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Abstract Recently, numerous research works in retinal-

structure analysis have been performed to analyze retinal

images for diagnosing and preventing ocular diseases such as

diabetic retinopathy, which is the firstmost common causes of

vision loss in the world. In this paper, an algorithm for vessel

detection in fundus images is employed. First, a denoising

process using the noise-estimation-based anisotropic diffu-

sion technique is applied to restore connected vessel lines in a

retinal image and eliminate noisy lines. Next, a multi-scale

line-tracking algorithm is implemented to detect all the blood

vessels having similar dimensions at a selected scale. An

openly available dataset, called ‘‘the STARE Project’s data-

set,’’ has been firstly utilized to evaluate the accuracy of the

proposed method. Accordingly, our experimental results,

performed on the STARE dataset, depict a maximum average

accuracy of around 93.88%.Then, an experimental evaluation

on another dataset, named DRIVE database, demonstrates a

satisfactoryperformance of the proposed technique,where the

maximum average accuracy rate of 93.89% is achieved.

Keywords Segmentation � Filtering � RGB noise model �
Anisotropic diffusion � Vessel � Retina

Abbreviations

ANRAD Adaptive noise-reducing anisotropic diffusion

filter

DPAD Detail preserving anisotropic diffusion

FBAD Flux-based anisotropic diffusion

NLF Noise level function

MLE Maximum likelihood estimator

FPR False-positive rate

MAA Maximum average accuracy

MSSIM Mean structural similarity index measure

PMAD Anisotropic diffusion of perona and malik

SNR Signal-to-noise ratio

SRAD Specle reducing anisotropic diffusion

TPR True positive rate

List of symbols

x Image pixel

f Response function of a camera

L Irradiance image

I Image intensity

IN Noisy image

Ns Multiplicative noise

Nc Additive noise

rc
2 Variance of additive noise

rs
2 Variance of multiplicative noise

Nq Quantization noise
P2 Noise model

IE(.) Expectation of a random variable
P2 Mean of principal components

xg Eigenvectors of principal components

m Number of retained eigenvectors
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ag Unknown parameters of noise model

g Index of unknown parameters of noise model

i, j Spatial coordinates of current pixel x

wi,j Window centered at current pixel

c Instantaneous coefficient of the variation of

the image

cn
2 Instantaneous coefficient of the variation of

the noise

u Diffusion function

Var Local variance

I
2 Square of local mean intensity

Dt Step time

iter Iteration number of ANRAD filter

r Gradient operator

div Divergence operator

j Discretization number

t Continuous scale parameter

G Convolution kernel

q Derivative operator

rmin Minimal scale

rmax Maximal scale

H Image orientation

Cr Response function at scale r
Cmulti Multi-scale response

d
! Unitary vector of direction H

v!1 First eigenvector of Hessian matrix

v!2 Second eigenvector of Hessian matrix

k1 First eigenvalue of Hessian matrix

k2 Second eigenvalue of Hessian matrix

r Radius vessel

[tmin, tmax] Scale range

I
0

Interpolated image

Q11 ; Q12 ;

Q21 ; Q22

Four nearest pixel values of pixel x

di Displacement along i-axis

dj Displacement along j-axis

Thres Threshold on norm gradient of image

N Iteration number of PMAD method

1 Introduction

Recently, numerous research works in the retinal-structure

analysis has been performed to analyze retinal images for

diagnosing and preventing ocular diseases, such as diabetic

retinopathy (DR), which is the most common cause of

vision loss in this world.

These approaches are also employed in the diagnosis of

certain systematic disorders such as several cardiovascular

diseases, hypertensive retinopathy and risk of stroke.

Actually, the retinal segmentation techniques assist the

ophthalmologists and the eye-pathology experts by

minimizing the time required in eye screening, reducing

the costs and providing the most efficient disease treatment

and management systems [1–4]. Earlier, eye-structure

detection methods were defined in terms of structures that

they would segment [5–7]. For example, the blood vessel

extraction was classified into two sets, such as pixel-pro-

cessing-based methods and vessel–tracking-based methods

[8], and the optic disk segmentation techniques included

the deformable-based and shape-based template matching

techniques [9]. However, the use of these techniques in

retinal disease diagnosis has been enhanced greatly in the

last few decades. Quantitative analysis of the retinal

structures (vessels, optic disk, fovea, macula and optical

nerve fiber layer) may be complex and needs to have

attention and time. Figure 1 illustrates these main struc-

tures. Figure 1a shows the optic disk and the fovea (orange

circles). The bright area in which many vessels converge is

the optic disk, the connection between the brain and the

eye. The dark area in the image is the fovea which is in

charge of creating an image from the incident light. Fig-

ure 1b presents a manual segmentation of a retinal vessel

network that is in charge of the blood and the oxygen

supply to the retina. The retinal blood vessel network can

inform us abnormal changes induced by eye disorders and

first symptoms of some systemic diseases like the DR

(Fig. 2). In other words, the information about the vessel

morphologic changes, the branching pattern, the length, the

width and the tortuosity gives us data on both the abnormal

changes and the degrees of disease severity [10–13]. Thus,

the automatic detection of a retinal vessel network becomes

the most important issue in the detection of the DR. A lot

of works have been put forward to detect the 2D complex

vessel network [14–16]. The retinal vessel detection is a

specific line detection problem, so several works of vessel

segmentation are based on the line detection operator.

An accurate vessel detection algorithm in retinal images

is generally a complex task because of several reasons. The

difficulties include the low contrast of images, the

anatomical variability of vessels and the presence of noise

due to the complex acquisition system. Aiming to solve

those pre-mentioned problems, generally there exist two

stages in the retinal vessel detection process: preprocessing

and vessel extraction. Some approaches are only based on

the second step [17, 18], which is not desirable because the

obtained experimental results contain false-positive vessel

pixels caused by the existing noise in the original image.

Therefore, the preprocessing stage is often necessary

before extracting any relevant information from an image.

The aim of this stage is to improve the visual appearance of

images by reducing noise without affecting small vessels

and highlighting edges within the image. The main tech-

nique used in preprocessing is filtering. The accuracy of the

vessel segmentation process increases by the filtering
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capacity. The captured images are often corrupted by

various noise, which is a random variation in intensity

values. The most common kinds of noise found in medical

imaging are the additive noise, called also the Gaussian

noise, the Speckle (or multiplicative) noise and the Shot or

Poisson noise. In the literature, there exist numerous

techniques that mainly aim to filter out the noise from

images. Those filtering techniques can be divided into two

categories, linear and nonlinear. The linear filters, such as

the Gaussian and Winner filters, are especially good for

removing the Gaussian noise and in several cases for the

other kinds of noise as well. The linear filter updates the

value of a pixel by weighted the sum of its neighborhood in

successive windows. The main problem with the linear

filters is that they tend to degrade the image details and to

blur the sharp discontinuities in an image. Instead of linear

filters, the nonlinear filters are very effective in removing

noise while retaining image details. They remove espe-

cially certain types of noise that are not additive such as the

Speckle noise. The anisotropic diffusion of Perona and

Malik (PMAD) is the most powerful nonlinear filter, which

is a multi-scale smoothing and edge detection scheme [19].

