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Abstract In order to have a proper design and analysis for

the column of stone in the soft clay soil, it is essential to

develop an accurate prediction model for the settlement

behavior of the stone column. In the current research, to

predict the behavior in the settlement of stone column a

support vector machine (SVM) method is developed and

examined. In addition, the proposed model has been

compared with the existing reference settlement prediction

model that using the monitored field data. As SVM math-

ematical procedure has resilient and robust generalization

aptitude and ensures searching for global minima for par-

ticular training data as well. Therefore, the potential that

support vector regression might perform efficiently to

predict the ground soft clay settlement is relatively valu-

able. As a result, in this study, comparison of two different

developed types of SVM method is carried out. Generally,

significant reduction in the relative error (RE%) and root

mean square error has been achieved. Utilizing nu-SVM-

type model through tenfold cross-validation procedure

could achieve outstanding performance accuracy level with

RE% less than 2% and CR = 0.9987. The study demon-

strates high potential for applying SVM in detecting the

settlement behavior of SC prediction and ascertains that

SVM could be effectively used for settlement stone col-

umns analysis.

Keywords Settlement prediction � Soft clay � Stone
columns � Embankment � Support vector machines

1 Introduction

Soft soil deposits, which are spread all over the world, are a

limiting factor for civil engineering constructions. Low

shear strength of soft soil deposits causes their excessive

settlement, which can lead to circular or sliding failure.

Large embankments constructed on such base can be

seriously damaged. The structural engineer may be con-

fronted with inconvenient consolidation and displacement,

caused by soft soil porosity. That is the reason why

geotechnical engineers must prepare the ground improve-

ment schemes. The properties of soft soil deposits are very

important for the geotechnical engineering. The soft soil

improvement method by using encased stone columns is

very effective for reduction in compression time [1].

For calculating settlement and forecast its evolution, the

geotechnical engineers use approximate methods for sim-

plifying assumptions and complex methods (finite element

method), which are applying the elasticity and plasticity

theory. Aboshi et al [2], Barksdale and Bachus [3] and

Barksdale and Takefumi [4] described a simple method for

calculating the reduction settlement for the soft soil

improvement by using encased stone columns. According

to Lo et al. [5], the usage of finite element method gives

highly accurate results, which were verified by comparing
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the numerical results with field measurements. The con-

clusions exposed that the stone columns could improve the

clay bearing capacity and enrich the drainage behavior as

well. In addition, the stone columns might dissipate the

excess pore water pressure [6].

The artificial intelligence (AI) technique has been

recently proved to be capable to represent any nonlinear

processes by giving a wide range of complexity of the

network. That is the reason for using this technique in wide

areas, in different scientific research domains and in

industry. Many researchers have applied AI methods with

several engineering topics such as [7–11]. The artificial

intelligence (AI) technique is also used for prediction over

the soil settlement under a large structure [12–14]; the

predictions help specialists to avoid future failure prob-

lems. Machine learning is a subfield of the artificial intel-

ligence which deals with the methods development for

allowing the computer processor to calibrate the natural

behavior and learn its nonlinearity process. The develop-

ment of the AI algorithms would provide the machine to

learn and accomplish task that being required. Several

techniques and approaches were developed in order for

modeling engineering applications and natural behavior

utilizing machine learning over particular time period [15].

Boser et al. [16] were the first who introduced support

vector machine and the formulation of SVM embody the

principle of structural risk minimization which seem to be

superior than the traditional principle of empirical risk

minimization (ERM) [17] which used by the conventional

neural networks. The reason behind this is that the SRM

tend to minimize the expected risk upper boundary; how-

ever, ERM tend to minimize the error on the training data.

By this, the SVM can be equipped with the ability to

generalize, the statistical learning goal. Initially, the SVMs

were developed to solve the problem of classification;

however, the SVM has recently been extended to the

domain of regression problem [17, 18].

The SVM had been applied in solving the problem of

geotechnical since SVM able to explore data between the

several inputs and target variable [19, 20]. Tinoco et al.

[21] predicting the jet grouting columns uniaxial com-

pressive strength by using support vector regression. SVM

model for predicting liquefaction has been developed by

using cone resistance (qc) [22]. In addition, the SVM

approach has also been applied in pattern recognition,

function approximation and time series [23, 24]. Sun [25]

used SVM model to predict deformation value due to deep

foundation pit occurred in soft soil area. The results of this

proposed SVM model, the fuzzifications of geotechnical

engineering problems could be solved in outstanding

manner with relatively high matching with the monitored

data.

