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Abstract After the ore (seam) extraction in longwall

mining, the immediate roof layers over the extracted panel

are strained and suspended downward. This process

expands upward and causes the caving and fracturing of

damaged roof rock strata. The combination height of the

caved and interconnected fractured zones is considered as

the height of caving–fracturing zone (HCFZ) in this

research. Precise estimation of this height is crucial to the

exact determination of directed loads toward the front and

sides abutments. The paper describes an intelligent model

based on the artificial neural network (ANN) to predict

HCFZ. To validate the ability of ANN model, its results are

compared to the multivariable regression analysis (MVRA)

results. For models construction and evaluation, a wide

range of datasets comprising of geometrical and geome-

chanical characteristics of mined panel and roof strata have

been gathered. Performance evaluation indices including

determination coefficient (R2), variance account for, mean

absolute error (Ea) and mean relative error (Er) have been

utilized to assess the models’ capability. Comparison

results show that the ANN model performance is consid-

erably better than the MVRA model. Moreover, obtained

results are further compared with the results of available

in situ, empirical, analytical, numerical and physical

models reported in the literature. This comparison confirms

that a reasonable agreement exists between the ANN model

and the previous comparable methods. Finally, the sensi-

tivity analysis of ANN results shows that the overburden

depth has the maximum effect, whereas the Poisson’s ratio

has the minimum effect on the HCFZ in this research.

Keywords Longwall mining � Height of caving–fracturing

zone � Artificial neural network � Multivariable regression

analysis

1 Introduction

Generally, the ultimate goal of underground mining is to

remove the ore from the ground in a safe and economic

way. The performance of this removal depends on overall

conditions of the coal seam and overburden strata as well

as the utilized mining method. Longwall mining is the most

commonly used methods in underground mining particular

to coal seam extraction. In this method, the coal (ore)

seam’s extraction within a considerable panel width causes

a downward movement of the immediate roof layers above

the extracted panel. Thus, this stratum collapses and caves

in some distance behind the face work within the gob

region. Downward movement of the rock layers then

gradually expands upward and causes the damaged rock

stratum to be fractured and caved. Therefore, the cover

pressure upon the caved zone will be transmitted to the

front and rib-sides solid sections. The height of upward

extension of disturbed zone (including caving and frac-

turing zones), depends on the many variables, i.e., over-

burden thickness, mined ore (seam) thickness, panel width,

the strength properties, the relative thickness and number

of roof rock strata and the their related bulking factor, etc.

[1–4].

Establishing an appropriate approach to assess the

behavior of roof rock strata in longwall mining is the prime

concern of coal mining researchers. Exact determination of
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the height of induced caving–fracturing zone over the gobs

is a very main object to the longwall mining investigators

and designers. For proper evaluation of the transferred

stresses to the neighboring face access tunnels and their

related barrier and chain pillars, the height of caving–

fracturing zone should be predicted accordingly. There are

several methods in the literature to predict the height of

caved and fractured zones, i.e., in situ measurement and

physical, empirical, numerical and analytical modeling that

is referred by Majdi et al. [1] and Rezaei et al. [2]. Per-

formances of the available models to estimate the height of

disturbance zone over the longwall gobs are not satisfac-

tory because of the complexity of longwall mining envi-

ronment. Empirical methods cannot be accurately applied

for all cases because they have been commonly developed

based on the information of a specific case study with

particular properties. Numerical models are the commonly

used methods to evaluate the roof rock strata disturbance

processes, but require a large number of input parameters

that may need to be approximated or assumed. Despite

having high accuracy, in situ measurements and physical

models are time-consuming and expensive. Conversely, the

analytical model is simple and cut-rate somewhat. How-

ever, the later method is based on the numerous assump-

tions that may increase the estimation error.