Several versions of this filter have been developed to

denoise monochrome images corrupted especially by the

Speckle noise such as the speckle reducing anisotropic

diffusion (SRAD) [20], the Flux-based anisotropic diffu-

sion (FBAD) [21] and the detail preserving anisotropic

diffusion (DPAD) [22]. The problem of such methods is

that the noise type and its characteristics are assumed to be

known in advance and constant over the whole image,

which is not actually valid in practical circumstances.

Hence, these approaches cannot give an optimal image

quality for images corrupted by other unknown noise

models. To improve the effectiveness of these filtering

algorithms, it is required to adjust their parameters

according to an accurate noise model.

In this work, a retinal vessel extraction process is

implemented, which is based on two stages. The first stage

is to denoise a retinal image using a powerful version of the

anisotropic diffusion technique, named the Adaptive noise-

reducing anisotropic diffusion filter (ANRAD). This filter

is able to determine the accurate model of noise present in

the retinal image, through which its parameters are adjus-

ted to improve its efficacy. The second stage presents a

multi-scale line-tracking algorithm to detect all the blood

vessels having similar dimensions at a selected scale.

The present paper is structured as follows. Section 2

introduces an overview of the existing literature reviews on

retinal vessel detection. In Sect. 3, the segmentation method

is elaborated in detail, where it is divided in two basic steps.

The first one presents the preprocessing task, and the second

one describes the vessel extraction process. Some of our

experiment results are addressed in Sect. 4. In Sect. 5, a

general conclusion is given about the proposed method.

Fig. 1 Main constituents of

retina. a Optic disk and fovea,

b blood vessel network

Fig. 2 Pathological changes induced by ocular illnesses and first signs of diabetic retinopathy
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2 Related works

Several methodologies have been developed to segment

retinal vessels and evaluated in the literature

[5–7, 10, 13, 23–26]. These techniques are grouped into

two different categories. The first one consists of the pixel-

processing based approaches, and the second one concerns

tracking-based approaches. The pixel-processing-based

approaches extract the vessels in two steps. First, the

enhancement of the vessel structures is effected using

detection processes such as morphological preprocessing

approaches and adaptive filters. The second stage is the

vessel shape recognition by a thinning operation or by

branch point detection to identify each pixel as either a

vessel point or a background one. All of these methods

treat the image pixel-by-pixel applying a series of pro-

cessing operations on each pixel. Some of them use neutral

networks and time frequency analysis for prediction of

individual pixels in the image if they are vessel or back-

ground. Various specific processing pixel operations are

used by several works in the literature. In [27], the

extraction of retinal vessels was carried out using the

Matched filter, which was a simple operator that combined

optical and spatial properties of objects to recognize. In this

work, the gray level profile of retinal vessel cross section

was assumed as a Gaussian shaped curve. Then, the authors

constructed 12 different kernels and employed them to

search vessel segments along all possible directions. After

that, at each pixel, only the maximum of their responses

was retained. Finally, a thresholding algorithm was applied

on the resulting image response in order to eliminate false

detections and to obtain a binary representation of the

retinal network. In [28], another version of matched filter

was presented, which used local and global thresholding

properties to segment the retinal vasculature. Some algo-

rithms based on image ridges using differential filters have

been utilized to detect vessels from retina images. In [29],

the authors employed a vessel centerline detection

approach and multi-directional morphological bit plane

slicing to extract the blood vessel network from the back-

ground of the retinal image. First, the blood vessel cen-

terlines were detected, in four orientations, using the first

order derivative of the Gaussian filter. The final response of

the vessel centerlines was given by combining the obtained

four responses. Then, two maps were obtained for the

shape and orientation of vessels using a multi-directional

morphological top-hat operator combined with directional

structuring elements followed by bit plane slicing of the

vessel’s enhanced gray level image. The resulting center-

line images were combined with these maps to provide the

vasculature tree. The second category required locating,

manually or automatically, the pixels belonging to a vessel

for training the vessels using measures of some local image

properties. Most of the approaches of this category have

been based on the Gaussian functions as a model for the

vessel profile. In [30], the authors developed an algorithm

that introduced an effective approach based on a priori

knowledge of the blood vessel morphology and local

neighborhood informations of the vessel’s segment posi-

tion, orientation and width. In [31], the authors proposed an

algorithm that used a model of twin Gaussian functions for

the quantification of vessel diameters in retinal images, and

then they described the variation of the vessel diameter in

the direction of the axe vessel using a tracking technique

based on the parameters of modeled intensity profiles

through a cross section of every vessel. In [32], a tracking

process of the retinal vasculature network was suggested.

In this work, a second-order derivative Gaussian matched

filter was employed to determine the location of the center

line and width of a vessel. Beside this, the Kalman filter

was used to accurately estimate the next possible vessel

location. In [33], an accurate tracing process of retinal

vasculature was suggested. This method automatically

detected the seed-tracking points; then the vessel bound-

aries were explored by a set of 2D correlation kernels.

These points were used to trace the vasculature recursively.

3 Proposed system

Figure 3 shows the block diagram of the proposed method-

ology for the blood vessels’ segmentation in RGB color

fundus images. There are two main steps: the preprocessing

process followed by the extraction vessel process. The pre-

processing process includes the removal of image noise

using the ANRAD filter, and then the RGB image is con-

verted to grayscale image. The ANRAD introduces an

automaticRGBnoisemodel estimator in a partial differential

equation system similar to the SRAD diffusion. The esti-

mated noise model, also called the noise level function

(NLF), is considered as a function of standard deviation

depending on the RGB pixel intensities in the image. The

extraction vessel process using a multi-scale line-tracking

algorithm is employed to detect the vessels in the image,

firstly the vessels having similar dimensions at a selected

scale r. The extraction of the vessels having a ray r is

achieved by computing the similarity measure to a vessel

following the steps mentioned below (see Fig. 3):

• Determine the local orientations, at each pixel x in the

image, using the hessian matrix.

• Compute the gradient image at each pixel x.

• Compute the two gradient images using a bilinear

interpolation at a distance ±r from x in the orthogonal

direction of the vessel axis.
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• Retain the maximum of the two computed gradient

quantities.

Thus, several responses of a vessels’ tree for several

scales are obtained. Then, the final vessel tree is achieved

by retaining the maximum of all obtained vessel response

maps, called the multi-scale vesselness response. A

detailed description of the proposed methodology is pre-

sented below.

4 Materials and proposed segmentation
methodology

4.1 Image enhancement

The quality of the retinal images is not always good enough

to use if one wishes to detect automatically the 2D complex

retinal vessel network [34, 35]. These images present a

good amount of noise that makes the vessel detection a

difficult task. To reduce noise in digital images, most

algorithms in the literature have used the noise model with

some assumptions such as additive, identically distributed

throughout the image and independent of the RGB color

data. These approaches can not effectively extract the

‘‘true’’ data (or its best approximation) from the noisy

images since an accurate noise model estimator from a

single retinal image is required to enhance the denoising

task.

4.1.1 Noise model in retinal images

In the Charge-Coupled Device (CCD)-based fundus cam-

era, the light filaments passed through the lens are trans-

lated to electrical charge in the CCD sensor. After that, this

amount of charge is treated and digitally enhanced to

become a binary image. Generally, the images acquired by

the CCD digital camera systems are characterized by good

quality. However, these images are not completely free

from some kind of distortions/artifacts. In [36, 37], the

authors mentioned that there existed mainly four noise

types such as the dark current noise, the shot noise and the

amplifier and quantization noise, noted, respectively, as Nc,

Ns and Nq. Nq was the minimal noise connected to the

imaging system and is neglected in this work.

