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Abstract Heart is an important and hardest working

muscular organ of the human body. Inability of the heart to

restore normal perfusion to the entire body refers to cardiac

failure, which then with symptoms results in manifestation

of congestive heart failure (CHF). Impairment in systolic

function associated with chronic dilation of left ventricle is

referred as dilated cardiomyopathy (DCM). The clinical

examination, surface electrocardiogram (ECG), chest

X-ray, blood markers and echocardiography play major

role in the diagnosis of CHF. Though the ECG manifests

chamber enlargement changes, it does not possess sensitive

marker for the diagnosis of DCM, whereas echocardio-

graphic assessment can effectively reveal the presence of

asymptomatic DCM. This work proposes an automated

screening method for classifying normal and CHF

echocardiographic images affected due to DCM using

variational mode decomposition technique. The texture

features are extracted from variational mode decomposed

image. These features are selected using particle swarm

optimization and classified using support vector machine

classifier with different kernel functions. We have vali-

dated our experiment using 300 four-chamber echocar-

diography images (150: normal, 150: CHF) obtained from

50 normal and 50 CHF patients. Our proposed approach

yielded maximum average accuracy, sensitivity and

specificity of 99.33%, 98.66% and 100%, respectively,

using ten features. Thus, the developed diagnosis system

can effectively detect CHF in its early stage using ultra-

sound images and aid the clinicians in their diagnosis.

Keywords Congestive heart failure � Dilated
cardiomyopathy � Machine learning � Texture features �
VMD

1 Introduction

Heart is one of the vital organs which pumps blood to the

whole body tissue in order to provide oxygen. Adequate

pumping of heart is necessary for healthy living.

According to European Heart Network and European

Society of Cardiology, nearly 4 million people die due to

cardiovascular diseases in Europe and 1.9 million in

European Union (EU) [1]. Cardio vascular disease widely

ranges from genetic disorder to acquired heart diseases

[2]. Heart failure is the most common syndrome that

results in death if left untreated. Etiologic basis for con-

gestive cardiac failure possesses trends of multiple com-

ponents with respect to structural heart disease, ischemic

heart disease, congenital heart disease, myocardial dis-

ease, valvular heart disease, systemic diseases, etc. that

manifest clinical symptoms of failure. Dilated
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cardiomyopathy (DCM) is one of the myocardial diseases

that can precipitate into congestive heart failure (CHF) as

it progresses. In DCM, dysfunctional myocardium

undergoes chronic dilatation as the result of remodeling

[3]. This enhances required stroke volume ejection by the

left ventricle; however, the ejection fraction declines as

the disease progresses. At this stage, patient may possess

exertional symptoms of breathlessness and may limit the

routine activity [3]. Patient develops the CHF once the

latent myocardial damage reaches decompensated stage

which is manifested clinically by the presence of symp-

toms at rest. CHF results in deterioration of subject’s vital

hemodynamics and precipitates into extreme breathless-

ness in supine position, sweating, hemoptysis, chest pain

and signs of pulmonary edema [3]. Complete physical

examination, electrocardiogram (ECG) and chest X-ray

play major role in assessing the patient’s condition and

hemodynamics preferably in symptomatic subjects. ECG

is a noninvasive method which shows irregularities in the

heart beat and adds certain diagnostic features in assess-

ing the function and disorders of cardiovascular system

[4]. In addition, lack of physicians and advanced

methodologies, automated detection and diagnosis using

ECG samples have attracted research community to

develop computer-aided diagnosis (CAD) tools to assist

the clinicians to validate their decisions.

ECG-based CAD system uses samples collected from

the ECG for the analysis, and it has become a gold standard

in developing the CAD tools for CHF [4]. Many of these

techniques use machine learning algorithms with feature

extraction to differentiate the ECG signals. Also, feature

selection scheme is used to enhance the classifier perfor-

mance. Asyali [5] has used Bayesian classifier with linear

discriminant analysis and achieved a performance of

93.24%. The k-nearest neighbor classifier along with

genetic algorithms used by Isler and Kuntalp [6] achieved

an accuracy of 96.39%. In [7], wavelet decomposition and

soft decision technique did not achieve remarkable success

(accuracy is 88.6%). In [8], combination of short-term

heart rate variability (HRV) and regression tree resulted

89.7% sensitivity and 100% specificity. Yu and Lee [9]

showed reasonable success (accuracy) of 97.59% by using

support vector machine (SVM) and conditional mutual

information feature selector (CMIFS). Masetic and Subasi

[10] have used autoregressive Burg method and achieved

100% classification success. Recently, Acharya et al. [11]

have used empirical mode decomposition for the charac-

terization of congestive heart failure based on heart rate

signals. They have achieved a maximum accuracy of

97.64%.

