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Abstract As two kinds of popular data mining methods,

metric learning and SVM have a interesting and valuable

internal relationship. The basic idea of metric learning is to

learn a data-dependent metric, instead of Euclidean metric,

to shrink the distances between similar points and extend

the distances between dissimilar points. From a different

view, LSSVM can reach a similar goal as metric learning.

It finds two parallel hyperplanes to make the distances

between points and corresponding hyperplane as small as

possible and the distance between two hyperplanes as large

as possible. LSSVM can be looked as a slack version of

metric learning. Then, it can be improved by modifying the

way in measuring between-class distance, lead to the raise

of our novel approach ML-LSSVM, which adds constraints

of inter-class distance into LSSVM. Alternating direction

method of multipliers algorithm was implemented to solve

ML-LSSVM effectively, much faster than handling the

original quadratic convex programming problem. Experi-

ments were made to validate the efficacy of ML-LSSVM

and prove that different measurements of intra-class dis-

tance and inter-class distance have significant impact on

classification. At last, the relation between LMNN and

ML-LSSVM was discussed to illustrate that the local for-

mulation of LMNN is equivalent to ML-LSSVM.

Keywords Metric learning � Least square-SVM � LMNN �
Classification � Distance

1 Introduction

Support vector machines (SVMs) are very excellent algo-

rithms in classification and regression problems which have

shown state-of-the-art performance in a large number of

applications [4, 6, 15, 16]. SVM is first proposed by Vapnik

et al. [3, 19] twenty years ago and has always been a hot

spot till today since its good generalization ability. Based

on margin maximal principle, SVM aims to find two sup-

port hyperplanes, the distance between which can be

expanded as large as possible. Later, least squares SVM

(LSSVM) [14] was presented to convert the inequality

constraints into equalities, leading to solving a system of

linear equations. LSSVM seeks for two proximal hyper-

planes for each class to make the distances between points

and their corresponding proximal hyperplanes as small as

possible. Meanwhile, LSSVM wishes to maximize the

distance of the two hyperplanes. The solving speed of

LSSVM is much faster than SVM because of avoiding

handling quadratic programming problem, but its classifi-

cation performance is slight worse than SVM [12, 13, 18].

As another popular research area, metric learning has

attracted significant attention recently [1, 20, 24]. The aim of

metric learning is to learn a data-dependent metric matrix

M to redefine the distance between two points x1, x2 as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2ÞTMðx1 � x2Þ
q
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In Euclidean distance,M is an identitymatrix. The goal of the

learned matrix is to expand inter-class distance and shrink

intra-class distance. Classification can be easier imple-

mented after metric learning, and the performance can be

improved naturally [2, 5, 9, 10]. Much work related with

metric learning has been done to improve the performance of

SVMs [25, 27] and k-NN [8, 23, 26] algorithms. SVM can be

improved by learning newRBF kernel [25] since RBF kernel

function in nonlinear SVM is a function of distance. Large

margin nearest neighbor (LMNN) classification [17, 21, 22]

is viewed as a metric learning-based counterpart to SVM. It

replaces linear classification in SVM with k-NN classifica-

tion. MLSVM[11] constructs a newmetric learning problem

with local neighborhood constraints based on the formula-

tion of SVM. PCML and NCML[28] are formulated as a

kernel classification problemwhich can be solved by training

SVMs iteratively.

In fact, SVM has close relationship with metric learning.

In the view of metric learning, the margin maximal prin-

ciple in SVM is equivalent to maximizing inter-class dis-

tance. But SVM can not minimize intra-class distance

which had been promoted in [7]. e-SVM has been intro-

duced to improve SVM based on metric learning. It not

only penalizes the points violating the margin, but also

punishes the points far from the support hyperplanes. In

this paper, we argue that LSSVM has closer relation with

metric learning than traditional SVM. LSSVM makes the

two proximal hyperplanes be proximal to their corre-

sponding classes, which can be seen as minimizing within-

class distance in metric learning perspective. Pulling the

two proximal hyperplanes as far as possible is equivalent to

maximizing between-class distance. The difference is that

metric learning aims at learning a matrix M (full or sparse),

while LSSVM only learns a vector w (or diagonal matrix

W with diag(W) = w). So LSSVM can be regarded as a

slack version of metric learning algorithm. LSSVM can be

improved by consolidating its formulation in measuring

between-class distance. The 1=kwk2 term can not represent

inter-class distance well since the two center hyperplanes

have invaded the interior of each class. And it is just a

regularized term in metric learning view. In traditional

SVM, the principal of maximal margin is implemented,

which seeks for two boundary hyperplanes, each one cor-

responds to a class, and maximizes the distance between

the two hyperplanes. It can be regarded as expanding inter-

class distance as much as possible in metric learning view.