Taking into account the previously presented noise

sources (Nc and Ns), the real CCD sensor output IN can be

modeled as:

IN ¼ Lþ Ns þ Nc ð1Þ

Fig. 3 Block diagram of proposed segmentation methodology for blood vessels in retinal images
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where L is the image irradiance, Ns defines a multiplicative

noise modeled by a standard Gaussian distribution having a

mean equal to unity and a variance L�rs2, and Nc represents

an additive Gaussian distribution noise that has a zero

mean and a relative variance rc
2 [38]. Thus, the appropriate

noise model indicates a multiplicative noise component

that is defined as a function of image irradiance (or

brightness).

In the ideal imaging system, the image radiance is

recorded at the image sensor of a camera as an image irra-

diance L. This irradiance image is then converted according

to the radiometric response functions of a camera f into an

image intensity Iwhich is the output signal of the camera. In

general, it is a nonlinear mathematical function of the image

irradiance. Hence, the ideal imaging system is expressed by a

one-variable mathematical function of the image irradiance

that may be expressed as follows:

f ðLÞ ¼ I ð2Þ

In a reverse process of (Eq. 2), the measured intensities are

transformed into irradiance measurements. As a conse-

quence, (1) can be written as:

IN ¼ f ðf�1ðIÞ þ Ns þ NcÞ ð3Þ

Till now, the noise introduced in the output CCD camera is

white (uncolored). Indeed, the raw data of the image sensor

are treated by various image processing steps, including

demosaicing, gamma and color corrections, JPEG com-

pression etc., which implies that the noise properties in the

final output deviate significantly from the most used noise

model, which is uncolored (or white), uniform and either

additive or multiplicative. Therefore, to completely know

the accurate noise model, it is necessary to estimate color

noise model instead the white noise. The appropriate noise

model of Eq. (3) can be written as follows [39, 40]:

X2 ¼ IE IN � Ið Þ2
h i

ð4Þ

where IE[.] defines the expected value of a discrete random

variable, and IN and I are, respectively, the noisy output

image and the noise-free output image. The proposed Noise

level function (NLF) (or noise variance model) describes a

nonlinear function of the intensity depending on the

imaging system parameters.

4.1.2 Noise model estimation process

In the suggested work, an iterative noise model estimation

process is introduced to determine the accuracyNLF (or
P2)

in retinal images [41, 42]. The principal steps of this process

are summarized and presented in Fig. 4. To compute the

NLF, a one-channel image is considered in this paragraph

(assuming that the similar described operations are per-

formed for each RGB component of color image). The noise

modeling is performed in two parts. In the first part, a data-

base containing all the NLFs of the existing CCD cameras is

created. Then, by applying the Principal component analysis

(PCA) on the database, a general form of the approximation

model of the NLF is given and expressed as follows:

X2ðIÞ ¼
X2 þ

Xm

g¼1
agxg ð5Þ

Fig. 4 Simplified model noise estimation process
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where
P2

and xg are, respectively, the mean and the

eigenvectors of the NLF obtained by the PCA. a1 ,…, am
are unknown parameters of the noise model with m being

the retained number of principal components. In the second

part (see Fig. 4), the original noisy image is denoised

(Fig. 4a) by a low-pass filter, and then the smoothed image

is segmented into homogeneous regions using the k-means

clustering algorithm [43]. Next, the mean of noise-free

signal and the noise variance for each region are computed

and plotted on a graphe to form a scatter plot of samples of

noise variances on the estimated noise-free signals

(Fig. 4b, c). The x-axis of image intensity is discretized

into j uniform intervals, and at each one, the region having

the minimum noise variance is taken (the blue stars in

Fig. 4d). The lower envelope drawn below the sample

points in the scatter plot is the estimated NLF curve

(Fig. 4e). However, the estimated noise variance of each

region in the image is an overestimate of the real noise

level because it may contain a signal; thus the drawn curve

is an upper bound of the real NLF.

To determine the real noise model, the goal is to infer

the accurate NLF model from the lower envelope of the

samples. In other words, it is sufficient to find the unknown

ag in the expression of Eq. (5). To resolve that, an infer-

ence problem in a probabilistic framework was formulated.

Using the maximum likelihood estimator (MLE), the best

NLF approximation is given (Fig. 4f).

4.1.3 Noise-estimation-based anisotropic diffusion

To improve the retinal image quality, a method called the

Adaptive Noise-Reducing Anisotropic Diffusion (ANRAD)

[41] is employed in this work. The diagram of this method

is summarized in Fig. 5.

It is an improved algorithm of the Speckle Reducing

Anisotropic Diffusion (SRAD) method [20], where the

described iterative accurate automatic RGB noise model

estimator in the last paragraph is introduced in its partial

differential equation (see Fig. 5). To compute the noise

variance (or noise model), the SRAD needs to take a

homogeneous region from the original image and takes

the average of all the local variances as NLFs. Although

it is not hard for a user to select the homogeneous

region, it is non-trivial for the computer machine. Also,

the noise level is uniform and not depends neither on the

intensities and nor on the color in the image. To deal

with these inconveniences, the ANRAD employs the

explained automatic algorithm to estimate the accurate

noise model. The NLF is a function of noise variance

depending on the RGB pixel intensities in the image

instead of the constant value of the noise variance used

in the SRAD filter. Its general expression can be written

as follows:

Ii;j;tþDt ¼ Ii;j;t þ
Dt

wi;j

�
�

�
� div uðci;j;t; c2nði; j; tÞÞrIi;j;t

� �
ð6Þ

where rI and div are, respectively, the gradient and the

divergence operators, Dt defines the step time, Ii,j;t and i,

j are, respectively, the discrete image and the spatial

coordinates of a pixel x in the image, wi,j defines the sliding

window centered at the current pixel, and |wi,j| is its size.

wi,j is used to compute the local statistics for each pixel,

and it is equal to 5 9 5. /(…) is the diffusion function

expressed by:

Fig. 5 Block diagram of

ANRAD filter
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u ci;j;t; cnði; j; tÞ
� �

¼ 1

1þ c2i;j;t � c2nði; j; tÞ
h i

= c2nði; j; tÞð1þ c2nði; j; tÞÞ
� �

ð7Þ

with

c2i;j;t ¼
VarðI; i; j; tÞ

I
2

i;j;t

ð8Þ

and

c2nði; j; tÞ ¼
P2ðI; i; j; tÞ

I
2

i;j;t

ð9Þ

where ci,j;t defines the image instantaneous coefficient of

variation of the image which has the role of the identifi-

cation of edges and homogeneous regions in an image,

cn
2(i, j; t) controls the amount of smoothing applied to the

image—called the instantaneous coefficient of variation of

the noise,
P2(I,i,j;t) is the noise level function, and

Var(I,i,j;t) and I
2

i;j;t are, respectively, the local variance and

the mean values in the image. This filter is adapted to

denoise images, containing a mixed color noise produced

by nowadays CCD digital camera, and deals with the data

adaptive to the amount of color noise at each pixel in the

image.

