherwise of SVR models in animal

(especially poultry) nutrition. An attempt in this area was a

study by [23] of the ability of SVR models to estimate

carcass characteristics of broilers influenced by dietary

nutrient intakes. In that study, SVR models were developed

using only the RBF kernel function and the results showed

that support vectors are worth considering as a possible

alternative to NN models. As several indices can be used

for model evaluation, it is difficult to identify an optimum

model that satisfies, at best, every single evaluation

method. Therefore, emphasis in the present study was

given to the accuracy of models developed in relation to

the aforementioned criteria.

3.1 Average daily gain

Kernel parameters for predicting ADG of the broiler

chickens in response to protein and BCAA are summarized

in Table 4. These values may be considered as initial

values when developing future SVR models. The optimal

architecture for the MLP-type NN for modeling ADG was

found with 4 inputs, 1 output (with linear activation

function), and 4 hidden neurons (with the hyperbolic tan-

gent activation function), using a quasi-Newton algorithm

[26] for network training. The optimal structure for the

RBF-type NN model was found with 4 inputs, 1 output, and

11 hidden neurons. It seems that all the models developed

are able to predict ADG of broiler chickens satisfactorily.

Scatter plots of predicted versus actual and residual versus

predicted values of ADG obtained with the MLP-type NN

and linear SVR models are shown in Fig. 2. The MLP-type

NN and linear kernel function were considered the best and

worst models, respectively, in predicting the broiler

chickens’ ADG. The regression equations and corre-

sponding low R2 values for the distribution of residual

versus predicted values suggest there is little or no evi-

dence of prediction bias.

Statistics for assessing the performance of each model

are shown in Table 5. Based on these criteria, the MLP-

type NN models showed a higher coefficient of determi-

nation compared to the SVR models. Among SVR models

developed with different kernels, best and worst prediction

was achieved using the polynomial (third order) and the

linear kernel functions, respectively. The performance of

SVR models with RBF and polynomial (third order) was

better than that of RBF-type NN models (Table 5). Our

results showed that the MLP-type NN model is more

accurate for predicting ADG than the RBF type. The results

revealed good agreement between observed and predicted

values of ADG for the training and testing sets. A well-

trained model gives balanced values of the evaluation

statistics for these two sets, suggesting that over-fitting has

not occurred during the training process [24]. In agreement

with our results, previous studies have shown the superi-

ority of NN to SVR models in predicting the investigated

output variables [27].

3.2 Feed efficiency

In general, feed costs account for two-thirds of end-

table costs in poultry production [28]. In birds, FE can be

calculated as gram of gain per gram of feed intake and

adequate knowledge and prediction of FE can therefore

help provide economic benefits [29].

The kernel parameters to estimate FE are summarized in

Table 6. The optimal architecture of the MLP- and RBF-

type NN for modeling FE, suggested by intelligent problem

solver, was found to be similar to that of the models for

ADG. The MLP and RBF models were developed with 4

input variables and had 4 and 11 neurons in the hidden

layer, respectively. Scatter plots of predicted versus actual

and residual versus predicted values of FE obtained with

the MLP-type NN and sigmoidal SVR models are shown in

Fig. 3. The regression equations and corresponding low R2

values for the distribution of residual versus predicted

values suggest there is no evidence of prediction bias. As

this figure illustrates, the model with the higher R2 value

for the distribution of observed versus predicted FE had the

lower R2 value for the distribution of residual versus pre-

dicted values, and vice versa.

The statistics used to assess performance of the models

are shown in Table 7, and these indices indicate similar

trends in goodness of fit across models. Overall perfor-

mance appears better for FE than for ADG (Tables 5, 7).

