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Abstract This paper investigates a class of non-au-
tonomous cellular neural networks with mixed delays.
Based on the basic theory of the weighted pseudo-almost
periodic functions, several sufficient conditions are estab-
lished to ensure that every solution of the addressed model
exponentially tends to a weighted pseudo-almost periodic
solution as t — 400, which generalize some existing ones.
In particular, some numerical examples are also given.
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1 Introduction

Recently, neural networks have gotten more and more
attention because of its widespread application in a variety
of areas, such as optimization problems, pattern recogni-
tion and signal and image processing [1-7]. In many
practical problems, the periodic solution of the model is
often required to be either globally asymptotically stable or
globally exponentially stable [8—13]. In fact, there are a
few pure period phenomena in nature, so the research on
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almost periodic phenomenon or pseudo-almost periodic
phenomenon is more practical. In the past few decades,
many research results have been obtained for the existence,
uniqueness and stability of periodic solutions, almost
periodic solutions, asymptotically almost periodic solutions
and pseudo-almost periodic solutions of the following
cellular neural networks (CNNs) with mixed delays
[14-20]:

90 =~ a(0x(0) + 3 By0F(5(0)

+ i By (t) Fj(x;(t — 7;5(1)))
=
+jzl:dij(t)/0 03 (1) F;(x; (1 — w))du + L(1),

ieN=1{1,2,..n}
(1.1)

Here x;(¢) is the ith neuron state, 4,(¢) represents the rate of
decay, F;, F; and F; are the activation of the ith neuron.
The detailed biological description on the input [;(¢), the
coefficients ﬁ,»j(t), B;i(2), d;j(t) and delays t;;(t), o;;(u) can
be found in [15-17].

Most recently, as mentioned by Al-Islam et al. [21],
compared with pseudo-almost periodic phenomenon,
weighted pseudo-almost periodic (WPAP) phenomenon
which can be accounted as an almost periodic process plus
a weighted ergodic component is more frequent. As far as
we know, the WPAP problem for CNNs with mixed delays
has not been sufficiently studied.

Inspired by the above discussions, in this manuscript, we
aim to challenge the analysis problem on the existence and
exponential stability of WPAP solutions for (1.1).
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2 Definitions and preliminary lemmas

Throughout this paper, U denotes the collection of func-
tions (weights) pt: R — (0, +00), which are locally inte-
grable over R and satisfy

im u([=z 2])

= /j u(x)dx (z > 0).

Z

= +00, where u([—z, 7]):

Define the following notations:

x={x}= (il ts {1l
W+ = sup |W(t)|, W™ =inf [W(7)],
teR

teR

(x17x27' 55X ) ‘x| :%E}Vxlxilv

oo = {ulu € U, inf p(x) = 1 > 0},

p(x + o)

<00,
()

UL = {/,t,u € U, lim sup

Jx|— o0
p((=(z+a), z+ )
u(l=z 2])
Furthermore, BC(R,R"), AP(R,R") and PAP(R,R")
denote, respectively, the set of bounded and continuous

functions, almost periodic functions and pseudo almost
periodic functions from R to R”", and

PAP!(R,R")

lim sup
7—+00

<+o0, Yo € [R{}.

1 Z
=@ € BC(R,R")| lim 7/ w(t)|e(t)|de=07;.
{oeBC® R tim s | ulow]ar=0)
Then, (BC(R,R"),||-||,,) is a Banach space with the

supremum norm ||f||, :=sup,eg [If(#)|]. A function f¢€
BC(R,R") is called WPAP if it can be expressed as

f=h+o,

where h € AP(R, R") and ¢ € PAP(R,R"). The collec-
tion of such functions will be denoted by PAP*(R, R"). In
particular, fixed u € UL, (PAP*(R,R"), ||.||.,) is a Banach
space and PAP(R, IR") is a proper subspace of
PAP*(R, R") [22, 23].