Though several CAD tools are presented in the litera-

ture using ECG signals, subjects with non-ischemic dila-

ted cardiomyopathy may or may not indicate the

symptoms of CHF in ECG. But the diagnosis can be done

accurately by echocardiography examination and it can

also diagnose the DCM in asymptomatic subjects [2]. The

echocardiography-based diagnostic tool for the identifi-

cation of non-ischemic DCM includes dilated left ven-

tricle, globally reduced ventricular wall contraction,

reduced ventricular ejection fraction and right heart fail-

ure in the end stage. In addition to diagnosing DCM,

echocardiography can reveal the structural heart disease

that would precipitate into ventricular dysfunction [12].

Hence, the newer guideline recommends echocardio-

graphic examination in subjects who are at risk [2].

Echocardiography helps in the identification of DCM in

its early asymptomatic stage which needs immediate

medical attention for the therapy [13]. Echocardiography

is a diagnostic procedure where the subject’s heart is

assessed with respect to its structure and function. The

test yields the high diagnostic accuracy in assessing the

patients with CHF. ECG can still be beneficial in thera-

peutic decision and prognostication, whereas this does not

convey any specific diagnostic criteria for DCM [14–16].

Thus, echocardiography plays a major role in assessing

patients with CHF with respect to defining its etiology.

DCM can switch from asymptomatic to symptomatic

CHF stage which may be assessed by echocardiography.

The ability to detect DCM in its asymptomatic stage

holds the best indication for echocardiographic test.

Applying this information will direct the subjects for

medical attention for therapy and follow-up. Echocardio-

graphy can also provide information on ventricular

function, associated lesions and structural heart disease

that cannot be explored by just 12-lead ECG [17]. By

observing the above limitations of ECG, this work pro-

poses an efficient methodology for the analysis of CHF

caused due to DCM using echocardiography images. To

the best of our knowledge, this is the first attempt in

developing CAD system for the analysis of CHF using

echocardiography images.

The proposed method involves four stages, namely data

preprocessing, image decomposition, feature extraction,

feature optimization and classification. Initially, the origi-

nal images are subjected to variational mode decomposi-

tion (VMD). VMD decomposes an original image into its

principal components, which can efficiently represents

unique patterns of CHF which are very close in their

original representation over normal subjects. Also, it has an

ability to separate subjects which has moved from

asymptomatic to symptomatic CHF stage. Then, texture

features are extracted from the VMD images. Further,

particle swarm optimization (PSO) and support vector

machine (SVM) classification model are combined to

obtain the optimized features. The graphical representation

of the proposed scheme is shown in Fig. 1.

2870 Neural Comput & Applic (2017) 28:2869–2878

123

RETRACTED A
RTIC

LE



2 Materials and methods

2.1 Data acquisition

Echocardiography images from 100 subjects (50 normal

and 50 CHF) were obtained based on signs and symptoms

of CHF and assessment of left ventricular ejection fraction

(LVEF) from an experienced cardiophysician. Ejection

fraction is a measure of left ventricular systolic function

denoted by ratio of the stroke volume ejected each beat to

end diastolic volume. LVEF\ 45% carries considerable

adverse outcome among patients with CHF [18]. Hence,

present study included patients with CHF having

LVEF\ 45% and age-matched healthy volunteered con-

trols. Ethical clearance has taken from the institute ethical

committee, and the control subjects were the normal indi-

viduals who appeared for routine health checkup.

Echocardiography examination was performed using

VIVID E7 dimension GE healthcare system. Complete

echocardiography examination was performed, and left

ventricle DICOM image of four-chamber view was stored.

These normal and CHF DICOM sequences were converted

to JPEG image format with a resolution of 600 9 800.

Three image samples were selected from every subjects

(one from the center, one from 20 images before and after

the center image) for this study. The details of age, sex and

number of subjects in each class are given in Table 1.

Figure 2 shows the typical normal and CHF ultrasound

images used in this study.

2.2 Data preprocessing

Preprocessing is very important step to get an accurate

result in the classification problem. Initially, all the images

are subjected to adaptive histogram equalization in order to

enhance the contrast [19] and morphological operators with

disk = 5 [25], to remove the aforementioned information.

Further, connected component analysis is performed to

generate the bounding box around the four-chamber heart.