According to the above-mentioned demerits as well as

considering only a few numbers of the effective parameters

in the available predictive models, utilizing the suit-

able alternatives seems to be necessary. Predictive intelli-

gence systems can be the appropriate approaches in this

regard. Artificial neural networks (ANNs) are one of the

most populous intelligent systems and can be utilized to

model the complex problems. The ANN models are flexi-

ble in dealing with ill-defined systems. These networks

were carefully utilized in the field of mining and rock

engineering until now [5–23]. The above-mentioned uti-

lizations reveal that neural network models are the pow-

erful techniques in mining and geo-engineering issues in

which multivariate problems should be models in a precise

procedure. Unlike the aforementioned available methods,

the influence of all possible effective parameters can be

simultaneously considered in ANN modeling.

In the current paper, ‘‘caving–fracturing zone’’ is con-

sidered as the equivalent of the combination of caved zone

and interconnected fractured zone. Generally, the height of

caved zone in addition to lower and middle parts of frac-

tured zone is very important in longwall face stability and

also in transferred stress to the front and sides abutments.

The caved zone is destressed from the beginning, whereas

the interconnected fractures zone will be continuously

caved and destressed during the mining operation. There-

fore, these two mentioned parts of disturbed zone above the

mined panel formed the destressed zone which is important

in the estimation of longwall mining-induced stress.

Therefore, combination height of the caved zone and the

lower and middle parts of the fractured zone (combination

height of the ‘‘caved zone’’ and ‘‘bedding plane separation

zone’’ in Fig. 1) are considered as the height of ‘‘caving–

fracturing zone’’ in this research. In order to determine the

height of caving–fracturing zone (HCFZ) over the longwall

gobs, in this study, two predictive models including the

artificial neural network (ANN) and the multivariable

regression analysis (MVRA) have been proposed, analyzed

and compared with each other as well as with the obtained

results from the available models in the literature.

2 Literature review

Failure mechanisms and breakage characteristics of the

strata treatment over the extracted panel in longwall mining

and development of straining, fracturing and caving pro-

cess of roof layers are considerably studied by many

investigators. The majority of them believed that three

defined zones of movement are found in the roof rock strata

above the longwall mine gob and goaf [24–31]. These

zones composed of caved, fractured and continuous

deformation zones (Fig. 1). A comprehensive literature

review of this work is given by Majdi et al. [1] and Rezaei

et al. [2]. Here, some newly related references presented in

2015 and 2016 years are reviewed.

Tajduś [33] analyzed the horizontal displacement dis-

tribution caused by single advancing longwall panel

excavation. His research is based on the assumption that

the value of horizontal displacement is proportional to the

slope of the subsidence trough. Xue et al. [34] evaluated

the overlying strata movement and fracture based on the

experimental analysis. According to this research, the

maximum height of caving, fracturing and bending zones is

7.5, 25 and 25 times the mining height, respectively. Bai

et al. [35] studied the deformation and failure mechanisms

of roof layers over the gobs and evaluated the prevention

methods in advancing longwall working face. This research

is based on the in situ measurements, numerical simulation

and analytical assessments to spatially evaluate the dis-

tributed loads due to longwall mining. Ming-he et al. [36]

used the numerical investigation to evaluate the distributed

loads in the vicinity of the longwall working face based on

the height of caving zone. Obtained results of their research

showed that the caving zone height is a main effective

parameter on the coefficient of stress concentration over

the neighboring solid sections of a longwall panel. Palchik

[37] performed an in situ measurement for evaluation of

the height of caved zone and mechanical parameters

of overburden. He concluded that the uttermost height

of caved zone can reach 20 times the mining height.
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Qu et al. [38] proposed a conceptual approach to model the

overlying strata behavior over the longwall panels in order

to evaluate the roof rock strata deformations and gas flow

process. According to this research, the maximum ratio of

the key stratum height to the mining height is about 20.7.

Yu et al. [39] performed in situ investigations to evaluate

the failure of roof layers over the longwall gob and con-

cluded that the maximum height of fractured zone reaches

22 times the mining height (thickness of mined seam).

According to their research, in situ measurements are taken

by many authors in China’s mines in which the height of

fractured zone is in the ranges of 11.94–19.97 times the

mined seam (ore) thickness.