However, SVM does not make errors in shrinking intra-

class distance, resulting in the claim that LSSVM is closer

to metric learning than SVM.

In this paper, we will clearly analyze the relation

between LSSVM and metric learning. Metric learning

problem can be transformed as LSSVM by relaxing the

pairwise constraints. In light of the advantages of metric

learning in measuring between-class distance, we add

constraints into the primary problems of LSSVM to control

inter-class distance. ADMM algorithm is used to solve the

new proposed approach, ML-LSSVM. ADMM can solve

convex programming problem by breaking it into many

smaller pieces and obtain the solution of each subproblem

in much less time. Discussion on the relation between ML-

LSSVM and LMNN is presented to show that the formu-

lation of ML-LSSVM is similar with local LMNN.

We will organize the rest of the paper as follows.

Background on metric learning and SVM is introduced in

Sect. 2. The relation between LSSVM and metric learning,

ML-LSSVM and LMNN will be discussed in Sect. 3, and

Solving ML-LSSVM by ADMM will also be performed. In

Sect. 4, we will make plenty of numerical experiments to

compare our new method with several algorithms and

verify the advantages of ML-LSSVM. Conclusions are

made in Sect. 5.

2 Background

For a training set with c classes

T ¼ fðx1; y1Þ; . . .; ðxm; ymÞg; ð2:1Þ

where ðxi; yiÞ 2 Rn � f1; 2; . . .; cg; i ¼ 1; . . .;m and m is

the total number of samples, n is the number of features.

Define a index set I ¼ f1; . . .;mg and the following pair-

wise data sets

S ¼ fðxi; xjÞjyi ¼ yjg ð2:2Þ

D ¼ fðxi; xjÞjyi 6¼ yjg ð2:3Þ

where S contains data pairs with the same label and

D contains data pairs with different labels.

2.1 Metric learning (ML)

The purpose of metric learning is to find a proper distance

metric to measure the distance of all the data pairs instead

of Euclidean metric. For a new learned distance metric

M 2 Rn�n, the distance between two data points z1 and z2
in terms of M is represented by

dMðz1; z2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz1 � z2ÞTMðz1 � z2Þ
q

ð2:4Þ

where M is a positive semi-definite matrix and satisfies the

following properties

dMðz1; z2Þ� 0 ð2:5Þ
dMðz1; z2Þ ¼ dMðz2; z1Þ ð2:6Þ
dMðz1; z2Þ þ dMðz1; z3Þ� dMðz1; z2Þ ð2:7Þ
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dMðz1; z2Þ ¼ 0 , z1 ¼ z2 ð2:8Þ

In supervised metric learning, one of the most representative

work is implemented by Xing with the paper [23], in which

the method of pairwise constraints is proposed. The algo-

rithm, formulated as a convex programming problem, aims

to find a global data-dependent distance metric which min-

imizes the sum of distances between data pairs in (2.2)

constrained by that data pairs in (2.3) are well separated. The

following convex optimization problems are constructed

min
M

X

ðxi;xjÞ2S
d2Mðxi; xjÞ ð2:9Þ

s.t.
X

ðxi;xjÞ2D
d2Mðxi; xjÞ� 1; ð2:10Þ

M � 0 ð2:11Þ

The above problem can been classified into two cases, the

case of diagonal matrix M and full matrix M, which have

been solved by Newton–Rapson method and gradient

ascent with iterative projection, respectively.

2.2 Large margin nearest neighboor (LMNN)

LMNN learns a Mahanalobis distance metric to improve

the performance of k-NN classification. Based upon the

local view, LMNN defines a neighborhood for every point

and aims to make the metric meet the goal that pull the

samples in the neighborhood with the same label nearer

and push the samples with different labels away by a large

margin. The primal semi-definite programming problem is

stated as follows

min
M;n

X

il

gild
2
Mðxi; xlÞ þ C

X

ijl

gilð1� yjlÞnijl; ð2:12Þ

s.t. d2Mðxj; xlÞ � d2Mðxi; xlÞ� 1� nijl; ð2:13Þ

nijl � 0; M � 0 ð2:14Þ

where

yjl ¼
1; yj ¼ yl;
0; yi 6¼ yl

�

; gil ¼
1; yil ¼ 1; xi 2 tðxlÞ
0; yil ¼ 0

�

and tðxlÞ denotes the neighborhood of xl. LMNN can make

significant improvements on k-NN classification with

Euclidean distance, verifying that the algorithm can obtain a

better distance metric to measure the similarity of any two

points.