2.3 Variational mode decomposition (VMD)

The four-chamber echocardiography images taken from

normal and CHF subjects are visually non-separable. The

conventional bidirectional decomposition methods such as

wavelet, Gabor, shearlet, curvelet are may not be suit-

able as they are not adaptive corresponding to the signal

[21]. Also, they represent various image components by the

same frequency spectrum. Hence, this paper uses two-di-

mensional (2D) VMD which adaptively decomposes an

input image into k discrete number of spectral bands. 2D

VMD is similar to 1D VMD and minimizes the bandwidth

of the sub-signals or modes while retaining data fidelity. In

frequency domain, 2D analytic signal can be expressed as

[21],

l̂AS;k xð Þ ¼ 1þ sgn x;xkð Þð Þl̂k xð Þ ð1Þ

Then, the functional to be minimized to find the optimal lk
in the Fourier domain is given by,

Fig. 1 Graphical representation of the proposed algorithm
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where f is a signal, l is its mode, x is the frequency,

k = 1, …K is number of modes, and a is bandwidth con-

straint. Further, the optimization is done using alternate

direction method of multipliers (ADMM) [22–24]. Thus,

using Lagrangian multiplier (k) into the quadratic penalty

term, Eq. (2) can be simplified as,
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Further, the modes are updated by simple Wiener filtering,

directly in Fourier domain with a filter tuned to the current

center frequency. Then, the center frequencies and the

modes are updated. In this work, preprocessed images are

resized to 64 9 64 using bicubic interpolation [20] and the

2D VMD is executed for the parameters K = 5 and

a = 5000 as shown in Fig. 3. 2D VMD is a fully adaptive

non-recursive method which uses minimal parameters for

decomposition. These adaptive decomposition results in

different texture patterns for normal and CHF subjects as

they depicts structural variation among them. These dif-

ferent patterns are shown in Fig. 3.

2.4 Texture feature extraction

Texture features describe various image properties such as

regularity, coarseness and smoothness which basically

represent mutual relationship among neighboring pixel

intensities that are repeated over an area larger than the size

of the relationship [26]. These properties play a vital role in

pattern recognition and classification.

Table 1 Details of data used in

this study
Categories No. of samples No. of male patients No. of female patients Age range (years)

Normal 150 35 15 28–79

CHF 150 32 18 08–79

Fig. 2 Typical ultrasound images of normal and CHF classes
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2.4.1 Co-occurrence matrix

Gray-level co-occurrence matrix (GLCM) describes the

possible combination of gray levels which often occur in a

particular image. It also depicts the interrelation among

neighboring pixels [26–29]. It computes various second-

order statistical measures such as homogeneity (f1), con-

trast (f2), correlation (f3) and entropy (f4) [29, 30]. In

addition, gray-level difference statistical measures can also

be computed using difference vector. The obtained

difference vector can generate mean (f5), contrast (f6),

entropy (f7) and angular second-order moments (f8) and

their different variants [31].

2.4.2 Run length matrix

Run length matrix Ph(i, j) depicts the successive appear-

ance of ith gray level for j times with different orientation

h, where j is known as run length. Generally, the run length

matrix will be computed for h = 0�, 45�, 90� and 135� in

Fig. 3 Results of 2D VMD of normal and CHF images for five modes
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order to determine following features [32]: long-run

emphasis (f9), short-run emphasis (f10), gray-level non-

uniformity (f11), run percentage (f12), run length non-

uniformity (f13) and their different variants.

2.5 Feature optimization and selection

2.5.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary

computation method inspired by swarm intelligence

[33, 34]. Generally PSO achieves objectives in a search

space using personal as well as social behavior of the

populations (swarms). The optimal solution is computed

based on iteration using personal best position obtained in

the previous iteration (pbest) and population best position

(gbest) [33]. Consider particles zi = (zi1, zi2, …zid), in a

search space with dimension d. Each particle in the search

space has the velocities vi = (vi1, vi2, …vid). The PSO

examines optimal solution by updating the position of the

particles and its velocity using following equations

ztþ1
id ¼ ztid þ vtþ1

id ð4Þ

vtþ1
id ¼ w � vtid þ a1 � r1 � pid � ztid

� �
þ a2 � r2 � pgd � ztid

� �

ð5Þ

where w is the inertia weight, a1 and a2 are acceleration

constants, r1 and r2 are the uniformly distributed U[0, 1]

random values, and pid and pgd represent the pbest and gbest
in dimension d. Moreover, PSO is terminated for the pre-

defined maximum iterations or better fitness value.

2.5.2 Support vector machine (SVM)

SVM separates the class members by generating hyper-

planes which are parallel to optimal hyperplanes [35].