Jiachen et al. [40] proposed a coalface failure model and

concluded that the caved zone height increases with the

increase in mining height in longwall panels. Meng et al.

[41] studied the heights of caving–fracturing zone at a

particular case study using the in situ tests, physical

modeling and numerical simulation. Accordingly, the

average height of caving–fracturing zone obtained from

these three approaches is 20.3, 22.8 and 19.4 times the

seam extraction thickness, respectively. Zhu et al. [42]

investigated the abutment stress evaluation due to longwall

mining using the key stratum theorem in order to assess the

mechanism of transferred loads. Yu et al. [43] conducted

the in situ measurements to evaluate the stress and defor-

mation of pillars and gateroads surrounding the longwall

panels that are affected by the mining-induced stress. Their

investigations indicate that the extraction of a panel causes

the main deformation and damage in the adjacent pillars

and gateroads.

Rounding up the above reviewed references, the results

of utilized models by some researchers to calculate the

height of caved, fractured and destressed zones in the

recent years (2015 and 2016) are shown in Table 1. In this

table, the results are described based on the ratio of the

height of caved (Hc) and fractured/destressed (Hf) zones to

the extracted coal seam thickness or mined seam (ore)

height (hs). Also, there are numerous empirical and ana-

lytical relations to estimate those heights that are found in

[1] and [2].

3 Basic concept of ANNs

The detailed descriptions of artificial neural networks

(ANNs) can be found in numerous literature [9–12], so it is

explained briefly here. The structure of these networks is

like the human brain and acts similarly in visualizing the

environments and mapping the problems. ANNs are cap-

able of solving the systems with high complexity in which

the relations between the dependent parameters with pre-

dictor variables are nonlinear and ill-defined. This char-

acteristic causes the neural networks to be a popular

technique utilized in engineering complex fields. In fact,

neural networks are composed of neurons that are con-

nected together and operate as the computation units.

These neurons are located in the different consecutive

layers with defined interconnections. Generally, a neural

network is composed of three fundamental components

including network architecture, transfer function and

learning law. Definition of these components usually

depends on the type and complexity of the studied prob-

lem. In neural network modeling possess, training is firstly

required before taking novel data. There are many types of

artificial neural network in the literature. However, the

feed-forward back-propagation neural network is the

mostly and efficiently used type in the field of engineering

problems. The back-propagation neural networks with

more than one layer (multilayer structure) usually made up

Fig. 1 Zones of overburden

movement caused by longwall

mining [after 32]
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leastwise three distinct layers including input, hid-

den(s) and output layers. Numbers of neurons in input and

output layers are equal to the number of input and output

variables of the studied problem. However, the hidden

layers number and the number of neurons located in each

hidden layer are dependent on the complexity of the

problem system modeled. The optimum number of hidden

layers and their respective neurons number are achievable

based on the trial-and-error process [7, 9–11].

For differentiation and visualization between the various

processing units (neurons), bias values are established into

the transfer (activation) functions. These functions are

usually utilized to transmit the aggregated weights dissi-

pated from all inputs in which the intensity of neuron

output is determined [44]. In general, there are two types of

transfer functions including nonlinear (sigmoid) and linear

ones that are employed in the network structure construc-

tion. This transfers functions into the several subsets by

itself, i.e., LOGSIG and TANSIG belong to nonlinear and

POSLIN and PURELIN belong to linear sets. The ultimate

goal of neural network utilization and structure of the

discussed problem affects the selection of transfer function

type in the network architecture. By surveying the litera-

ture, it is concluded that the sigmoid transfer function has

the high efficiency and is the most one used [45]. In the

training step of a neural network, the interred data to the

input layer are processed to the hidden layer(s) and then

reached the output layer. This process is called the ‘‘for-

ward pass’’ in neural network modeling. At the end,

comparison between the neural network output and the real

ones is implemented. If there is disagreement between

them, it is distributed back through the connections

between the network neurons. This process is known as the

‘‘backward passes’’ and is used to update the exclusive

biases of each neuron and connection weights between the

layers. The forward and backward pass process is reiterated

for all pairs of training datasets until the error of network

meets the considered threshold value in modeling. The

value of threshold is defined based on the evaluation per-

formance indices, i.e., root-mean-squared error (RMSE)

and summed squared error (SSE) [6, 10].