According to the actual meaning, we consider initial
condition

x(s) = ¢(s), s € (—o0, 0], @ € BC(R,R"), i € N.
(2.1)

@ Springer

Throughout this paper, for i, j € N, it will be assumed
that B, By, dy,I; € PAP*(R,R), 7; € C(R, [0, +00)),
t; € C(R, R), and

1 t+T
a;,7j € AP(R,R), M[a;] = lim —/ a;(s)ds > 0,

T—+oo T J;
Vs € R.
(2.2)

—oco<T;(s) <1,

We suppose that the parameters of (1.1) and activation
functions in this paper satisfy the following assumptions
for i,j € N.

(Ep) there exist g; € BC(R
K; > 0 such that

,(0,4+00)) and a constant

e*fé a;j(u)du SKieifl awdu t, seR, t—s>0.

(E1) F;, F; and F; are global Lipschitz with Lipschitz
constants LF L} and LF respectively.

(Ez) gy : [0, —|—oo) — R is bounded and continuous, and
|o;;(¢)|e" is integrable on [0, +00) for some k > 0.

(E3) ue UL, and F(ax)=sup "(x<+>“)
xer M

is bounded on

00?

arbitrary closed subinterval of [0, +00).
(E4) there are constants y; > 0 and &; > 0 such that

suﬂg{—ai(r) +K (&S (1B + 18,01
te j=1

+|d,,(¢)|/0 |aij(u)duLf)fj]}< —,<0.

Lemma 2.1 Suppose that f€PAP*(R/R), o€

C!(R, R) is almost periodic, 9(t) >0 and ¥ (t) <1 for all

t € R. Then, f(t — 9(t)) € PAP*(R, R).

Proof Let

f=h+o,

where & € AP(R,R)

h(t — 9(t)) € AP(R, R).
In view of (E3), we have

p)  _p(e=9(0) +9(1) _
u(t = 9(1))

and ¢ € PAP((R,R). Clearly,

< sup [F(a), forallz € R.
W= 00)

Letting z>1, f = sup [F(a) and s =1¢—

1
SUP Ty X SU
teR aeld~, 97F]

9(z) give us
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/Iqot—
z,

(e = 9(0)|lt — 9(1))ds

|u(2)dr

= u([—a B

u(t)
SR e — ()

1 z—9(z) 1
() /_Z_W_Z) [()lu(s) sup g5y ds

u(t)
X sup ﬂ(t))

teR /‘(
1 7—9(z)
e / o [Pl

<Bu([—(z+19+), 7+ 97) 1
- w([=z, 2]) p([=(z+9%), z+97]

z+ot
/ p(5)]a(s)ds
—(z40%)

u([—(z+9"), z+97]) 1
)

7+t
/ lp(s)]a(s)ds
—(z40%)

which, together with the fact that

) 1 / +9+
lim s)|u(s)ds =0,
I G99, 2707 gy PO

implies that

e L

olt — 19( )) € PAP!(R, R).

|u(z)dr = 0, and

This finishes the proof. O

Lemma 2.2 (see [24, Lemma 2.2]) If ¢ € PAPy(R,R),
then, [, |a;i(s)||e(t — 5)|ds € PAP,(R, R).

Lemma 2.3 Fori,j € N, if x; € PAP*(R, R), then,
B (0)Fj(x;(t — 1;5(1))), By (1)Fi(xi(1)) € PAPH(R, R),

and
d;; (1) /OOC a,-j(u)Fj(xj(t —u))du € PAP*(R,R).

Proof By Lemma 2.1, we have
xj(t — 1;(t)) € PAP*(R,R), i,j € N.

Furthermore, let

xi(t — ;1)) = xj-‘(t) + (1), where x;’ € AP(R,R),

xf € PAP4(R,R), i,j€N.