Generally, SVM classifier is designed for two-class clas-

sification problem and it is less vulnerable to over fit. In

case the features cannot be separated by a linear function, it

will be mapped to the high-dimensional feature space using

nonlinear kernel functions. In our study, we have used

different kernel functions for the analysis.

Polynomial function of degree d is given by

K xi; xj
� �

¼ 1þ x0i; xj
� �d ð6Þ

where d is different polynomials [35].

RBF with variance r2 is given by,

K xi; xj
� �

¼ e
�

xi�xjj jj j2
2r2 ð7Þ

We have also used statistically efficient tenfold cross-val-

idation technique to build this classification model [36]. In

this, complete dataset is roughly divided into ten partitions

(folds). Each time, one portion is used for testing and left

over nine portions are used for training the model. The

average of different statistical measures such as accuracy,

sensitivity, specificity and positive predictive value (PPV)

of all tenfold is computed to evaluate the performance of

the system.

2.5.3 Combination of PSO and SVM

This section provides the details of the combination of PSO

and SVM in order to select the best minimum features with

maximum performance. Initially, every single particle is

initialized in a defined dimensional space with random

position. Next, the fitness of the particle is evaluated using

SVM. In this study, we have used classification accuracy as

a fitness measure. Further, the position vector of the best

particle will be saved as a better fitness. Likewise, for the

global best the position vector is saved, if particle’s fitness

is better than the global fitness. Finally, the position and

velocity of the particle are updated iteratively until stop-

ping condition is satisfied [37]. In this work, we have used

tenfold cross-validation scheme to select the features.

Thus, the ratio of testing samples to training sample was

kept nearly 1:9. The program is executed 10 times to

enable each part of the data can take part in both training

and testing phases.

3 Experimental results

The input images are decomposed using VMD up to scale

five. Various texture features such as mean, contrast,

entropy, angular second-order moments, long-run empha-

sis, short-run emphasis, gray-level non-uniformity, run

percentage and run length non-uniformity are extracted

from the decomposed VMD coefficients yielding

30 9 5 = 150 texture features. These features are opti-

mized using PSO to obtain maximum performance with

minimum number of features. In this work, we have used a

set of 5, 10, 15 and 20 features using PSO. In this exper-

iment, SVM classifier with different kernels such as poly-

nomial of order 1, 2, 3 and radial basis function (RBF) are

used. The mean value of the best ten texture features

(TX105, TX149, TX33, TX26, TX12, TX114, TX48,

TX91, TX115 and TX129) which are selected using PSO

and SVM is shown in Fig. 4. The performance for SVM

classifier with different kernel functions and various

number of features are presented in Tables 2, 3, 4 and 5.

Proposed method achieved highest performance of 99.33%

accuracy, 98.66% sensitivity, 100% specificity and 100%

PPV for polynomial (order 1) kernel using ten features.

Table 6 shows the mean and standard deviation of the used

ten features. Few other kernel functions also give similar
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high performances but with more number of features.

Figure 5 shows the performance of the method using dif-

ferent features. Figure 6 shows the consolidated perfor-

mance of four group of features for different kernel

functions. It can be observed that the polynomial of order 1

and 2 have maintained consistent performance among

different groups as compared to other kernel functions. The

complete system is developed and tested under MATLAB

environment.

4 Discussion

This paper presents an automated system for the charac-

terization of normal and CHF subjects using echocardiog-

raphy images. The proposed method can predict CHF in its

early stage using VMD at its different scales as shown in

Fig. 3. It decomposes an image into collective band-limited

intrinsic mode functions [21], whereas used texture fea-

tures can derive efficient and quantitative descriptions of

textures among normal and CHF subjects [38, 39]. The

combination of VMD and various texture features confirms

its suitability in distinguishing two subjects using Ultra-

sound (US) images. It is very effective for minute structural

variation while shifting from asymptomatic to symptomatic

CHF stage. Figure 4 and Table 6 show that the majority of

VMD features show smaller mean values for CHF subjects

as compared to normal subjects, which helps to discrimi-

nate normal and CHF classes. In addition, extracted texture

features coupled with the combination of PSO and SVM

classifier with polynomial kernel (order 1) have achieved a

maximum accuracy of 99.33% (shown in Table 3). Method

achieved a maximum sensitivity of 98.66% which is

comparable to the performance of other kernels. It can also

be observed that VMD gives linear separation [21],

whereas texture signifies the spatial distribution of gray

levels [38, 39]. Hence, VMD with texture provides dis-

crimination between two classes using movements of four

chambers. Proposed method is the first attempt in classi-

fying normal and CHF echocardiography images using

combination of PSO and SVM scheme. The experiment is

repeated for different set of features (5, 10, 15 and 20) with

various kernels. It is observed that our method produced

maximum accuracy for a set of ten best features, whereas

the performance will decline for increased set of features as

shown in Fig. 6. Another advantage of the proposed

method is utilizing tenfold cross-validation strategy [36].