4.2 Vessel extraction process

4.2.1 Extraction of local orientations

In various algorithms, such as [44] and [45], the intensity

profile of the cross section of a retinal vessel is assumed to

be similar to a Gaussian distribution (Fig. 6b). Also, in

[44, 46], the authors assumed that the intensity values

along the retinal vessels do not change much. These

common assumptions are employed in the present work.

Consider a point M(i, j) of a surface S, belonging to a

retinal blood vessel, defined by the vessel pixel intensity

k = I(i; j) in the global-coordinate system (i, j, k). Let this

function k be at least two times continuously differentiable

at i and j. We choose an orthonormal local landmark, an

original M, containing the plane tangent to S at M (plane

carried by the unit vector normal to the surface) (Fig. 7).

With this construction of landmark, the derivatives of the

first order are 0. There are only derivatives of the second

order (and higher). We assume that they did not cancel the

point M. In developing the Taylor series of u of the second

order, we get:

k ¼ 1

2!
i2
o2I

oi2
þ j2

o2I

oj2
þ 2ij

o2I

oij

� �

ð10Þ

where the derivatives o2I
oi2
, o2I
oj2
, o2I
oij

are computed at the point

M. The simplest possible masks for computing the second-

Fig. 6 a Blood vessel cross

section; b vessel cross section

intensity profile

Fig. 7 Local surface at point M. n is the unitary vector and normal at

M on the surface S, (T) is the tangent plane at the surface S, v is the

tangent vector at the section passing through M
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order partial derivatives on a sampled image are shown in

Fig. 8.

Equation (6) represents a conic whose center is M (or

summit M in the parabola case). The conical coefficients

are the elements of the Hessian matrix:

H ¼

o2I

oi2
o2I

oji

o2I

oij

o2I

oj2

2

6
6
4

3

7
7
5 ð11Þ

The Hessian matrix H is symmetric. It has thus two real

eigenvalues, k1 and k2, corresponding to the two principal

curvatures of the surface, and two eigenvectors, v1 and v2,

corresponding to the two main directions. This matrix

characterizes the form of the conical: hyperbolic para-

boloid, elliptic paraboloid, paraboloid cylindrical ….

Therefore, it defines the nature of the stationary point M,

which can be a peak point, a ridge, a saddle ridge, a flat,

minimal surface, a pit, a valley or a saddle valley. The

quantity W = k1 ? k2 is often used to identify the surface

patches [47, 48]:

• IfW\ 0, the stationary point is a peack, ridge or saddle

ridge.

• If W = 0, the stationary point belongs to a flat or a

minimal surface.

• If W[ 0, the stationary point is a pit, a valley or a

saddle valley.

Several works on blood vessel segmentation like [49]

and [50] have used the eigenvalues of H to compute the

‘‘vesselness’’ measure (or the similarity to a line) of a pixel.

Table 1 summarizes the possible relations between the

eigenvalues of H to detect the structures of various geo-

metrical forms. In particular, a pixel vessel has a small k2
and a large positive k1. Its corresponding eigenvectors

indicate singular directions: v2 gives the direction along the

(a) (b)   (c)

Fig. 8 Masks for computing second-order partial derivatives. a o2I
oi2
,

b o2I
oj2
, c o2I

oij

Table 1 All possible orientation patterns

k1 k2 Orientation pattern

L L Flat or non-preferred noise

H- L Bright linear structure

H? L Dark linear structure

H- H- Bright blob-like structure

H? H? Dark blob-like structure

(? be a maximum point, - a minimum point, H High, L Low)

Fig. 9 From left-to-right, top-

to-bottom: a part from green

channel retinal image; map of

eigenvectors of Hessian matrix;

zoom on map of eigenvectors:

Green vectors describing vessel

directions and blue vectors their

orthogonals; map of greatest

eigenvalue of Hessian matrix;

map of weak eigenvalues;

denoised image with proposed

method
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vessel, in which the intensities change a little, and v1 is its

orthogonal (see Fig. 9).

4.2.2 Multi-scaled analysis-based vesselness

• Multi-scale analysis.

The original motivation for developing a notion of scale-

space representation of a given data set comes from the fact

that the existing objects in this world are composed of dif-

ferent shapes over certain ranges of scale and may so be

identified in several different ways according to the chosen

scale of observation. To better understand this, the concept of

a branch of a tree is taken as a good example, where it makes

sense only from a few centimeters to no more than a few

meters. At the nanometer or kilometer scales, the tree con-

cept ismeaningless. At those scale levels, it is more pertinent

to talk, respectively, about molecules that constitute the tree

leaves and the forest in which the tree grows. In image

analysis, to calculate any kind of representation from image

data, it is necessary to detect information using some oper-

ators according to the data. It means that the information that

can be extracted is widely determined using both the size of

the structures of the image and the used size of the operators.

Then, some basic questions will be proposed, such as: What

is the type of operators to use? How large should they be?

And where can we apply them? Firstly, the scale-space

representation of 1D signals was introduced by Witkin [51],

and then by Koenderink [52], for digital images. The idea

behind the concept of scale space is intended to represent the

input data/signal at multiple levels or scales, in such a way

that fine scales of structures are removed. In addition, a

continuous scale parameter is associated to all the scale

levels in the multi-scale representation [51–56].

For any two-dimensional data I:IR2 ? IR, their scale-

space representation T:IR2 9 IR ? IR? is given by:

Tð:; 0Þ ¼ Ið:Þ ð12Þ

and

T :; tð Þ ¼ G :; tð Þ � I :ð Þ ð13Þ

For some family G:IR2 9 IR? ? IR of convolution ker-

nels, t is the continuous scale parameter. Besides, the

Gaussian kernel constitutes a good canonical choice for

producing a scale-space representation. A demonstration of

this unicity can be found in [52] or with more details in

[51]. In addition, the scale-space family of any signal is

defined as the solution of the heat equation. The Gaussian

kernel is chosen as the unique scale-space kernel to change

the scale. Based on this concept, the scale-space derivatives

at any scale in a scale space may be obtained directly by

differentiating the scale-space representation or simply by

convolving the input data with the differentiation of the

Gaussian operators:

Txbð:; tÞ ¼ oxbTð:; tÞ ¼ oxbðGð:; tÞÞ � IðxÞ ð14Þ

where b = (b1, b2,…, bN) constitutes a multi-index notation

for the derivative operator oxb ¼ o
x
b1
1

; . . .; o
x
bN

N

. More gener-

ally, these Gaussian operators are used as a basis to solve a

large number of visual tasks, such as motion estimation, fea-

ture detection, stereo matching and feature classification.

• Vessel tree detection.

The general idea of multi-scale analysis-based methods is

to define a scale range which can be defined from tmin and tmax

(corresponding to rmin and rmax). Then, it is discretized uti-

lizing a log scale to have precision for the low scales and

finally calculate a response map for all the scales from the

original input image [57]. In the case of retinal images, retinal

vessels appear in different scales from thin to large (Fig. 10).