2 Methodology

2.1 Case study

In this research, the pilot study area is located in Rawang–

Ipoh double-tracking project. The project is implementing

electrified train and is mainly designed in order to improve

the public transportation between Ipoh and Rawang and

also to enhance the socioeconomic standard in the area

between. In fact, this project is considered as one the part

of Trans-Asia Railway line which is aiming to link China

with Singapore. The distance of the project area is round

150 km. The designed alignment of the new line is a

double track and attached closely to the existing track

which is single line; in several locations, both tracks will be

a shared. Figure 1 show the whole alignment for the study

area of the project.

In this project, vibro-replacement is used with stone

columns adopted as ground treatment. It is a use 1 m

diameter with spacing 2 m c/c between columns. The

presence of silt—clayey in nature—to depths of 9.5 m

experienced low shear strength values which introduce

serious problems of stability and long-term settlements.

The highway embankments in the project have heights

ranging from 2 m. The top of the embankment has a

minimum width of 14.9 m. The side slopes of the

embankments have gradients of 1 V:2H.

2.2 Regression in support vector machines

Support vectors are the training points that are the nearest

to the separating hyperplane, and the basic concept of SVM

is illustrated in Fig. 2. There are decision functions that are

accountable, for example, hyperplanes that are able to

delineate the positive and negative data that have marked

the maximum margins. This shows the range from the

nearest positive sample to a hyperplane, and the range

between the nearest negative sample and the hyperplane

shall be maximized.

y xð Þ ¼ wT/ xð Þ þ c ð1Þ

where /(x) denotes the high-dimensional of spaces char-

acteristics, which is experienced nonlinearly mapping from

the input space x. w and c are the coefficients which are

estimated in order to minimize the regularized function:

R Cð Þ ¼ C
1

N

XN

i¼1

Le di; yið Þ þ 1

2
w2 ð2Þ

where

Le di; yið Þ ¼ di � yij j � e if di � yij j � e
0 otherwise

�
ð3Þ
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In order to attain the possible estimation values of w and

b, Eq. (2) is transmuted to the original function which is

given by Eq. (4) by compensating the positive slack vari-

ables ni and ni
* as follows:

Minimize R Cð Þ ¼ C
Xu

a¼1

Xa þ X�
a

� �
þ 1

2
E2

 !

Subject to

di � w; yað Þ � la � �X þ Xa; a ¼ 1; 2; 3; . . .; u

w; yað Þ þ la � ra �X þ X�
a ; a ¼ 1; 2; 3; . . .; u

Xa;X
�
a � 0 a ¼ 1; 2; 3; . . .; u

8
><

>:

ð4Þ

The first term (l/2kEk2) is the weights vector norm, di is

the targeted value and C is referred as constant value that

regularized by defining the trade-off between the regular-

ized terms and the empirical errors. x is the SVM’s tube

size as shown in Fig. 2.

It is similar to the equation accuracy that is related in

the training data. Karush–Kuhn–Tucker (KKT) condition

optimality as mentioned in [26] the usual multipliers

will be zero. The multipliers that are nonzero are

known as support vectors. This is where the variable

slacks might be brought into the study. Xa and Xa
* are

suggested by introducing this, and by exploiting constraint

optimality, the function decision by Eq. (1) gives the

following:

U yð Þ ¼
Xu

a¼1

aa � a�a
� �

K y; yað Þ þ c ð5Þ

In Eq. (3), aa and aa
* are, respectively, the multipliers for

Lagrange function. They fulfill the likenesses aa 9 aa
* = 0,

aa C 0 and aa
* C 0 where a = 1,2,3,…,u and are found out

by maximizing the twofold functions of Eq. (4) which has

the following form:

Fig. 1 Location of study sites in Malaysia

Fig. 2 Hyperplane and the basic concept of SVM
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R aa; a
�
a

� �
¼
Xu

a¼1

di aa � a�a
� �

� e
Xu

a¼1

aa þ a�a
� �

� 1

2

Xu

a¼1

Xu

e¼1

da aa � a�a
� �

ae � a�e
� �

K ya; yeð Þ

ð6Þ

With the constraints,

Xu

a¼1

aað Þ ¼
Xu

a¼1

a�a
� �

and aa; a
�
a 2 0;C½ �;

a ¼ 1; 2; 3; . . .; u

ð7Þ

K(ya, ye) is known as the kernel function. The kernel

value is equal to the internal value of two vectors ya and ye
in the characteristics space /(ya) and /(ye), that is, K(ya,
ye) = /(ya) 9 /(ye). Several kernel function types of