Table 4 Kernel function parameters ðC; e; cÞ for the SVR models

developed to predict average daily gain

Kernel function C e c

Linear 11 0.03 –

Polynomial (d = 2) 8 0.03 0.25

Polynomial (d = 3) 9 0.05 0.3

RBF 8 0.2 0.25

Sigmoidal 10 0.1 0.4

RBF radial basis function
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For the training set, best performance was achieved with

the MLP-type NN model (R2 = 0.87) followed by SVR

with RBF and third-order polynomial kernel functions

(R2 = 0.85), second-order polynomial SVR- and RBF-type

NN (R2 = 0.82), linear SVR (R2 = 0.76), and sigmoidal

SVR (R2 = 0.71), respectively. For the testing set, highest

MLP predicted= 0.836 actual ADG + 4.014

R
2
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Fig. 2 Scatter plots of predicted versus actual (top row) and residual versus predicted (bottom row) values of ADG obtained by best (MLP-type

NN) and worst (linear SVR) models developed (all 241 data lines represented)

Table 5 Accuracy of the SVR

and NN models developed to

predict average daily gain

Model Training set Testing set

R2 MSE MAE Bias R2 MSE MAE Bias

Linear SVR 0.71 10.6 2.6 -0.34 0.69 11.7 2.62 -0.98

Polynomial SVR (d = 2) 0.75 9.1 2.21 0.36 0.73 9.53 2.26 -0.27

Polynomial SVR (d = 3) 0.77 8.45 2.15 0.29 0.77 8.42 2.17 -0.34

RBF SVR 0.76 8.9 2.3 0.08 0.76 8.5 2.19 -0.45

Sigmoidal SVR 0.71 11.14 2.65 0.22 0.73 9.9 2.45 -0.31

MLP-type NN 0.81 6.7 1.83 0.01 0.81 6.86 1.88 -0.54

RBF-type NN 0.75 8.81 2.29 0 0.75 8.7 2.25 -0.33

MSE mean square error, MAE mean absolute error, SVR support vector regression, RBF radial basis

function, NN neural network
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accuracy was achieved for MLP-type NN and SVR models

with RBF and third-order polynomial kernel functions

(R2 = 0.87). Accuracy in prediction, as well as the flexi-

bility of constructed models, affirms the strong effect of the

selected dietary nutrients (protein, valine, isoleucine, and

leucine) on FE in broiler chickens [30, 31]. In other words,

the statistical analyses indicated that it is possible to use

dietary protein and BCAA to predict the FE of broilers

accurately.

3.3 Feed intake

Lehninger [32] classifies leucine as a ketogenic amino acid

as it yields the ketone body acetoacetate. Valine is a

glycogenic amino acid as its degradation yields succinate,

an intermediate in the TCA cycle. Isoleucine is classified as

both a ketogenic and glycogenic amino acid as it is

degraded in the body to produce acetyl-COA and succinate.

Ketone bodies act as an inhibitory signal in both the central

and peripheral nervous systems for feed intake of poultry

[33]. Moreover, [34] demonstrates that excess leucine

severely depresses feed consumption and weight gain of

chicks fed a low protein diet. For these reasons, it was

MLP predicted= 0.856 actual FE + 0.075

R
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Fig. 3 Scatter plots of predicted versus actual (top row) and residual versus predicted (bottom row) values of feed efficiency (FE) obtained by

best (MLP-type NN) and worst (sigmoidal SVR) models developed (all 241 data lines represented)

Table 6 Kernel function parameters ðC; e; cÞ for the SVR models

developed to predict feed efficiency

Kernel function C e c

Linear 10 0.01 –

Polynomial (d = 2) 10 0.02 0.25

Polynomial (d = 3) 11 0.04 0.3

RBF 12 0.05 0.25

Sigmoidal 8 0.02 0.3

RBF radial basis function
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assumed that FI of broilers could be predicted in response

to different levels of dietary protein and BCAA. However,

results showed that overall performance of the models was

not as good as for those developed to predict ADG and FE.