For this, the minimal and maximal vessel radii to detect are

determinedby the user. Then, computing the responsemap for

one single scale needs different stages (see Fig. 11). First of

all, vessel pixels should be preselected using the analysis by

the Hessian matrix’s eigenvalues, as mentioned above. These

pixels have to be close to the center axis of the vessel. After-

ward, the vesselness response for every preselected pixel is

computed at a chosen scale r. This response needs to use the
eigenvectors of theHessianmatrix in order to define for all the

pixels of the image the orientation H(r, x), which is orthog-

onal to the vessel center axis that goes through the current

point (the pointM in Fig. 11). From this current pointM and in

this direction H, both points are located at an equal distance

r. These points are noted by M1 and M2 in Fig. 12. The

response functionCr(I) at the current pointM is defined as the

maximum of both absolute values of the first derivative of the

image intensity in the directionH among these two points. Let

Pþ ¼ Txðxþ r � d!; rÞ � ðþ d
!Þ

�
�
�

�
�
� ð15Þ

and

P� ¼ Txðx� r � d!; rÞ � ð� d
!Þ

�
�
�

�
�
� ð16Þ

Fig. 10 Blood vessels in retinal

images appear at different scales
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Then, the similarity measure to a vessel can be expressed

as:

CrðxÞ ¼ Max Pþ;P�f g ð17Þ

where d
!

presents the unitary vector in the direction of H,

and d
!¼ v!1 . Tx (.,r) defines the image gradient at the

chosen scale r, which is obtained by convolving the orig-

inal image intensity with the first Gaussian derivative

function, with r being its standard deviation. The gradient

vector Tx at the point ðxþ r � d!Þ is given by a bilinear

interpolation.

If one winches to detect a retinal vessel having a radius

r, a scale t is perceived for this latter. Therefore, the scales’

correspondents for each vessel radius are used for a multi-

scale vesselness response (see Fig. 12). For a given scalet,

a response vesselness image Ct(I) is computed from the

initial image.

Accordingly, different responses for different scales are

obtained, and the multi-scale vesselness response for the

whole image Cmulti(I) is defined as the maximal response

over all scales. For a given pixel x and a scale range

[tmin, tmax]:

CmultiðxÞ ¼ Max
t

CtðxÞ; t 2 tmin; tmax½ �f g ð18Þ

Cmulti(x) is interpreted as an indicator whose xw belongs to

a vessel and Ct(x) as an indicator whose wx belongs to a

vessel having a radius t.

4.2.3 Bilinear interpolation

Interpolation is a technique that estimates an approximate

continuous value of a function. Many different interpola-

tion techniques, including nearest neighbor, bicubic,

bilinear, are available for application in several tools for

image processing like Photoshop [58]. Among the inter-

polation applications, we can cite: image resampling,

image zooming, image scaling, image resolution

enhancement, sub-pixel image registration, and correcting

spatial distortions, and a lot more [59, 60]. In this work,

bilinear interpolation is used to compute the gradient vector

Tx at the point ðxþ r � d!Þ, which is a resampling method

that takes the distance-weighted average of the four

neighborhood pixels values to estimate a new pixel one.

The principle is illustrated in Fig. 13, where it uses

interpolation in both horizontal and vertical directions,

which leads to give a better result than the nearest neighbor

method and takes less computation time compared to the

bicubic method. Let (x, y) be the point whose unknown

Fig. 11 Illustration of

similarity measure of vessel.

From current pixel x at vessel

center of the chosen scale is

r = r and d
!

is perpendicular to

principal vessel direction
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intensity value I0 is to be found. It is assumed that the

intensity values of its four nearest neighbors Q11 ¼ Iði; jÞ;

Q12 ¼ Iðiþ 1; jÞ; Q21 ¼ Iði; jþ 1Þ; and Q22 ¼ Iðiþ1; jþ1Þ are

known in advance. Also, it is supposed that the area of the

square formed around (i’,j’) is 1.

The point in the position (i’,j’) is used to divide the

square into four areas. Each area defines the weight of its

nearest pixel. For instance, a.b defines the weight of the

pixel I(i, j), and so forth. As a result, the new value of the

pixel (i’,j’) is given by a weighted average of the four

nearest pixel values and is written as follows:

I
0 ði0 ; j0 Þ ¼ ð1� djÞð1� diÞ � Iði; jÞ½ �

þ djð1� diÞ � Iðiþ 1; jÞ½ �
þ dj � di � Iðiþ 1; jþ 1Þ½ �
þ ð1� djÞdi � Iðiþ 1; jþ 1Þ½ � ð19Þ

5 Results

The proposed approach is evaluated using two publicly

available database of real retinal images [61–63]. The

input parameters rmin; rmax, which are necessary to mea-

sure the performance of the method, are the smaller and

larger vessel radii that want to detect from the original

image with rmin ¼ 1:25 and rmax ¼ 7. The range between

these two parameters is discretized by log scale on 4

scales. Also, i ter is used as the number of iterations of

the ANRAD.

In the first experiment, the preprocessing task is applied

to remove noise in the image. To investigate the efficacy of

Fig. 12 Different responses for different scales

Fig. 13 Principle of bilinear interpolation. New pixel value com-

puted using weighted average of 4 nearest pixel values
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the filtering process, some experiments are done. Firstly,

the ANRAD is tested on a synthetic image corrupted with

additive noise, and then in case of real noise in retinal

images. The numerical accuracy is evaluated using two

parameters: the SNR rate [64], where the higher the SNR is

the better the result is, and the MSSIM [65]. The latter is

Fig. 14 Denoising process on synthetic image. (From left to right): synthetic image; synthetic image corrupted by a Gaussian white noise with a

0 mean and standard deviation 0.1; results of ANRAD filter; and SRAD filter

Table 2 Comparison results of denoising process

Filtering method Dt Iter SNR MSSIM

ANRAD 0.02 100 76.7737 09831

SRAD 0.2 350 72.0460 0.9481

Fig. 15 Real retinal noisy image and their corresponding color NLF model noise
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utilized to give the similarity between the noise-free image

and the processed data, which belongs to the range [0, 1].

Figure 14 presents the filtering results using the

ANRAD and SRAD filters. It shows that the recovered

image by applying the ANRAD filter has a better visual

quality in comparison with the SRAD filter. The ANRAD

produces a smoother result, where the edges are well pre-

served and the contrast is improved better. The parameters

of each filter are mentioned in Table 2. For the ANRAD,

the smoothing step time is set to 0.2, and the denoising

process runs adaptively with 100 iterations. According to

the obtained results, the ANRAD shows better results for

both the SNR and the MSSIM. It presents a good perfor-

mance compared to the SRAD filter, since it has the

greatest SNR value, which is equal to 76.7737, and the

highest MSSIM score (close to 1), which is equal to 0.983.