SVM, in this study four kernel functions, are introduced as

follows:

Linear Kernel: k ¼ ðya; yeÞ ¼ yTa � ye ð8Þ

Polynomial Kernel: kðya; yeÞ ¼ ðcyTa � ye þ rÞd; c[ 0

ð9Þ

Radial Basis Kernel: kðya; yeÞ ¼ exp �ya � y2e
� �

;
c[ 0

ð10Þ

Sigmoid Kernel: kðya; yeÞ ¼ tanhðyTa � ye þ rÞ ð11Þ

Here c, r and d are kernel parameters. There are two

types of SVM regression: The first type of SVM regression

is known as type 1 or epsilon and the second type of

regression is known as nu.

2.3 Performance evaluation of SVM model

The proposed model has been developed in three dif-

ferent phases. The first phase is the training session

which is performed in order to adjust the model

parameters, then switching to the validation phase uti-

lizing unseen data in the training session to make sure

that model is successfully accomplished. The aim of the

validation session is to guarantee the generalization of

the model to be valid for untrained input data and just

memorizing the given limit range of the input–output

interrelationships that are experienced in the training

data session [27].

Evaluation of the performance of ANN models can be

carried out by:

1. The coefficient of determination (R2), which is used to

measure the relation between the observed and

predicted data.

Or

R2

Pn
k¼1ðAk � DÞ2

ðPk � DÞ2
ð12Þ

R2 n
Pn

1 SmSp �
Pn

1 Sm
� � Pn

1 Sp
� �� �2

n
Pn

1 S
2
m

� �
�
Pn

1 Sm
� �2� �

n
Pn

1 S
2
p

� �
�
Pn

1 Sp
� �2� �

ð13Þ

where Ak: actual output value, Pk: predicted output, D:

mean of the desired output, n: number of data.

Root mean square error (RMSE): it is furthermost

widely index to calculate the bias

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

Pk � Akð Þ2
s

ð14Þ

2. The mean absolute percentage error (MAPE).

The mean absolute percentage error (MAPE) is a

commonly utilized indicator in pattern recognition

process in order for examining the level of accurate-

ness to most of time series prediction model. Once the

value of MAPE is near to zero, it gives the indicator

the model is performing better in fitting the data.

Actually, the MAPE value is the summation of the

difference values between the model prediction values

and the actual data during a particular session and then

divided by the number of the records n. The following

formula is mathematical expression for calculated the

MAPE; notice that the value is in percentage form.

MAPE ¼ 1

n

Xn

k¼1

Ak � Pk

Pk

����

���� ð15Þ

3. The mean absolute error (MAE).

MAE ¼ 1

n

Xn

k¼1

Pk � Akj j ð16Þ

All these statistical analysis are used to check the

validity and test the robustness of the SVM models.

2.4 Tenfold cross-validation of SVM model

One of the major methods used for not only quantifying the

performance of prediction or classification models but also

guaranteeing the generalization of the model is cross-
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validation, which is usually used before switching the

model from the training session to testing session which is

considered as a sub-tree for the whole tree. Regularly, this

method used for models applied for time series data. In fact,

the modeling procedure could be similar to the tree concept.

The tree perception is as growing a binary tree in order for

expecting a desire value or category Y for input pattern V1,

V2, …, Vp. The tree is consistent of leaves which is con-

sidered as incurable nodes and characterize the cells of the

partition that keeps the model valid for precise cell. The

examination achieved from the input Vi could be func-

tionalized for every node at the tree level, and the results

could occur around surrounding the tree sub-branch. At the

leaf node where the forecasting is done, certain validation

model procedure at the root node in the tree could be

established. There are several method of cross-validation

such as V-fold, Monte Carlo cross-validation and leave-one-

out. Several research efforts have been addressed that V-

fold range could be very effective in developing these kinds

of models. Those researches reported that a range for

V between 7 and 20 showed outstanding performance and

results over V values lower than 7. Feng and Derynck [28]

utilized statistical index testing and other indicators for

prediction error to measure up the competing models.

Predominantly, in case the model developed utilizing

SVM method, for example, if V equals to 10, it means that

the data would split into different 10 subsets of identical

size by the model and the process of the training will be

repeated 10 times. For each training process, the model is

running utilizing subsets for training and leaves one for

examining the model error. On the other hand, although the

leave-one-out cross-validation method experienced pro-

viding respectable results and relatively high accuracy, it

encounters a serious drawback of over-fitting difficultly for

the data. One of the major steps in the model selection in

terms of the model internal parameters is how to restructure

the data for training data set and the desired output data set

to assure betterment of the prediction procedure. In this

research, several type and length of training, cross-valida-

tion and testing structure were evaluated in order to achieve

the optimal results.