4 Structure of dataset

To develop an intelligence model, i.e., neural networks,

fuzzy inference systems, providing impressive number of

data is essential. In other words, gathering of the dataset is

the first and most important step in constructing these

models. In this study, a vast collection of suitable dataset

(83 series) was collected from the Iranian coalfields and

comprehensive literature surveys given in Sect. 2 (see

Table 1) in addition to the results of literature review

conducted by [2]. To predict the height of caving–frac-

turing zone (HCFZ) using the ANN and MVRA models,

parameters such as overburden depth, panel width, rock

mass unit weight, rock mass elastic modulus, rock mass

Poisson’s ratio, unconfined compressive strength of rock

mass, rock mass bulking factor, rock mass friction angle

and mined seam (ore) height were considered as input

parameters. It should be noted that the mean values of

panel overlying layers’ characteristics in the current

research are being used.

For constructing the ANN and MVRA models, the

available datasets are partitioned into two distinct groups

including training data and testing data. Seventy-five per-

cent of the datasets were considered as the training data for

learning stage and construction of the ANN and MVRA

models, while the rest were used to test and evaluate the

proposed optimum models. Data selection was done based

on the randomly sorting approach in order to divide the

datasets. Table 2 represents the input and output variables

along with their respective symbols used in the modeling.

Furthermore, all of the datasets have been statistically

analyzed, and the histograms of datasets variables are

presented in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

5 Development of the ANN model to predict
HCFZ

The process of constructing the ANN optimum model

includes data normalization, determination of model

architecture, training of the network and finally, validation

Table 1 The results of existing

models to calculate the height of

disturbed zones

(Hc/hs) (Hf/hs) Descriptions Method of appraisal References

– 2.02–57.8 Energy model Analytical [2]

7.5 25 – Physical [34]

20 – – In situ [37]

– 20.7 – Analytical [38]

– 22.43 – In situ [39]

– 20.3 – In situ [41]

– 22.8 – Physical

– 19.4 – Numerical
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and testing of the model. In the other words, the above

steps are required to develop an optimum ANN model that

is discussed in the following.

5.1 Data normalization

To advance the training rate and the capability of neural

networks modeling, the entrancing datasets should be

firstly normalized and kept in the ranges of 0 to ?1 before

starting the model construction. Normalization causes the

datasets to be dimensionless. This process should be

implemented before training and modeling. Data normal-

ization causes the input parameters with distinct values to

have the equivalent influence on the network output. Fur-

thermore, since the normalization provided the data in the

dimensionless form, then the input parameters with

Fig. 2 The histogram of overburden depth

Fig. 3 The histogram of panel width

Fig. 4 The histogram of unit weight

Fig. 5 The histogram of elastic modulus

Table 2 Characteristics of

input and output variables used

in the proposed models

Type of data Parameters Symbols Max Min Variance

Input Overburden depth (m) H 650 130 13,431.50

Panel width (m) L 330 40 3350.86

Unit weight (KN/m3) c 28.35 20.50 4.32

Elastic modulus (GPa) E 18.85 1.12 30.69

Poisson’s ratio (-) t 0.33 0.18 0.00

Unconfined compressive strength (MPa) r 40.54 4.76 52.47

Bulking factor (-) b 1.73 1.07 0.03

Friction angle (�) u 42 22 27.86

Mined seam (ore) height (m) h 6 1.7 1

Output Height of caving–fracturing zone (m) HCFZ 240 17.5 1823.81
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disparate units will have the similar influence on the neural

network output. Data normalization of the data is done

using the following equation:

X
ij
Norm ¼ X

j
Max � Xij

X
j
Max � X

j
Min

ð1Þ

where Xij is the original value of data in the jth column,

XNorm
ij is normalized value of data in the ith row, and XMin

ij

Fig. 6 The histogram of Poisson’s ratio

Fig. 7 The histogram of unconfined compressive strength

Fig. 8 The histogram of bulking factor

Fig. 9 The histogram of friction angle

Fig. 10 The histogram of mined seam (ore) height

Fig. 11 The histogram of the height of caving–fracturing zone
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and XMin
ij are maximum and minimum values of each

related jth column, respectively.

5.2 Model architecture

In order to achieve an optimum architecture of ANN

model to predict the HCFZ, neural networks with dif-

ferent characteristics are tested in which the network

with the minimum error is chosen. The characteristic to

be tested includes the number of hidden layers and their

respected neurons number, learning and transformation

functions types, number of Epochs and values of learn-

ing rate. To evaluate the error of all possible tested

networks, root-mean-square error (RMSE) index is used

and computed. As mentioned before, the network with

least RMSE is selected to be an optimized model in

HCFZ determination. In addition, the similar method is

used to obtain the optimum number of neurons con-

tributed in the hidden layers. The results of trial-and-

error method to determine the number of hidden layers

neurons are demonstrated in Fig. 12 in which the error

of different networks with different numbers of hidden

layer neurons is calculated. As demonstrated in the

above figure, a value of 10 neuron number in hidden

layers of a network leads to the minimum RMSE and

then the highest efficiency of the model. The obtained

optimum number of hidden neurons can situate in one or

more hidden layers. It should be noted that the number

of hidden layers and arrangements of their respective

neurons are also determined using the trial-and-error

method. Accordingly, the obtained optimum number of

neurons (10 neurons) is distributed in different network

architectures, i.e., one and two hidden layers. Also, the

other above-mentioned network characteristics are varied

in each distribution process. Then, the error (RMSE in

this research) is calculated for all possible networks with

varying properties. The obtained results of trial-and-error

process for some sample network architectures in HCFZ

prediction are presented in Table 3. RMSE is computed

using this equation [10]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Aimeas � Aipred

� �2

s

ð2Þ

where Aimeas is the ith measured element, Aipred is the ith

predicted element, and n is the number of datasets.

As distinctly shown in Fig. 12 and Table 3, a multilayer

back-propagation neural network with 9 inputs, 6 neurons

in first hidden layer, 4 neurons in second hidden layer and

one output (9-6-4-1 network), TRAINLM training function

and LOGSIG transfer function lead to the minimum RMSE

(row 8). This architecture is considered as the optimum

ANN model architecture to predict the HCFZ. A schematic

demonstration the optimum network architecture is pre-

sented in Fig. 13. In addition, Table 4 shows the settings

and details of architecture characteristics of proposed

optimum neural network.

5.3 Validation and testing

For evaluation and testing of the proposed optimum neural

network model, twenty-five percent of data (20 series) were

randomly selected from datasets. It should be noted that

these testing data were not incorporated in the learning

stages of the network. These testing data are entranced to

the optimum trained network in order to evaluate and

validate its performances. As performance evaluation tool,

correlation coefficient (R) between the network output and

real f HCFZ is calculated for validation and testing pro-

cesses. The network outputs were achieved based on the

input testing data that are described in Sect. 4. Figure 14

demonstrates the obtained results of the proposed optimum

ANN model for all of the modeling processes including

training, validation and testing.

6 Multivariate regression analysis

The multivariable regression analysis (MVRA) method

which is a branch of the statistical models is used for sta-

tistical HCFZ modeling in the current research. This

method is usually utilized to make a statistical equation

dependent(s) and independent (inputs) variables. In other

words, the output parameter(s) can be predicted based on

the defined input parameters in the current statistical

method. In fact, a new predictive relation is established to

estimate the targets in these models [46]. Based on the

multivariable regression analysis, relationships between the

output (HCFZ) and input variables have been discussed.