Then, for all € R, we get
By (1) Fj(x;(t — 7;5(1)))

= [Bi(0) + B (OIF; () (1) + x7 (1))

= BL(OF; (X} (1) + B (1) F; (< (1))

+ By (O)IF () (1) + x7 (1)) — F3 (1 (1)),
where B € AP(R, R), B} € PAP{(R,R), i,j € N. Clearly,
Bi()F;(x(1)) € AP(R, R),

i,jeN. (2.3)

Now, we choose constants o; and nj such that

o = sup [F;(x} (1)), n; = sup |L] B;(1)|-
teR teR
ZH+oclu

— /Iﬁ
()

— Fi(x} (t))

< lim
z—+00 Iu

Consequently,

0< lim

/ B0
/ 1L By (1) 8 (1) (1)

= /Iﬁ
- /\“’ ) (2)

It follows from (2.3) that
Bii () F;(x;(2 —
Similarly,

Bij(1)Fj(x;(1)) € PAP!(R, R),

+ lim
Z—+00 ‘u

<o; lim
4.—’+OO ‘L[

+ 11] leJroo 'u

=0.

t;(1))) € PAP*(R,R), i,j € N.

i,j EN.

Next, let #; € AP(R, R) and ¢; € PAPj(R, R) such that
xj(1) = hi(1) + ;1)

Therefore,

i,jEN.

a0 | " oy W)t — w))du

(2.4)
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where d} € AP(R,R),dj] € PAP{(R,R),7 € R, i,j € N.
In view of (E} ), the definition of AP(R, R) and Lemma 2.2,

we can deduce that

dli(1) /OC o (u)F;(hj(t — u))du € AP(R, R), (2.5)

0
and
/0 b | (s)||@;(t — s)|ds € PAPG(R, R), i,j €N.

(2.6)

Hence,

i ! e OOJ~-u~~~—u u
0< tim s [ 14500 [ et —u)d

+ay() [ " oy WIF gyt — u) + Byt — )

— Fy(hy(t — u))ldulu(o)dr

< su o:(u)F;(h;(r — u))du| lim
t€£| j( ) ( ( )) |rH+oo,u([ Z])
<[ Jase
F
L tim s // 030y ¢ — )|
duu(r)de
:0,

which, together with (2.4) and (2.5), implies that

dz:i(f)/ aij(u)Fj(x;(t —u))du € PAP*(R,R), i,j€N.
0

This proves Lemma 2.3. O

Lemma 2.4 Define a nonlinear operator G by setting
(Go)(1) —{ / RRCE {;, IZﬁ,, Fi(&i(s)
+& Zﬁ,, Fi(&oi(s

+C1 ! Zdlj / O_U (éj(Pj(s - V))dv + 6illi(s):| ds}’

o€ PAP“(R,R”).

= 7(5)))

Then Go € PAP*(R, R").

Proof According to (Ep) and (E,), it is easily to see that
Go € BC(R,R") by the argument in Lemma 2.1 of [10].

From Lemma 2.3, we obtain that there are H; €
AP(R, R) and ®; € PAP/(R, R) such that
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ENY B OF(&e(0) + & Zﬁ,, §(&i(t = (1))
j=1

n

+& > d;(1) /0°° 0 (V) F(&;(t = v)dv + &' Li(r)

= H;j(1) + (1) € PAP(R, R), i,j € N.

Noting that M[a;] > 0, using the theory of exponential
dichotomy in [25], we get that

/ o S (045 € AP(R, R) 2.7)

satisfies
Y1) = —ai(t)y(t) + Hj(t), i,j €N.

Arguing as in the verification of [24, Lemma 2.2], one can
show

+00
L )// e @;(t — u)|dup(r)dt = 0, i.j € N.
’ -z
Then
ngginw - // e~ 0 0y(s) ds)dr
I —zJ—-
+00
i § B AL RO
) —Z
:O,
and
t 4
/ ¢ ] @, (5)ds € PAPE(R,R), ij € N.

Combining with (2.7), it leads to

(Go), (1) = /_ " et H(5)ds

o0

t t
n / ¢ J Wi (5)ds € PAPH(R, R),

o]

iL,jEN,

and ends the proof of lemma 2.4. O

3 Exponential stability of WPAP

Theorem 3.1 Assume that (Ey), (E1), (E2), (E3) and (E4)
hold. Then, system (1.1) has a unique WPAP solution

x*(t) € PAP*(R,R"), and there is a constant 1€

(0, min{K,miAIll a: }) satisfying
1S
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x;(t) —x}(t) = O(e ™) ast — +o0, i €N,

where x(t) is a solution of system (1.1) with initial condi-
tion (2.1).