Our selected input variables (protein and BCAA) only

covered a maximum 0.68 of FI variation (R2 for MLP-type

NN). The kernel parameters for predicting FE are sum-

marized in Table 8. The MLP- and RBF-type NN models

developed were composed of 5 and 11 hidden neurons,

respectively. For the FI models, as for ADG and FE, best

performance was achieved with MLP-type NN and SVR

with a RBF kernel function. The prediction ability of all

SVR models, except for the sigmoidal kernel function, was

higher than for the RBF-type NN model. The behavior of

the MLP-type NN (as the best fitting) and sigmoidal SVR

(as the worst fitting) models is shown in Table 9. Figure 4

shows scatter plots of predicted versus actual and residual

versus predicted values of FI obtained with the MLP-type

NN and sigmoidal SVR models. With the FI models, as

with the FE models, the model with the higher R2 value for

distribution of observed versus predicted FE provided the

lower R2 value for distribution of predicted versus residual

values.

4 Conclusions

In this paper, we suggest SVR as a means of estimating the

response of broilers to dietary protein and BCAA. The

SVR approach was compared to MLP- and RBF-type NN

models. Based on the results of this study, we conclude that

it is feasible to apply SVR and NN models to predict the

performance response of broiler chickens (in terms of

ADG, FE, and FI) to dietary protein and BCAA. Models

derived using these two approaches (SVR and NN) offer an

alternative to those obtained from the standard statistical

meta-analysis employed in animal nutrition [42, 43] and

Table 7 Accuracy of the SVR

and NN models developed to

predict feed efficiency

Model Training set Testing set

R2 MSE MAE Bias R2 MSE MAE Bias

Linear SVR 0.76 0.004 0.045 0.003 0.82 0.003 0.048 0.015

Polynomial SVR (d = 2) 0.82 0.003 0.04 -0.003 0.86 0.002 0.04 0.005

Polynomial SVR (d = 3) 0.85 0.002 0.038 -0.002 0.87 0.002 0.039 0.002

RBF SVR 0.85 0.002 0.039 -0.004 0.87 0.002 0.04 0.004

Sigmoidal SVR 0.71 0.005 0.065 0.011 0.74 0.005 0.057 0.02

MLP-type NN 0.87 0.002 0.035 0.00 0.87 0.002 0.041 0.00

RBF-type NN 0.82 0.003 0.042 0.00 0.82 0.003 0.045 0.013

MSE mean square error, MAE mean absolute error, SVR support vector regression, RBF radial basis

function, NN neural network

Table 8 Kernel function parameters ðC; e; cÞ for the SVR models

developed to predict feed intake

Kernel function C e c

Linear 3 0.4 –

Polynomial (d = 2) 10 0.4 0.25

Polynomial (d = 3) 9 0.4 0.25

RBF 10 0.05 0.3

Sigmoidal 10 0.2 0.3

RBF radial basis function

Table 9 Accuracy of the SVR

and NN models developed to

predict feed intake

Model Training set Testing set

R2 MSE MAE Bias R2 MSE MAE Bias

Linear SVR 0.42 25.17 4.27 -0.43 0.33 29.5 4.35 -1.83

Polynomial SVR (d = 2) 0.43 24.02 4.35 0.015 0.37 26.3 4.1 -1.3

Polynomial SVR (d = 3) 0.46 22.9 4.29 0.19 0.39 24.95 4.05 -0.99

RBF SVR 0.46 22.8 3.9 -0.06 0.48 21.5 3.8 -0.99

Sigmoidal SVR 0.27 32.2 4.8 0.09 0.20 33.3 4.6 -1.15

MLP-type NN 0.68 13.25 2.98 0.02 0.62 15.45 2.45 -0.31

RBF-type NN 0.41 24.73 4.39 0.00 0.39 24.76 4.1 -1.01

MSE mean square error, MAE mean absolute error, SVR support vector regression, RBF radial basis

function, NN neural network
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might well provide general models for common usage.

Further research, however, is needed to explore these

assertions. MLP-type NN models appear to provide a better

option than SVR to estimate the output variables investi-

gated. Among the different kernel functions applied here,

the RBF and polynomial (third order) functions gave better

performance than other SVR kernel functions and RBF-

type NN models. However, there remains a paucity of lit-

erature information on application of SVR in poultry

nutrition and more studies are needed to examine further

the use of these models.
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