The environment of the statistical software package SPSS

22 was utilized to produce a multivariable equation based
Fig. 12 Performances of the network to determine the optimum

number of hidden neurons
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on the identical data that are used in training of the ANN

model. The results of multivariable regression analysis

including the constant and the coefficients between the

input parameters and output parameter (HCFZ) are pre-

sented in Table 5.

7 Discussion and results

In this section, the suggested models firstly are compared

together based on the evaluation performance indices.

Then, the results of the present models in this study are

further compared with the results of the existing compa-

rable models. Finally, the sensitivity analysis is done to

evaluate the effect of input parameters on the HCFZ.

7.1 Models performance evaluation

To evaluate the proposed models’ performance, their

results are compared and tested based on the measured

values. For this purpose, the four performance evaluation

indices including determination coefficient (R2), variant

account for (VAF), mean absolute error (Ea) and mean

relative error (Er) have been employed. The above-men-

tioned performance indices are calculated using Eqs. 3–6

[10, 47–49]:

Fig. 13 Suggested ANN for the

HCFZ prediction

Table 4 Detailed characteristics of the archived optimum network

Number of input neurons 1

Number of hidden layers 2

Number of hidden neurons 10

Number of output neurons 1

Number of training epochs 200

Number of training datasets 65

Number of testing datasets 18

Training function TRAINLM

Transfer function LOGSIG

Learning rate 0.1

Error goal 0

Table 3 Obtained errors of

some sample networks to

determine the optimum network

No. Network architecture Transfer function Training function RMSE

1 9-4-6-1 LOGSIG TRAINLM 0.00543

2 9-6-4-1 TANSIG TRAINGD 0.00657

3 9-3-7-1 TANSIG TRAINGDA 0.009745

4 9-7-3-1 LOGSIG TRAINLM 0.008892

5 9-8-2-1 TANSIG TRAINGD 0.008453

6 9-2-8-1 LOGSIG TRAINGDA 0.007621

7 9-6-4-1 TANSIG TRAINLM 0.005198

8 9-6-4-1 LOGSIG TRAINLM 0.004487

9 9-5-5-1 TANSIG TRAINLM 0.007467

10 9-5-5-1 LOGSIG TRAINGD 0.006576
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R2 ¼ 100

P

n

i¼1

Aipred � �Apred

� �

Aimeas � �Ameasð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Aipred � �Apred

� �2Pn
i¼1 Aimeas � �Ameasð Þ2

q

2

6

6

4

3

7

7

5

2

ð3Þ

VAF ¼ 100 1 �
var Aimeas � Aipred

� �

var Aipred

� �

 !

ð4Þ

Ea ¼ Aimeas � Aipred

�

�

�

� ð5Þ

Er ¼
Aimeas � Aipred

�

�

�

�

Aimeas

� �

� 100 ð6Þ

where �Aipred is the average of prediction sets, �Aimeas is the

measured sets, and other variables are defined

previously.

The datasets that are not incorporated in training and

construction of the models have been used for testing them.

Accordingly, the values of the above-mentioned indices for

two suggested models were computed and are demon-

strated in Table 6. Moreover, the comparative results of the

predicted and measured HCFZ values obtained from both

proposed models are presented in Figs. 15 and 16,

respectively. Furthermore, Fig. 17 indicates compliance of

the ANN and MVRA results with the measured values of

HCFZ for 20 different series of testing data. According to

the above comparison, it can be concluded that the ANN

model performances are higher than the MVRA model and

its predicted outputs completely agree with the measured

ones.

Fig. 14 Obtained correlation coefficients of optimum ANN model in different stages for HCFZ prediction

Table 5 Outputs of

multivariable regression

analysis for HCFZ prediction

Predictor Coefficient

Constant -63.77

H 0.003048

L 0.00365

c 10.947

E -0.759

t 9.3

r -1.558

b -17.5

u -0.102

h 0.786
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7.2 Comparative analysis

The outputs from the suggested models are compared with

the results of available physical, analytical, empirical and

numerical and in situ models gathered from the compre-

hensive literature review. Acquired results from all models

are analyzed and compared with each other as coefficients

of mined seam (ore) height (h) and panel width (L).