3 Application and analysis

3.1 Parameter characteristics of SVM

In this study, the proposed SVM model has been developed

and evaluation in order to be to get the perfect model,

which gives the most accurate results by using various

functions as polynomial, sigmoid, linear and radial basis

function [16, 21]. These models are common prior to use in

other engineering applications and have been compared to

the final results with the results obtained from tests for the

study of precipitation field common ways that (kernel

function) the most common models used are known by

researchers for their accuracy and their ability models, the

four offered by previous studies, were examined and

evaluated the use of the most powerful and most accurate

model of which (RBF) for the purposes of its use in this

study, as shown in Table 1.

Applications of searching procedure have been carried

out to find out the finest kernel function type while using

cross-validation-based tenfold process. The total parti-

tioning training data are calibrated by applying the SVMs

with different kernels in order to create the final models

architecture. Table 2 shows a comparative analysis for the

performance of the prediction skills for the Stotal using the

proposed kernel functions through SVM method. It could

be observed that with respect to correlation coefficient

value (R2) could be achieved while using radial basis

function as the kernel function with best level equal to 0.98

during the test data session. On the other hand, the R2 is

equal to 0.95, 0.94 and 0.91 utilizing linear, polynomial

and sigmoid kernel function

Actually, searching for the best structure of SVM model

for particular application, there are two vital parameters

that supposed to be selected, namely capacity parameter

C and e. The selection of C is very sensitive to the accuracy

of the prediction, as the small value of C could tend the

model to underestimate the target value during the training

data; this is due to the fact that using relatively small

weight in the training data would reflect a larger values of

the predictor while examining the model in the testing data

set and vice versa. On the top of that, when C is large, the

weight will lose its significance in detecting the mapping

between the input and the output.

Alternatively, the large value of C could reflect a wide

range of support vector’s values; accordingly, supplemen-

tary data records could be chosen for optimizing the sup-

port vectors. Furthermore, large value of e could tend for

less number of the support vector to be achieved, and then,

Table 1 Compared total settlement values (Stotal) in field with result

values by using four-kernel-function SVM model

Stotal (measured in field) Stotal by used kernel-type function

Linear Polynomial RBF Sigmoid

0.1294 0.0653 0.2093 0.0754 -1.86

0.3778 0.2436 0.2250 0.2767 -0.702

0.4627 0.2516 0.2261 0.4524 -0.571

0.6113 0.4291 0.3097 0.6361 0.5029

0.8465 0.6364 0.5836 0.8510 1.6534

1.0000 0.8094 0.8306 0.1155 4.0183

0.1358 0.0130 0.1752 0.3096 -0.837
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the expected illustration of the proposed elucidation is

insufficient. Additionally, too large value of e could lead to

deterioration of the level of accuracy during the training. In

this context, the selection of the optimal values of both

C and e should be achieved via several trial and error

procedures. Once the optimal values of these two param-

eters are identified, there is a high potential to achieve high

level of accuracy for predicting the desired data.

Radial basis function (RBF) kernel is conceptually used

as the stepwise searching methodology to evaluate the

performance of SVM [25]. In current study, with the pur-

pose of determining the appropriate values of parameter

C and e, the replication processes with several parameters

sceneries were also seen the sights of SVM Stotal as major

step of behavior prediction model. At the beginning, a

consideration of constant value of e to be 0.1, and

changeable values of C to be ranged between 0 and 10 in

order to build the proposed model during the training

session of the input–output data. Consequently, a calcula-

tion of the prediction error as RMSE and R2 is carried out

with identifying the number of the number of the support

vectors. It could be depicted in Fig. 3 that slight reduction

in the number of the support vectors and the value of

RMSE is achieved while the used value of C increased; on

the other hand, the value of the R2 increases. In addition,

with focusing on the parameter C, it could be observed that

the lowest value of RMSE point (0.00114) and one high

correlation coefficient value (0.987588). RMSE first

decreases marginally with the increase in parameter C and

then grows again after the optimal point. Consequently, it

is better to select parameter C to be 8.00.