Our method is also tested for threefold, fivefold and sev-

enfold cross-validation [40] and obtained the same results.

We have found that the proposed method achieved a

specificity of 100%, which signifies that the all normal

subjects are correctly classified as normal. Hence, it redu-

ces the workload of clinicians by 50%. Thus, they need to

focus their attention only on CHF patients.

The proposed method availed a computation time of

0.0125 s during training and 0.0008 s for testing 300 US ima-

ges using a system configuration of Core i5 with 4 GB RAM.

The salient characteristics of this CAD system are as

follows:

1. It achieves a classification accuracy of 99.33% in

classifying normal and CHF subjects.

2. It requires only ten features to achieve the highest

performance and hence can be used as a standalone

system.

3. Segmentation techniques are not needed, as the entire

image is subjected for the analysis.

4. Detection of CHF at an early stage can help the

patients to take suitable medication and hence save

life.

5. It assists the clinicians by reducing their workload.

Hence, it can be used in their daily screening.

Fig. 4 Mean value of used

texture features (TX) for two

classes
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The limitation of this work is that we have used only 50

normal and 50 CHF patients. Our system need to be tested

with huge number of normal and CHF patients. Also, more

early stage of CHF patients is to be used belonging to

diverse background.

5 Conclusion and future work

This study focuses on the discrimination of normal and

CHF patients caused due to DCM using US images. The

proposed method achieved an average accuracy of 99.33%

by combining VMD and texture features. This combination

is able to capture the dissimilarity in the movements of four

chambers of normal and CHF subjects. The obtained

acceptable performance will prove that the proposed

method can predict CHF caused due to DCM, and hence,

the patients can undergo early treatment which may save

their lives. Echocardiography can help to identify the CHF

due to DCM in its initial asymptomatic phase which can

benefit the patient to get early medication. Moreover,

echocardiography-based diagnosis analyzes the structure

and function of the heart which can indicate various cardiac

abnormalities. In future, we intend to develop CAD tool for

other cardiovascular diseases such as ischemic heart dis-

ease, congenital heart disease, valvular heart disease and

systemic diseases. Also, we intend to develop a single

Table 2 Performance

evaluation using SVM classifier

with different kernels using five

features (ten iterations)

Kernel TP TN FP FN Acc. (%) PPV (%) Sen. (%) Spe. (%)

Poly order 1 143 150 0 7 97.66 100 95.33 100

Poly order 2 148 149 1 2 99 99.33 98.66 99.33

Poly order 3 145 149 1 5 98 99.31 96.66 99.33

RBF 135 141 9 15 92 93.75 90 94

TP true positive, TN true negative, FP false positive, FN false negative, Acc. accuracy, PPV positive

predicted value, Sen. sensitivity, Spe. specificity

Table 3 Performance

evaluation using SVM classifier

with different kernels using ten

features (ten iterations)

Kernel TP TN FP FN Acc. (%) PPV (%) Sen. (%) Spe. (%)

Poly order 1 148 150 0 2 99.33 100 98.66 100

Poly order 2 148 148 2 2 98.66 98.66 98.66 98.66

Poly order 3 145 138 12 5 94.33 92.35 96.66 92

RBF 130 147 3 20 92.33 97.74 86.66 98

Table 4 Performance

evaluation using SVM classifier

with different kernels using

fifteen features (ten iterations)

Kernel TP TN FP FN Acc. (%) PPV (%) Sen. (%) Spe. (%)

Poly order 1 146 149 1 4 98.33 99.31 97.33 99.33

Poly order 2 146 147 3 4 97.66 97.98 97.33 98

Poly order 3 128 133 17 22 87 88.27 85.33 88.66

RBF 124 143 7 26 89 94.65 82.66 95.33

Table 5 Performance

evaluation using SVM classifier

with different kernels using

twenty features (ten iterations)

Kernel TP TN FP FN Acc. (%) PPV (%) Sen. (%) Spe. (%)

Poly order 1 143 149 1 7 97.33 99.30 95.33 99.33

Poly order 2 143 145 5 7 96 96.62 95.33 96.66

Poly order 3 133 132 18 17 88.33 88.07 88.66 88

RBF 131 142 8 19 91 94.24 87.33 94.66

Fig. 5 Accuracy of the proposed method for SVM with polynomial

of order 1 using different features
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scalar value for the identification of CHF using huge

diverse dataset.
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