The proposed filtering process with the ANRAD filter is

developed for retinal images, which are corrupted with

color signal-dependent noise. The ANRAD uses a general

NLF as an input parameter instead a constant variance

value like in the SRAD filter. The utilized noise model is

three continuous functions describing the noise variance as

a function of local intensity in the whole image for each

color channel. Figures 15 and 16 present two color retinal

images and their three color corresponding model noises

(green, red and blue channels). Each curve of the noise

model describes the relationship between the intensities’

values and their corresponding values of the noise level in

the image. Furthermore, there are spatial correlations

introduced by the effect of three color components of the

image. Figure 16 indicates that the estimated NLFs are

significantly modeled even though the color distribution

does not span the full range of intensities, which explains

the ability of the method to estimate the NLF beyond the

observed image intensities. To show the efficacy of the

proposed denoising process, Fig. 17 presents an example,

Fig. 16 Real retinal noisy image and their corresponding color NLF model noise
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where the green scale is selected to show the filtering

results because it presents a higher contrast between the

vessels and the retinal background. From the results shown

in Fig. 17c, e, f, the thin small vessel at the bottom right

hand side corner of the image in Fig. 17b is markedly

altered or lost. On the other side, from Fig. 17d, it is

noticeable that the proposed method is much more capable

to enhance out the flat areas, keep the thin vessels and

preserve the contours better than the other methods. Thus,

the ANRAD approach is able to reduce the noise and at the

same time to preserve very well the major region bound-

aries and the thin details.

The second experiment is the vessel segmentation task

and it is applied to detect all vessels in the retinal image. In

the retinal blood vessel segmentation, the results are gen-

erally evaluated over a pixel-based classification. Each

pixel in an image is classified into vessel or non-vessel.

Four different classes of pixels should be identified to

achieve a good classification: the True Positive (TP) and

the True Negative (TN), when a pixel in the output image

is correctly detected as a vessel or non-vessel, and the False

Negative (FN) and the False Positive (FP), which are two

misclassification quantities. The FN appears when a pixel

in a vessel is detected in the non-vessel region and the FP

when a non-vessel pixel is detected as a vessel pixel. From

these classifications, there are two widely known mea-

surements used to evaluate the performance of the pro-

posed vessel segmentation process: the TP Rate (TPR) (or

Fig. 17 a Green channel image

of original retinal image in

Fig. 5a; b part of original image

(a); c result with PMAD method

(Thres = 15; iter = 30;

Dt = 0.05); d with ANRAD

(iter = 30; Dt = 0.2); e with

SRAD (iter = 30; Dt = 0.2);

f and with DPAD (iter = 30;

Dt = 0.2)
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sensitivity) and the FP Rate (FPR) [66–70]. These perfor-

mance measures are defined as follows:

TPR ¼ TP

TPþ FN
ð20Þ

FPR =
FP

FP + TN
ð21Þ

Another measure is used, which is the Maximum aver-

age accuracy (MAA), where the maximal accuracy is

determined by varying a rounding threshold from 0 to 1 to

obtain a binary image that matches the vessel segmentation

image to a high level. The accuracy term is defined as the

ratio of the sum of the number of pixels correctly classified

as a background and as a foreground divided by the number

of all pixels in the image:

Accuracy ¼ TPþ TN

Pþ N
ð22Þ

where P and N define the total number of vessel and non-

vessel pixels in the segmented image.

5.1 STARE database

In this section, the suggested method is assessed firstly

on a publicly available database of real retinal images,

known as the STARE Project database [61]. It contains

twenty fundus color images. Ten of them are from

healthy eyes and the others from unhealthy ones. These

images are captured by a special camera. They are dig-

itized on 24 bits for a grayscale resolution and have a

size of 700� 605 pixels. This dataset provides two

groups of hand-labeled segmentations that are seg-

mented with hand by specialists. Each of these images is

adapted as ‘‘a ground truth’’ to evaluate our approach. To

demonstrate the efficiency of the segmentation process

with the filtering task, Fig. 18 provides the segmentation

Fig. 18 ANRAD-filter effect

on blood vessel segmentation

process from left-to-right, top-

to-bottom: Color retinal image;

Sub-image of the original retinal

image; Hand-labeled ‘‘truth’’

images of first and second eye

specialists; Segmentation result

without ANRAD filter;

Segmentation result with

ANRAD filter N = 10
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results before and after the application of the ANRAD

filter. This figure shows the improvements rendered by

the ANRAD model, where it maintains efficiently the

vessels while making the background more homoge-

neous. Therefore, the ANRAD filter is a principle step

before the segmentation process since it preserves the

needed information. Figure 19 depicts the segmented

images and the manually labeled images for the STARE

dataset.

To better evaluate the proposed method, the experi-

ment results on 20 images from the STARE dataset are

presented in Table 3. In Table 4, the current approach is

Fig. 19 Segmentation results on STARE dataset: a and d color retinal images; b and e our segmentation results; and c and f manual labeled

segmentation results

Table 3 Results on STARE database

No. MAA TPR FPR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.9114

0.8920

0.9018

0.9437

0.9443

0.9303

0.9567

0.9508

0.9515

0.9560

0.9437

0.9532

0.9336

0.9418

0.9431

0.9381

0.9540

0.9506

0.9463

0.9331

0.5774

0.2077

0.5683

0.6603

0.6792

0.6469

0.7831

0.7286

0.7481

0.7801

0.6467

0.7652

0.5965

0.6181

0.6762

0.6555

0.7165

0.6954

0.6356

0.5840

0.0204

0.0438

0.0211

0.0248

0.0325

0.0449

0.0238

0.0252

0.0246

0.0252

0.0261

0.0216

0.0287

0.0219

0.0307

0.0286

0.0286

0.0212

0.0217

0.0243

Av.MAA

0.9388

Av.TPR

0.6801

Av.FPR

0.0289

Table 4 Comparison of vessel segmentation results on STARE

database

Method MAA TPR FPR

Martinez-Perez [73] 0.9410 0.7506 0.0431

Mendonca (green) [74] 0.9440 0.6996 0.0270

Hoover [45] 0.9267 0.6751 0.0433

Soares [67, 68] 0.9480 0.7165 0.0252

Matched filter [27, 72] 0.9384 0.6134 0.0245

Staal [66, 69] 0.9516 0.6970 0.0190

MF-FDOG [71] 0.9484 0.7177 0.0247

Proposed method 0.9388 0.6801 0.0289
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compared versus the most recent approaches in terms of

TPR, FPR and MAA. In Table 4, the performance

measurements of some methods are reported from their

papers, such as Staal et al. [66, 69], Hoover et al. [45],

Zhang et al. [71], Chaudhuri et al. [27, 72], Martinez-

Perez et al. [73] and Mendonca and Campilho [74], are

presented. Moreover, these performance results are the

average values for the whole set of 20 images, except the

approach of Staal et al. [66, 69], which used 19 out of

20 images of the STARE images, among which ten were

healthy and nine were unhealthy.

Table 2 shows our results obtained on all 20 images in

the STARE database, estimated using the hand-labeled

segmentation images. These results are the mean of the

TPR = 0.6801 corresponding to an FPR of around 0.0289

and an MAA = 0.9388. The results demonstrate that our

technique has a competitive maximum average accuracy

value where it performs better than the approach of Hoover

[45] and the Matched filter [27, 72]. In addition, it remains

close to the others.

5.2 DRIVE database

The results of the proposed method are also compared with

those on 20 images from the DRIVE database [62, 63].

Figure 20 shows the segmented images and the manually

labeled images for the DRIVE dataset. The experiment

results of the TPR, the FPR and the MAA are depicted in

Table 5, where the images hand-labeled by a human expert

are used as a ground truth.