2.3 Support vector machine (SVM)

SVM intends to seek the best hyperplane to classify the

training set (2.1) by maximizing the margin between dif-

ferent classes. The primal problem of standard SVM

min
w;b;n

1

2
kwk2 þ C

X

m

i¼1

ni; ð2:15Þ

s.t. yiðwTxi þ bÞ� 1� ni; i 2 I ð2:16Þ
ni � 0; i 2 I ð2:17Þ

where n ¼ ðn1; n2; . . .; nlÞT and C[ 0 is a penalty param-

eter. In the view of metric learning, SVM only makes

efforts in separating different classes but ignores gathering

the points in the same class. It is considered that SVM can

be boosted by adding constraints of minimizing the within-

class distance. So e-SVM [7] is constructed as follows

min
w;b;n

1

2
kwk2 þ C

X

m

i¼1

ni þ k
X

m

i¼1

ei; ð2:18Þ

s.t. 1þ ei � yiðwTxi þ bÞ� 1� ni; ð2:19Þ
ni; ei � 0; i 2 I ð2:20Þ

which has double number of constraints than SVM,

resulting in even lower speed than SVM.

2.4 Least square support vector machine (LSSVM)

In light of the idea of least squares, equality constraints are

considered in SVM approach which lead to the presenta-

tion of LSSVM. The method can avoid solving quadratic

programming by solving a set of linear equations. LSSVM

searches for two parallel hyperplanes wTxþ b ¼ 1;wTxþ
b ¼ �1 to minimize the distance between the data points

and the corresponding hyperplane and maximize the mar-

gin of the two hyperplanes. The formulation of LSSVM

algorithm is

min
w;b;n

1

2
kwk2 þ C

X

m

i¼1

e2i ð2:21Þ

s.t. yiðwTxi þ bÞ ¼ 1þ ei; i 2 I ð2:22Þ

and the final decision hyperplane is wTxþ b ¼ 0. In fact,

LSSVM makes two sides endeavors in adjusting the

between-class and within-class distance. But its formation

of measuring within-class and between-class distance are

different from metric learning which will be promoted in

later section.

The four methods have different forms in presenting

within-class distance and between-class distance [14]. We

list the formulas in Table 1. For within-class distance, we

argue that
X

yi¼yj

dMðxi; xjÞ

is more strict than
X

k¼�

X

yi¼k

dðxi;HkÞ
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in minimizing within-class distance. In a fixed space,

minimizing
P

yi¼k dðxi;HkÞ can only make the distance of

two points in the direction of perpendicular to Hk as short

as possible without restricting the distance in the direction

of parallel to Hk (Fig. 1). For between-class distance,

minyi 6¼ yl dðxi; xlÞ is considered to be more rigid than
P

yi 6¼ yl
dMðxi; xlÞ. Maximizing the former can separate two

different classes distinctly by a large margin, contributing

to better classification performance, but the latter can not

ensure it.