Proof After making the following transformation,
yi(t) = & 'xi(1),i €N,

one can show

Yi(t)=—ai(t)yi(t) +¢&; ‘Zﬁ,, j(&(1))

e lzﬁ,, (&t —1(1)))

+& 12% ) [ e G- & 1),

IEN.
(3.1)

For ¢, e PAP*(R,R"), in view of (Ey), (E1), (E2), (E3)
and (E4), we have

[(Go),(1) — (G¥),(1)]
= ‘/’ e Jrton [éi_l iﬁﬁ(s)(Fj(éjQDj(S)) — Fi(&9;(5)))

+& Z,BU
1Zd,, /(r,, (Fi(&epi(s —

/ — f u)du

Hayol [ |a,»,»<u>\duLf>zj] sl () = (1)l
/7 ,f u) du - ]d?”(f)( ) ‘//(I)Hﬁo

[t ) 0o

o) = w0l < max{ 1= 2 Hloto) ~ w0l

i

& Z(\BU(S)IL,-F +1By(sILf
j=1

which, together with the fact that 0< mezllvx{l — 5 <1,

entails that the mapping G is contract, and has a unique
fixed point

y* = {yj(t)} € PAP#(R7 Rn)v Gy* = y*

Furthermore, (1.1) and (3.1) imply that (1.1) has a unique
WPAP solution x* = {xf(r)} = {&y;(#)} .

Finally, by an almost identical proof to that of Theo-
rem 3.2 in [26], one can pick constants 1€

(0, min{x, min a;}) and M > Y77 | K7 4 1 such that for
1€
€N,

(X

sup{i —a(t
teR =

() / () " dut ) 5]-] } <0

F F
DIL] + 1B (1)|Lf

and
Ix(2) = % (1)[| < M{supmax & ' |oi(r) — x; (r)[}e ™
<0 IEN
for all r > 0,
which ends the proof of Theorem 3.1. O

4 An example and its numerical simulations

1 arctan (1)
=20 i

= ! 1+3s'nt
T\ T2

1 3 = 1. 1
ug(t):ﬁ<1+§cost> By(#) =0, B ()—gsm2t,dl-j(t)—600521,

1 1
I;(t) = (20 + i) | cost| + p(t), 0(t )_1_06_2171',']([) :Tj(l +sin2z)
p(s)=e*forall s>0,p(s) =1 forall s<O0.
4.1)
Obviously, one can select
1 _
a() =150 &G=LT=m x=1, LI =0,
F 1 3
Lf:Lf:%a K; = em, i7j:1727
and

w(t) = ¢ forall >0, u(t) =1 for all <0

such that CNNs (1.1) with (4.1) obey all the conditions
mentioned in Sect. 2. Then, system (1.1) has a unique
WPAP solution x*(f) € PAP*(R, R?), and all solutions of
system (1.1) converge exponentially to x*(¢) as t — +4oc.
Here, the exponential convergence rate 4 = 0.01. Figure 1
gives the state response of the neural network CNNs (1.1)
with (4.1) and three groups of different initial values which
are (17,—14), (—=12,15), (11, —12).

Remark 4.1 1t is well known that the exponential sta-
bility of WPAP solutions plays an important role in
describing the dynamics of differential equations. In this
article, by means of the fixed point theorem and some
differential inequality technique, some new criteria are
derived for the existence and exponential stability of
WPAP solutions of the considered model. It is also worth
pointing out that the sufficient condition is simple and
easy to verify. As shown above, the obtained results are
improvement and extension of some previously
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Fig. 1 Numerical solutions of CNNs (1.1) with (4.1) for three groups
of different initial values

published related results in [9-18, 24-28]. In addition,
the method in this paper can also be applied to the study
of other CNNs models.
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