Relationships between the mined seam (ore) height and

predicted HCFZ values resulted from the proposed neural

network and statistical models are presented in Figs. 18

and 19, respectively. Also, Figs. 20 and 21 demonstrate the

relationships between panel width and predicted HCFZ

values resulted from ANN and MVRA models, respec-

tively. As Figs. 18 and 19 indicate, the coefficient between

HCFZ and mined seam (ore) height (h) values is in the

ranges of 3.1–86.5 in the ANN model and 10.02–40.93 in

the MVRA model. Also, Figs. 20 and 21 demonstrate that

the predicted HCFZ resulted from ANN model ranges from

0.14 to 1.34 times the panel width, whereas the predicted

HCFZ resulted from MVRA model ranges from 0.17 to

1.03 times the panel width.

The proposed models are further compared with each

other and with the results of reported methods in the lit-

erature by other investigators (Tables 7, 8). Table 7 pre-

sents the HCFZ results of the proposed models as a

Fig. 15 Relationship between measured and predicted HCFZ values

for the ANN model

Fig. 16 Relationship between measured and predicted HCFZ values

for the MVRA model

Fig. 17 Comparison of the proposed model’s output with the

measured HCFZ for 20 series of dataset

Fig. 18 Relation of the height of caving–fracturing zone with the

mined seam (ore) height (ANN model)

Table 6 Calculated indices of the suggested models in HCFZ

prediction

Index ANN Model MVRA Model

R2 96.04% 77.21%

VAF 93.21% 75.11%

Ea 2.41 m 6.21 m

Er 5.32% 10.55%

2154 Neural Comput & Applic (2018) 30:2145–2158

123



coefficient of the mined seam height (h) in addition to a

summary of five sets results achieved from the reported

respective methods in the literature that are reviewed by

the author are presented in Table 1. In this table, the results

of models are on the basis of the ratio of the height of

caving–fracturing zone to the mined seam (ore) height

(HCFZ/h). Moreover, Tables 8 shows the models results in

terms of the panel width.

As shown in Table 7, the lower limit of the coefficient of

HCFZ/h in ANN model is quite close to the lower limit of

both empirical and in situ models. Also, the upper limit of

HCFZ/h in this model is closer to those upper limits of both

empirical and in situ models compared to the others. On the

contrary, the lower and upper limits of this coefficient in the

MVRA model are rather far from those of the other models.

It can be said that the upper limit of HCFZ/h in the ANN

model is in the middle of the upper limits of analytical,

numerical, physical and MVRA models with the upper

limits of in situ measurements and empirical model.

According to Table 8, the results of both proposed models

in terms of the panel width (HCFZ/L) are in a high con-

formity with the results of comparable models presented by

other researcher. Considering the above comparisons, it can

be concluded that there exists a reasonable agreement

between the ANN model results and the in situ measure-

ments as well as the previous models results. Therefore, this

technique can be efficiently utilized to predict the height of

caving–fracturing zone over the longwall mine gobs.

7.3 Sensitivity analysis

In general, sensitivity analysis is implemented to assess the

influence of the input parameters of a model on its related

output parameter(s). The cosine amplitude method (CAM)

that is one of the most important methods in this field is

usually employed to determine the inherent relationships

between the output parameters with their respective

input(s) [53]. The impacts of the inputs variables (rij) on

the output(s) parameter are computed by using this equa-

tion in the CAM method:

rij ¼
X

m

k¼1

xikxjk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

k¼1

x2
ik

X

m

k¼1

x2
jk

s

ð7Þ

where xik and xjk are the kth input and model output per the

same input value, respectively.