3 Metric learning-based-LSSVM

3.1 The relation between metric learning

and LSSVM

In this subsection, the claim that LSSVM has a strong

relation with metric learning will be proved as follows. For

the metric learning problem (2.9)–(2.11), let M ¼ WTW ,

where W is a diagonal matrix and diag(W) = w, and define

a linear transformation Rn ! H : x̂ ¼ Wx. Given two fixed

hyperplanes

Hþ : 1Tx̂þ b ¼
ffiffiffi

n
p

=2;H� : 1Tx̂þ b ¼ �
ffiffiffi

n
p

=2
X

ðxi;xjÞ2S
d2Mðxi; xjÞ ¼

X

ðxi;xjÞ2S
ðxi � xjÞTwwTðxi � xjÞ

¼
X

ðxi;xjÞ2S
ðwTxi � wTxiÞ2

¼
X

yi¼yj¼1

ð1TWxi þ b�
ffiffiffi

n
p

=2

� ð1TWxj þ b�
ffiffiffi

n
p

=2ÞÞ2

þ
X

yi¼yj¼�1

ð1TWxi þ bþ
ffiffiffi

n
p

=2

� ð1TWxj þ bþ
ffiffiffi

n
p

=2ÞÞ2

� n
X

yi¼yj¼1

ðdðx̂i;HþÞ þ dðx̂j;HþÞÞ2

þ n
X

yi¼yj¼�1

ðdðx̂i;H�Þ þ dðx̂j;H�ÞÞ2

� 2nðp� 1Þ
X

yi¼1

d2ðx̂i;HþÞ

þ 2nðq� 1Þ
X

yj¼�1

d2ðx̂j;H�Þ

� tð
X

yi¼1

d2ðx̂i;HþÞ þ
X

yj¼�1

d2ðx̂j;H�ÞÞ

ð3:1Þ

where t ¼ 2n �maxðp� 1; q� 1Þ. In addition, we hope that
the projected points of each class lie on two sides of cor-

responding hyperplane symmetrically. Then, we have

n
X

yi¼1

d2ðx̂i;HþÞ þ n
X

yj¼�1

d2ðx̂j;H�Þ�
X

ðxi;xjÞ2S
d2Mðxi; xjÞ

ð3:2Þ

d2ðHþ;H�Þ�
X

ðxi;xjÞ2D
d2Mðxi; xjÞ ð3:3Þ

The Eqs. (3.2) and (3.3) are trivial results and we can

explain them in Fig. 1.

From the Eqs. (3.1) and (3.2), it is notable that mini-

mizing
P

yi¼1 d
2ðx̂i;HþÞ þ

P

yj¼�1 d
2ðx̂j;H�Þ in the

H space is a slack way to minimize
P

yi¼yj
d2Mðxi; xjÞ in Rn

space. So the following optimization problems in H space

are considered

min
W

X

yi¼1

d2ðx̂i;HþÞ þ
X

yj¼�1

d2ðx̂j;H�Þ; ð3:4Þ

Table 1 Representations of

within-class distance and

between-class distance

Algorithm ML LMNN SVM LSSVM

Within-class distance
P

yi¼yj
dMðxi; xjÞ

P

yi¼yj
dMðxi; xjÞ N/A

P

k¼�
P

yi¼k dðxi;HkÞ
Between-class distance

P

yi 6¼ yl
dMðxi; xlÞ minyi 6¼ yl dðxi; xlÞ minyi 6¼ yl dðxi; xlÞ dðHþ;H�Þ

(a)

Fig. 1 The relation between LSSVM and metric learning. The blue

circles belong to positive class, and the red squares belong to negative

class. The points are mapped from primal space by the mapping:

x̂ ¼ Wx. The black line segments represent within-class distance and

the green ones represent between-class distance. In these distances,

solid line segments correspond to metric learning and dotted line

segments corresponds to LSSVM. a LSSVM (color figure online)
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s.t. d2ðHþ;H�Þ ¼ 1 ð3:5Þ

which can be rewritten as

min
X

m

i¼1

e2i ; ð3:6Þ

s.t. yiðwTxi þ bÞ ¼
ffiffiffi

n
p

=2þ ei; i 2 I ð3:7Þ

But the problem is scaling with kwk, we add a regularized

term into the object function and standardize the con-

straints by dividing
ffiffiffi

n
p

=2 on both sides. Then, LSSVM

method is obtained

min kwk22 þ C
X

l

i¼1

e2i ; ð3:8Þ

s.t. yiðwTxi þ bÞ ¼ 1þ ei; i 2 I ð3:9Þ

It is considered that the kwk term in the objective

function of LSSVM is only a regularization term in metric

learning view which can not maximize between-class

margin well. In Fig. 2, Hþ;H� are the two hyperplanes that

LSSVM seeking for and H0 is the final decision hyper-

plane. There are two drawbacks in LSSVM: (1) The

decision hyperplane is sensitive to outliers. In Fig. 2, there

is an outlier in the top right corner which pull Hþ further

from H�, and the final decision hyperplane is not proper;

(2) The between-class distance is measured by the distance

between Hþ and H�, 1=kwk. But in metric learning view,

between-class distance measured by minyi 6¼ yl d
2
Mðxi; xlÞ is

more proper. So we can improve LSSVM by maximizing

min
yi 6¼ yl

d2Mðxi; xlÞ

which can be converted into maximizing the distance

between two boundary lines (the two solid lines in Fig. 2).