The experimental results show an MAA around of

0.9389. Also, we compare the performance of the sug-

gested technique with the sensitivities and specificities of

the methods cited in Table 6. It is found that for the

DRIVE database, the method provides a sensitivity of

0.6887 and a specificity of 0.9765. It is clear that the

Fig. 20 Segmentation results on DRIVE dataset: a and d color retinal images; b and e our segmentation results; and c and f manual labeled

segmentation results
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proposed method performs well with a low specificity even

in the presence of lesions in some images.

6 Limitations and future work

The proposed segmentation methodology has achieved

competitive results with the existing methods, but at the

same time it has some disadvantages. However, the user

defines by themselves and manually the scale range of the

width of vessels, which cannot be accurate and can affect

the ability or the efficiency to detect the whole vessel

network in the image. In addition, the method responds not

only to vessel pixels but also to non-vessel ones. For

example, the border of the optic disk and the fovea appear

clearly in the obtained results of Figs. 19 and 20. To

overcome the sensitivity to non-vessel pixel detection, the

method needs to be improved by employing a process of

discrimination between vessel and non-vessel. The seg-

mented image can provide pathological changes as vessel

pixels (Fig. 21), which can be considered as another

inconvenient. Also, it can extract very well the large ves-

sels but not those very thin ones.

Our future work will involve on the optimization of the

performance of the proposed vessel segmentation from

retinal images having pathological changes and on inves-

tigating solutions that can more accurately segment thin

vessels. Moreover, it is intended to work more closely with

ophthalmologists, to evaluate the method and to improve it

according to their feedback.

7 Conclusion

The goal of this paper is to segment blood vessels in real

retinal images to help interpret the retinal vascular net-

work. The general idea is to combine a new version of an

Table 5 Results on DRIVE database

No. MAA TPR FPR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.9459

0.9400

0.9316

0.9389

0.9398

0.9344

0.9344

0.9275

0.9401

0.9421

0.9347

0.9365

0.9327

0.9420

0.9469

0.9393

0.9381

0.9419

0.9461

0.9458

0.7877

0.7463

0.6690

0.7064

0.6932

0.6841

0.6615

0.5828

0.6632

0.6777

0.6270

0.6796

0.6831

0.6833

0.6782

0.7226

0.6605

0.7111

0.7496

0.7076

0.0221

0.0246

0.0228

0.0235

0.0267

0.0233

0.0229

0.0203

0.0242

0.0257

0.0258

0.0212

0.0217

0.0244

0.0261

0.0217

0.0239

0.0212

0.0239

0.0234

Av.MAA

0.9389

Av.TPR

0.6887

Av.FPR

0.0235

Table 6 Comparison of vessel segmentation results on DRIVE

database

Method MAA TPR FPR

Martinez-Perez [73] 0.9344 0.7246 0.0345

Mendonca [74] 0.9452 0.7344 0.0236

Matched filter [27, 72] 0.9284 0.6168 0.0259

2nd human observer [62] 0.9473 0.7761 0.0275

Neimeijer [62, 63] 0.9417 0.6898 0.0304

Staal [66, 69] 0.9442 0.7194 0.0227

Proposed method 0.9389 0.6887 0.0235

Fig. 21 Segmentation result on retinal image which have pathological changes: a color retinal image; b segmentation result (red arrows show

false pixels detected of pathological changes as vessel pixels); and c manual labeled segmentation result
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anisotropic diffusion method to remove noise with a multi-

scale vesselness response that is based on the Hessian

matrix’s eigenvectors and the gradient information image

to detect all vessels from retinal images. In fact, the main

advantage of the present technique is its capability to

extract large and small vessels at different image resolu-

tions. In addition, the ANRAD filter has a vital role in

denoising images and in decreasing the difficulty of vessel

extraction especially for thin vessels. The first results

demonstrate the robustness of our technique against noise

and its capability of detecting blood vessels.

References

1. Asad AH, Azar AT, Hassaanien AE (2012) Integrated features

based on gray-level and hu moment-invariants with ant colony

system for retinal blood vessels segmentation. Int J Syst Biol

Biomed Technol (IJSBBT) 1(4):60–73

2. Pal NR, Pal SK (1993) A review on image segmentation tech-

niques. Pattern Recogn 26(9):1277–1294

3. El-Baz AS, Acharya R, Mirmehdi M, Suri JS (2011) Multi

modality state-of-the-art medical image segmentation and regis-

tration methodologies, vol 1. Springer, New York

4. Kauppi T et al (2010) Eye fundus image analysis for automatic

detection of diabetic retinopathy. Lappeenranta University of

Technology, Lappeenranta

5. Asad AH, Azar AT, Hassanien AE (2013) Ant colony-based

system for retinal blood vessels segmentation. In: Proceedings of

seventh international conference on bio-inspired computing:

theories and applications (BICTA 2012) advances in intelligent

systems and computing volume 201, 2013, pp 441–452. doi:10.

1007/978-81-322-1038-237

6. Asad AH, Azar AT, Hassanien AE (2014) A new heuristic

function of ant colony system for retinal vessel segmentation. Int

J Rough Sets Data Anal 1(2):15–30

7. Asad AH, Azar AT, Hassanien AE (2014) A comparative study

on feature selection for retinal vessel segmentation using ant

colony system. Recent Adv Intell Inform Adv Intell Syst Comput

235(2014):1–11. doi:10.1007/978-3-319-01778-51

8. Fritzsche K, Can A., Shen H, Tsai C, Turner J, Stewart C,

Roysam B (2003) Automated model based segmentation, tracing

and analysis of retinal vasculature from digital fundus images. In:

Suri JS, Laxminarayan S (eds) State-of-the-art angiography,

applications and plaque imaging using MR, CT, ultrasound and

X-rays. Academic Press, pp 225–298

9. Cheng J, Liu J, Yanwu X, Yin F, Wong DWK, Tan N-M, Tao D,

Cheng Ching-Yu, Aung T, Wong TY (2013) Superpixel classi-

fication based optic disc and optic cup segmentation for glaucoma

screening. IEEE Trans Med Imaging 32(6):1019–1032

10. Malek J, Azar AT (2016) 3D Surface Reconstruction of Retinal

Vascular Structures. International Journal of Modelling, Identi-

fication and Control (IJMIC), Inderscience Publishers, Olney,

UK. (in press)

11. Malek J, Azar AT, Tourki R (2015) Impact of retinal vascular

tortuosity on retinal circulation. Neural Comput Appl

26(1):25–40. doi:10.1007/s00521-014-1657-2

12. Malek J, Azar AT, Nasralli B, Tekari M, Kamoun H, Tourki R

(2015) Computational analysis of blood flow in the retinal arteries

and veins using fundus image. Comput Math Appl 69(2):101–116

13. Malek J, Azar AT (2016) A computational flow model of oxygen

transport in really retinal network. International Journal of

Modelling, Identification and Control (IJMIC), Inderscience

Publishers, Olney, UK. (in press)

14. Sofka M, Stewart CV (2006) Retinal vessel centerline extraction

using multiscale matched filters, confidence and edge measures.