The impacts of the inputs variables (rij) values on the

predicted HCFZ resulted from the ANN model are shown

in Fig. 22. In other words, this figure shows the impact of

input parameters on the HCFZ. As shown in this figure, the

ordered effective variables on the HCFZ are overburden

depth, panel width, mined seam (ore) height, rock mass

unit weight, rock mass bulking factor, rock mass

Fig. 19 Relation of the height of caving–fracturing zone with the

mined seam (ore) height (MVRA model)

Fig. 20 Relation of the height of caving–fracturing zone with the

panel width (ANN model)

Fig. 21 Relation of the height of caving–fracturing zone with the

panel width (MVRA model)
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unconfined compressive strength, rock mass friction angle,

rock mass elastic modulus and rock mass Poisson’s ratio,

respectively. Accordingly, overburden depth and panel

width are the most effective parameters on the HCFZ. On

the other hand, Poisson’s ratio and elastic modulus are the

least effective ones.

8 Conclusion

Caving–fracturing zone above the longwall gobs is a key

aspect in underground mining that plays a crucial role in

determining the workface supports and transferred stress

toward the front and rib-sides abutments. Due to complex

environments of longwall mining, ANN approach was

proposed for the estimation of the height of caving–frac-

turing zone (HCFZ) over the longwall mine gobs in this

research, and the obtained results were compared with the

multivariable regression analysis (MVRA) results. On the

basis of network with minimum error, a feed-forward

back-propagation type of neural network with architecture

of 9-6-4-1, TRAINLM learning function and LOGSIG

transfer function was found to be the optimum network. In

order to assess the proposed models’ performances,

determination coefficient (R2), variance account for

(VAF), mean absolute error (Ea) and mean relative error

(Er) indices were used and computed on the basis of

testing datasets. After that, the results of ANN and MVRA

models as a coefficient of mined seam (ore) height and

panel width are compared with the results of the available

models in the literature. At the end of modeling, the sen-

sitivity analysis was done based on the cosine amplitude

method (CAM) to determine the impacts of input param-

eters on the ANN model output. Comparison of the pro-

posed models based on the above-mentioned performance

evaluation proved that the accuracy of ANN model is

relatively higher than the MVRA model and showed that

there is very close conformity between its outputs and real

ones. In addition, comparative analysis proved that the

results of ANN model are in a very close agreement with

in situ models extracted from the literature and with those

obtained from the existing empirical, analytical, numerical

and physical models. Later part of ANN modeling, i.e., the

sensitivity analysis, showed that the most and least effec-

tive parameters on the HCFZ are overburden depth and

Poisson’s ratio, respectively. The main advantages of the

ANN model are that the common effective parameters on

the HCFZ including geometrical and geomechanical

properties of the overburden strata and mined panel were

taken into account in the modeling. According to the

results obtained from this research, it can be concluded

that an optimum proposed ANN model can be a powerful

and applicable technique to estimate the height of caving–

fracturing zone. Therefore, this approach can be success-

fully used to predict the HCFZ above the longwall gobs in

underground mining.

Fig. 22 Impact values of input parameters on the HCFZ

Table 7 Results of the

comparative analysis as the

coefficient of mined seam (ore)

height

Method of appraisal HCFZ References

In situ measurement (2–100) h Gathered from literature (Tables 1 and [2])

Empirical model (2–105) h Gathered from literature (Table 1 and [2])

Analytical model (2.02–57.8) h Gathered from literature (Table 1 and [2])

Numerical model (5.8–47.6) Gathered from literature (Table 1 and [2])

Physical model (7.5–32.5) Gathered from literature (Table 1 and [2])

ANN model (3.1–86.5) h Present paper

MVRA model (10.02–40.93) h Present paper

Table 8 Results of the comparative analysis as the coefficient of

panel width

Method of appraisal HCFZ Reference

Empirical model 0.83L–11 [50]

Numerical model 0.63L–3.5 [51]

In situ measurement (1–1.1) L [52]

ANN model (0.14–1.34) L Present paper

MVRA model (0.17–1.03) L Present paper
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