Then, we can construct the following problems, termed

as ML-LSSVM:

min
1

2
kwk2 þ C

X

m

i¼1

e2i � kt; ð3:10Þ

s.t. yiðwTxi þ b� yiÞ ¼ ei; i 2 I ð3:11Þ

yiðwTxi þ bÞ� t; i 2 I ð3:12Þ

In the above problem, maximizing t means that the points

in two classes lie in two sides of H0 and be far away from

H0 as much as possible. So the goal of maximizing

between-class distance can be obtained.

3.2 Solving ML-LSSVM via ADMM

In this subsection, we try to solve the primary problem of

ML-LSSVM in an effective way. The algorithm of ADMM

(alternating direction method of multipliers) solves convex

optimization problem by splitting them into many smaller

scale optimization problems, each of which can be easier

handled. It has been used in many applications recently.

We will first transform our method into the standard for-

mulation of ADMM and then introduce the solving

process.

First, the slack variable g ¼ fg1; . . .; gmg� 0 is intro-

duced to convert the inequations into equations, and then,

we have

min
1

2
kwk2 þ C

X

m

i¼1

e2i � kt; ð3:13Þ

s.t. yiðwTxi þ b� yiÞ ¼ ei; i 2 I ð3:14Þ

yiðwTxi þ bÞ ¼ t þ gi; i 2 I ð3:15Þ
g� 0 ð3:16Þ

Define an indicative function

hðgÞ ¼ þ1; g\0;
0; g� 0

�

ð3:17Þ

and let p ¼ ðwT; b; eT; tÞT, where e ¼ ðe1; . . .; emÞT, we

have the following optimization problem in matrix form

min
1

2
pTQpþ qTpþ hðgÞ; ð3:18Þ

s.t. A1p ¼ 1m; ð3:19Þ
A2p� g ¼ 0m ð3:20Þ

where

Q ¼

E

0

2E

0

0

B

B

@

1

C

C

A

; ð3:21Þ

A1 ¼ diagðyÞX y �E 0mð Þ; ð3:22Þ
A2 ¼ diagðyÞX y Om�m �1mð Þ; ð3:23Þ

qT ¼ ð0Tmþnþ1 � kÞ and E is m 9 m identity matrix, 1, 0 are

vectors of ones and zeros, respectively. For X 2 Rm�n, each

row is a training instance. Then, we can get the following

standard optimization problem for

H-:w
T x+b=-1

H+:wT x+b=1

H0:wT x+b=0

Fig. 2 Explanation for LSSVM and its drawbacks
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min
1

2
pTQpþ qTpþ hðgÞ; ð3:24Þ

s.t. Apþ Bg ¼ c; ð3:25Þ

where A¼ ðAT
1 AT

2 Þ
T; B¼ ðOT

m�m �EÞT; c¼ ð1T 0TÞT:
The problem (3.24)–(3.25) can be solved by Algorithm 1.

To extend our method into nonlinear case, the following

kernel-based surface is considered

Kðx;XÞuþ b ¼ 0 ð3:26Þ

where Kðx;XÞ ¼ ðUðxÞ � UðXÞÞ. We can introduce

(3.26) into the primal problem (3.10)–(3.12) directly

and achieve the standard formulation for ADMM

easily.

3.3 The relation on LMNN and ML-LSSVM

We will explore the relation between LMNN and ML-

LSSVM in this subsection. The problems (2.12)–(2.14) can

be generalized as

min
X

il

gild
2
Mðxi; xlÞ � k

X

l

cl; ð3:27Þ

s.t. d2Mðxj; xlÞ � d2Mðxi; xlÞ� cl; ð3:28Þ

M � 0 ð3:29Þ

which can be rewritten as

min
X

il

d2Mðxi; xlÞ � k
X

l

cl; ð3:30Þ

s.t. d2Mðxi; xlÞ ¼ e2i ; 8l; xi 2 tðxlÞ ð3:31Þ

d2Mðxj; xlÞ� cl þmax
i

d2Mðxi; xlÞ; ð3:32Þ

8xl; xi 2 tðxlÞ; yj 6¼ yl; M � 0 ð3:33Þ

where k[ 0 is an adaptive parameter.