Actually, it is necessary to figure out the appropriate values

of the hyper-parameters C and c as a major step while

implementing any SVM model. Therefore, there is a need to

carry out trial and error procedure. In this context, estimation

of the generalized accuracy utilizing various value of kernel

hyper has been done.With respect the limitation of parameter

c, it was decided to search its optimal value to be within the

ranges of [0.001, 0.9] at increment of 0.1 for cwith being fixed
to each C = 8 and e = 0.2. Consequently, the optimal

selection value of c is found out using tenfold cross-validation
with repetitive ten times in order to enhance the reliability of

the model results. The final architecture of the model is

established when the minimum root mean square error is

achieved during the validation session. Figure 4 shows the

relationship between correlation coefficient and c, where it

began in the value of correlation coefficient rise with

increasing c until it reaches its peak value at 0.2 and after that
value starts to decline along with a gradual decrease in the

number of support vectors. The value of parameters that

provides the minimum generalization error is then selected.

The best result for the Stotal model in training and forecasting

phase when selecting c = 0.2 with an acceptable value of

number of support vectors 28 (Fig. 5).

3.2 SVM model development

Generally, selecting the optimal number of parameters

inputs of any particular SVM model is an essential step;

however, up to date it is difficult to find certain theory that

Table 2 Performance of Stotal SVM model with four kernel functions

Kernel function Mean squared error Correlation coefficient

Testing Testing

Linear 0.006183 0.956483

Polynomial 0.008233 0.941468

RBF 0.002766 0.981186

Sigmoid 3.506396 0.0115714

Bold values represent the best results

Fig. 3 Result of various

capacity parameter C, of SVM

model where e = 0.1 and

gamma = 0.2
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could be used to attendant achieving this step. While per-

forming the training and testing session of SVM model, the

same input arrangements of the data set of stone column

parameters that were used have been mentioned in the

previous sections of this paper. In fact, searching for the

model parameters plays a crucial role in achieving a good

performance of the SVM. Setting the hyper-parameters C, c
and the kernel parameters (epsilon and nu) is considered as

vital step in influencing the SVM generalization perfor-

mance (estimation accuracy).

This section will be focused on the use of the two types

of RBF kernel for its good performance and advantages in

SC forecasting problem. The following explains optimized

and selected kernel parameter values for each of the two

models.

3.2.1 Epsilon-RBF model

Epsilon-RBF model is used for predicting Stotal; we fix C to

be eight and c = 0.2, and set e as various values between
0.001 and 0.9. The results of model for training and testing

are shown in Table 3; it can be observed that the RMSE

increases with increasing the value of e, while each of the

R2 and the number of support vectors decreased. Finally,

the e value (0.2) that yields the minimum generalization

error with acceptable number of support vector (28) is then

chosen.

3.2.2 Nu-RBF model

In this model, we used optimal values for each

gamma = 0.2, capacity = 8 SVM parameters. As nu

model value increases, gradual increasing in the accuracy

of the prediction for the test data is observed until the value

of NU reach 0.4, and then, the values of the remaining are

kept unchanged as shown in Table 4.

The cross-validation process is considered as one of the

widely used procedures for evaluating the model archi-

tecture parameter values. In order to use the V-fold cross-

validation, the training data set is unsystematically split

into a set number of V-fold (V1, V2,…, Vn). Then the

selected type of SVM model is performed sequentially to

the dataset that taken place to the V - 1-fold. The process

then could achieve the results of the acting architecture

with particular parameters on the sample V (the sample or

fold that was unseen while training the SVM model; i.e.,

this is the testing sample) in order to figure out the error

defined by one of the statistical indices. The major

advantage of this process is that the average accuracy for

the V times could lead to consistent measure model error

and its stability, i.e., the validity of the model for testing

session unseen data.

Table 5 illustrates that the MAE and RMSE values

achieved utilizing tenfold cross-validation show best

goodness fitting and outstanding performance if compared

while utilizing 15-fold cross-validation. In addition, com-

parable results were attained for the MAPE values. It

should be reported here that the major challenging of

employing the cross-validation procedure in the current

research is the choice of the size of the utilized data set. It

seems essential for the choice to be representing for the

feature for both the training the model and testing session.

However, after the optimal kernel parameters are found,

and nu-RBF model is selected as optimal model, the whole

training data of behavior SC parameters are trained using

the optimal nu-RBF model and then tested. Figures 6 and 7

exhibit the prediction accuracy with percentage of error for

the test data of behavior settlement of SC.