IEEE Trans Med Imaging 25(12):1531–1546

15. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel

extraction by matched filter with first-order derivative of Gaus-

sian. Comput Biol Med 40(4):438–445

16. Hutchinson A, McIntosh A, Peters J, O’keeffe C, Khunti K,

Baker R, Booth A (2000) Effectiveness of screening and moni-

toring tests for diabetic retinopathy—a systematic review. Diabet

Med 17(7):495–506

17. Hou Y (2014) Automatic segmentation of retinal blood vessels

based on improved multiscale line detection. J Comput Sci Eng

8(2):119–128

18. Nguyen UT, Bhuiyan A, Park LA, Ramamohanarao K (2013) An

effective retinal blood vessel segmentation method using multi-

scale line detection. Pattern Recogn 46(3):703–715

19. Perona P, Malik J (1990) Scale-space and edge detection using

anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell

12(7):629–639

20. Yu Y, Acton ST (2002) Speckle reducing anisotropic di_usion.

IEEE Trans Image Process 11(11):1260–1270. doi:10.1109/TIP.

2002.804276

21. Krissian K (2002) Flux-based anisotropic diffusion applied to

enhancement of 3-D angiogram. IEEE Trans Med Imaging

21(11):1440–1442

22. Aja-Fernández S, Vegas-Sánchez-Ferrero G, Martı́n-Fernández

M, Alberola-López C (2009) Automatic noise estimation in

images using local statistics. Additive and multiplicative cases.

Image Vis Comput 27(6):756–770

23. Ben Abdallah M, Malek J, Azar AT, Montesinos P, Belmabrouk

H, Monreal JE, Krissian K (2015) Automatic extraction of blood

vessels in the retinal vascular tree using multiscale medialness.

Int J Biomed Imaging 2015:519024-1–519024-16. doi:10.1155/

2015/519024

24. Emary E, Zawbaa H, Hassanien AE, Schaefer G, Azar AT

(2014b) Retinal vessel segmentation based on possibilistic fuzzy

c-means clustering optimised with cuckoo search. In: IEEE 2014

international joint conference on neural networks (IJCNN 2014),

July 6–11, Beijing International Convention Center, Beijing,

China

25. Asad AH, Azar AT, Hassanien AE (2013) An improved ant

colony system for retinal vessel segmentation. In: 2013 federated

conference on computer science and information systems

(FedCSIS), Krakow, Poland, September 8–11, 2013

26. Emary E, Zawbaa H, Hassanien AE, Schaefer G, Azar AT

(2014a) Retinal blood vessel segmentation using bee colony

optimization and pattern search. In: IEEE 2014 international joint

conference on neural networks (IJCNN 2014), July 6–11, Beijing

International Convention Center, Beijing, China

27. Chaudhuri S, Chateterjee S, Katz N, Nelson M, Goldbaum M

(1989) Detection of blood vessels in retinal images using two-

dimensional matched filters. IEEE Trans Med Imaging

8(3):263–269

28. Chanwimaluang T, Fan G (2003) An efficient algorithm for

extraction of anatomical structures in retinal images. In: Pro-

ceedings of ICIP, pp 1193–1196

29. Fraz MM, Barman SA, Remagnino P et al (2012) An approach to

localize the retinal blood vessels using bit planes and centerline

detection. Comput Methods Programs Biomed 108(2):600616

30. Zhou L, Rzeszotarski MS, Singerman LJ, Chokreff JM (1994)

The detection and quantification of retinopathy using digital

angiograms. IEEE Trans Med Imaging 13(4):619–626

178 Neural Comput & Applic (2018) 29:159–180

123

RETRACTED A
RTIC

LE

http://dx.doi.org/10.1007/978-81-322-1038-237
http://dx.doi.org/10.1007/978-81-322-1038-237
http://dx.doi.org/10.1007/978-3-319-01778-51
http://dx.doi.org/10.1007/s00521-014-1657-2
http://dx.doi.org/10.1109/TIP.2002.804276
http://dx.doi.org/10.1109/TIP.2002.804276
http://dx.doi.org/10.1155/2015/519024
http://dx.doi.org/10.1155/2015/519024


31. Goa X, Bharath A, Stanton A, Hughes A, Chapman N, Thom S

(2001) A method of vessel tracking for vessel diameter mea-

surement on retinal images. In: Proceedings ICIP, pp 881–884

32. Chutatape O, Zheng L, Krishnan SM (1998) Retinal blood vessel

detection and tracking by matched Gaussian and Kalman filters.

In Proceedings 20th annual international conference IEEE engi-

neering in medicine and biology, pp 3144–3149

33. Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B (1999)

Rapid automated tracing and feature extraction from retinal

fundus images using direct exploratory algorithms. IEEE Trans

Inf Technol Biomed 3(2):125–138

34. Hani AFM, Soomro TA, Faye I, Kamel N, Yahya N (2014)

Denoising methods for retinal fundus images. In: 2014 IEEE

international conference on intelligent and advanced systems

(ICIAS), Kuala Lumpur, 3–5 June, 2014, pp 1–6. doi:10.1109/

ICIAS.2014.6869534

35. Malek J, Tourki R (2013) Inertia-based vessel centerline extrac-

tion in retinal image. In: IEEE 2013 international conference on

control, decision and information technologies (CoDIT),

pp 378–381

36. Healey GE, Kondepudy R (1994) Radiometric CCD camera

calibration and noise estimation. IEEE Trans Pattern Anal Mach

Intell 16(3):267–276

37. Irie K, McKinnon AE, Unsworth K, Woodhead IM (2008) A

model for measurement of noise in CCD digital-video cameras.

Meas Sci Technol 19(4):045207

38. Liu X, Tanaka M, Okutomi M (2013) Estimation of signal

dependent noise parameters from a single image. In: ICIP,

pp 79–82

39. Gravel P, Beaudoin G, De Guise JA (2004) A method for mod-

eling noise in medical images. IEEE Trans Med Imaging

23(10):1221–1232

40. Liu C, Szeliski R, Kang SB, Lawrence Zitnick C, Freeman WT

(2008) Automatic estimation and removal of noise from a single

image. IEEE Trans Pattern Anal Mach Intell 30(2):299–314

41. Ben Abdallah M, Malek J, Azar AT, Belmabrouk H, Monreal JE,

Krissian K (2016) Adaptive noise-reducing anisotropic diffusion

filter. Neural Comput Appl 27(5):1273–1300

42. Ben Abdallah M, Malek J, Tourki R, Monreal JE, Krissian K

(2013) Automatic estimation of the noise model in fundus ima-

ges. In: IEEE 2013 10th international multi-conference on sys-

tems, signals & devices (SSD), pp 1–5

43. Arthur D, Vassilvitskii S (2007) k-means ? ? : the advantages

of careful seeding. In: Proceedings of the eighteenth annual

ACMSIAM symposium on discrete algorithms. New Orleans,

pp 1027–1035. 7–9. doi:10.1145/1283383.1283494

44. Wu CH, Agam G, Stanchev P (2007) A general framework for

vessel segmentation in retinal images. In: IEEE 2007 Interna-

tional symposium on computational intelligence in robotics and

automation CIRA 2007, pp 37–42

45. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood

vessels in retinal images by piecewise threshold probing of a

matched filter response. IEEE Trans Med Imaging 19(3):203–210

46. Qian X, Brennan MP, Dione DP, Dobrucki WL, Jackowski MP,

Breuer CK, Sinusas AJ, Papademetris X (2009) A non-parametric

vessel detection method for complex vascular structures. Med

Image Anal 13(1):49–61

47. Hai TTT, Augustin L (2003) Extraction de Caract́eristiques
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