For every xl, the above problem can be broken up into

min
X

i

d2Mðxi; xlÞ � kcl; ð3:34Þ

s.t. d2Mðxi; xlÞ ¼ e2i ; xi 2 tðxlÞ ð3:35Þ

d2Mðxj; xlÞ� cl þmax
i

d2Mðxi; xlÞ; ð3:36Þ

yj 6¼ yl;M � 0 ð3:37Þ

Similar as [7], we introduce a nonlinear transformation

~x ¼ UðxÞ ¼ ðx21; . . .; x2n; x1x2; x1x3; . . .; xn�1xn; x1; x2; . . .; xnÞ
ð3:38Þ

then d2Mðx; xlÞ ¼ wT
l UðxÞ þ bl. The problem (3.34)–(3.37)

can be transformed as

min
X

i

ðe2i � cl=2Þ � kcl=2; ð3:39Þ

s.t. wT
l UðxiÞ þ b0l þ 1 ¼ 1�max

i
d2Mðxi; xlÞ þ e2i � cl=2;

ð3:40Þ

wT
l UðxjÞ þ b0l � cl=2; ð3:41Þ

yj 6¼ yl; xi 2 tðxlÞ ð3:42Þ

where b0l ¼ bl �max
i

d2Mðxi; xlÞ � cl=2.
The formulation of problem (3.39)–(3.41) is equivalent to

ML-LSSVM, except their different training sets. Given any

xl, the training set contains two classes, one class consists of

the points located in the neighborhood of xl that own the same

label with xl and the other class consists of the points with

different labels from xl.We denote the two classes by the sets

TSs and TSd. The problem minimizes the within-class dis-

tance by forcing the data in TSs to be as near as possible from

xl and maximize between-class distance by making the

margin as large as possible. It can be seen that LMNN con-

tains m local ML-LSSVM with constraining that every wl is

dependent on the corresponding xl. So local information is

embedded in LMNN, but ML-LSSVM utilizes global

information to obtain the best hyperplane. The relation

betweenLMNNandML-LSSVMcan be explained in Fig. 3.

4 Numerical experiments

In this section, numerical experiments in different aspects

will be made to evaluate the ability of ML-LSSVM. The

experimental design, including the selected datasets and

compared algorithms, the parameters to be optimized, will

be clearly specified. We will introduce a toy example first

to show that our method can reduce the negative impact of

outliers and scale within-class and between-class distance

properly. Then, classifications on binary class and multi-

class are implemented and the CPU time is compared.
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4.1 A toy example for ML-LSSVM

Given an artificial training set: negative class

N ¼ fð0:5; 0:5Þ; ð0:7; 0:3Þ; ð0:3; 0:7Þ; ð1; 1Þ;
ð1:4; 0:6Þ; ð0:6; 1:4Þg

and positive class

P ¼ fð2; 2Þ; ð2:8; 1:2Þ; ð1:2; 2:8Þ; ð2:5; 2:5Þ; ð3:5; 1:5Þ;
ð1:5; 3:5Þg

The former three points in N are in the line x1 ? x2 = 1

and the last three in x1 ? x2 = 2. The former three points

in P are in the line x1 ? x2 = 4 and the last three in

x1 ? x2 = 5. So the best separating hyperplane should be

x1 ? x2 = 3 and the two corresponding center lines are

x1 ? x2 = 1.5, x1 ? x2 = 4.5.

If adding an outlier (5, 5) into P, LSSVM will get two

center lines x1 ? x2 = 0.23, x1 ? x2 = 6.38 (the blue

and red dotted lines in Fig. 4) and the decision line

x1 ? x2 = 3.3 (the black dotted line in Fig. 4), but ML-

LSSVM can get x1 ? x2 = 1.6, x1 ? x2 = 4.4 (the blue

and red solid lines in Fig. 4) and the decision line

x1 ? x2 = 3 (the green solid line in Fig. 4). In fact, the

two lines x1 ? x2 = 0.23, x1 ? x2 = 6.38 have not min-

imized the within-class distance owing to the outlier. Also

1=kwk2 loses its meaning in representating the between-

class distance. But ML-LSSVM can eliminate the effect of

the outlier by adjusting the parameter k. Besides, the two

center lines of ML-LSSVM play the role of minimizing

within-class distance well.

4.2 Datasets information and experimental setups

Benchmark datasets were selected to evaluate the classifi-

cation performance. We selected 20 binary class datasets

and 9 multi-class datasets from UCI Machine Learning

Repository and the LIBSVM DATASETS. The character-

istics of the 29 datasets, including the number of instances,

features and classes, are displayed in Table 2. All the

datasets are scaled into the interval [0, 1]. The instance

numbers of the datasets are from 62 to 1000 and the feature

numbers are from 4 to 7129.