Another model to predict lateral displacement of stone

column developed is shown in Fig. 7. The number of the

inaccurate lateral bulging of stone column (Uh) prediction

decreased significantly with the SVM method. The

Fig. 4 SVM model

performance using different

values of c where e = 0.2 and

C = 8
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application of physics-based distributed process complex

computer software programs is often problematic, due to

the need for massive amounts of detailed spatial and tem-

poral environmental data which are not available [29]. In

particular, that is the application of AI to the behavior

settlement of stone column data estimation is limited in the

literature. Lateral bulging of stone column (Uh), model in

figure below, illustrates the comparison between the pre-

dicted Uh and the measured Uh using 100% agreement line

(45�) of graph and two deviation lines from the agreement

line for both validation and testing data sets for the

developed models. It was obvious that SVM model could

predict the Uh with relatively good level of accuracy,

whereby the error for majority of the records did not reach

16%.

4 Conclusion

In this study, the proposed SVM model and support vector

regression have confirmed their attainment predicting and

analyze settlement and statistical learning. Nevertheless,

few works have been done for predicting the settlement

behavior of stone column. In this paper, evaluation of the

Fig. 5 Comparison of actual

versus predicted behavior total

settlement: a Nu-SVM-type

model, b Epsilon-SVM-type

model
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feasibility of employing support vector regression in

mimicking the settlement behavior of stone column pre-

diction is reported. Afterward various experiments propose

set of SVM parameters that could be used to predict

behavior settlement of SC with relatively high level of

accuracy. In addition, the results depict that the proposed

SVM model predictor meaningfully outperforms the other

baseline prediction model. This evidences the applicability

of support vector regression in settlement of stone column

data analysis. SVM technique with varying fold cross-

validation utilized to prediction of settlement behavior of

stone column embedded in soft clay soils under embank-

ment. In order for achieving the best result of SVM

regression selection, several V-fold cross-validation pro-

cedures were examined. Type nu-SVM provides

CR = 0.9987, which is higher than the 0.9973 by the type

epsilon-SVM. On the other hand, tenfold cross-validation

showed better performance over the other higher V-fold

cross-validation.

Table 3 Result of various

epsilon parameter e, of SVM
model where C = 8 and

gamma = 0.2 of Stotal behavior

prediction model

Epsilon, e RMSE Correlation coefficient No. of support vectors

Testing Testing

0.001 0.00085 0.99021 222

0.1 0.00116 0.98722 110

*0.2 0.00177 0.98251 28

0.3 0.00365 0.98158 16

0.4 0.00658 0.98111 10

0.5 0.01202 0.97709 10

0.6 0.01695 0.95826 8

0.7 0.02296 0.9597 7

0.8 0.03014 0.96015 6

0.9 0.0383 0.94957 4

Bold values represent the best results

Table 4 Nu-RBF performance utilizing different values of nu with

fixed (gamma = 0.2, capacity = 8) of Stotal behavior prediction

model

Nu RMSE Correlation

coefficient

No. of support

vectors

Testing Testing

0.001 0.049 0.933 8

0.01 0.009 0.972 16

0.1 0.004 0.985 62

0.2 0.003 0.988 118

0.3 0.002 0.989 150

0.4 0.002 0.989 175

0.5 0.003 0.989 188

0.6 0.003 0.987 201

0.7 0.003 0.987 201

0.8 0.002 0.989 203

0.9 0.002 0.988 202

1 0.002 0.990 202

Bold values represent the best results

Table 5 Statistical evaluation

Stotal using 3-, 5-, 7-, 10- and

15-fold cross-validation for

epsilon-RBF and nu-RBF

models

Statistical evaluation V-fold

3 5 7 10 15

e-RBF model

RMSE 0.003281 0.002807 0.002875 0.002686 0.002875

MAPE 0.177323 0.161928 0.16452 0.159176 0.16452

MAE 0.045329 0.041692 0.040612 0.040379 0.040612

CR 0.992476 0.997101 0.996374 0.997327 0.996374

Nu-RBF model

RMSE 0.003278 0.002686 0.002531 0.002398 0.002531

MAPE 0.177171 0.159176 0.164146 0.153674 0.154886

MAE 0.04529 0.041682 0.04052 0.037099 0.038168

CR 0.993328 0.997327 0.998637 0.9987 0.998637

Bold values represent the best results
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In brief, utilizing the nu-SVM regression with tenfold

cross-validation could achieve better prediction accuracy

with maximum error equal to 2% and CR equal to

0.9987. Although the results appeared to be good, the

application of the soil settlement is very sensitive

application to the level of error. 2% as a maximum error

is relatively high in such application, and then, there is a

need to enhance it.
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