(a)

(b)

Fig. 3 The relation between local LMNN (a) and ML-LSSVM (b). a
The points are in the original space. For every xl, the inner circle

denotes the extent of its class and the radius is el ¼ max
i

d2Mðxi; xlÞ.

The margin ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cl þmax
i

d2Mðxi; xlÞ
q

� el. Local LMNN aims to

minimize el and maximize cl. b The points are in the mapped space:

~x ¼ UðxÞ. L1 : w
T
l UðxÞ þ bl ¼ 0; L2 : w

T
l UðxÞ þ b0l ¼ �1;

L3 : w
T
l UðxÞ þ b0l ¼ 0. Minimizing

P

i e
2
i in the Eq. (3.39) is equiv-

alent to making the distances between blue points and L2 as small as

possible. Maximizing cl is to extend the distance between the two

boundary lines as much as possible (cl=2 is equals to t in Eq. (3.12))

(color figure online)

0 1 2 3 4 5
-6

-4

-2

0

2

4

6

8

Fig. 4 A toy example for ML-LSSVM
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We compared our method with three methods, e-SVM,

LSSVM, LMNN, using classification error to evaluate

performance. ADMM algorithm was also implemented in

the former two methods. All the experiments were made on

MATLAB 2015a(Inter Core i5, 4G RAM).

In binary classification, to test the performance of ML-

LSSVM comprehensively, the four algorithms except

LMNN were implemented in four kernels: linear, polyno-

mial, RBF and sigmoid. All the best parameters were

selected with fivefold cross-validation. For all the kernels,

C is searched from the set f10�3; . . .; 103g. In polynomial

kernel Kðu; vÞ ¼ ðu0vþ 1Þd, the degree d is selected from

f2; 3; 4g. In RBF kernel Kðu; vÞ ¼ expð�cku� vk2Þ and

Sigmoid kernel Kðu; vÞ ¼ tanhðku0vþ 1Þ, the parameters c
and k are both chosen from f10�2; . . .; 102g. For LMNN,

only experiments in linear case were made since the method

can not be extended into nonlinear case directly. For

e� SVM, k is set to beC/3 and inML-LSSVM, k ¼ 2C, both

settings mean to penalize the points violate inter-class dis-

tance constraints more than intra-class distance constraints.

In multi-class classification, we compared the four

methods in three cases: linear kernel, polynomial kernels

with d = 2 and d = 3. Similarly, LMNN is only performed

in linear kernel. The settings of C; k are the same as that in

binary classification. One versus One algorithm was used

in e-SVM, LSSVM, ML-LSSVM.

4.3 Experimental results and analysis

The average error rates in binary classification are displayed

in Table 3 and the best results are in bold-face. In 20 com-

parisons of each kernel, ML-LSSVM got 13, 12, 14,12 times

best performance in linear, polynomial, RBF, sigmoid

kernel, respectively, which demonstrate that ML-LSSVM

can handle binary classes task effectively and the improve-

ments on LSSVM are advantageous. LMNN performed

worst in linear case. In Fig. 5, The CPU time comparisons

were processed on e-SVM, LSSVM, ML-LSSVM. The

datasets are ranked in ascend order of the number of

instances. For each subfigure in Fig. 5, the horizontal axis is

from 1 to 20, denotes the rank of each dataset. It is

notable that LSSVM is the fastest method, and ML-LSSVM

is slower than LSSVM slightly. For the running speed in

linear, RBF and sigmoid kernel, LSSVM is three times faster

than ML-LSSVM. In polynomial kernel, the speed of ML-

LSSVM is as high as LSSVM. But ML-LSSVM performed

much better than LSSVM. e-SVM is much slower than

LSSVM andML-LSSVM since its constraints in the primary

problems are four times as much as LSSVM.

Figure 6 shows the average error rates in multi-class clas-

sification. In linear case,ML-LSSVMperformed best in 4 of 9

and LMNN took the first place in three times. And in poly-

nomial kernel with two degrees, ML-LSSVM got 15 best

results of 18. e-SVM performed second after ML-LSSVM.

The performance of ML-LSSVM verify that within-

class and between-class distance are very important in

classification tasks and the way in measuring the two types

of distance can affect prediction results markedly. The

relation on metric learning and LSSVM is helpful in

making improvements on LSSVM.

5 Conclusions

In this paper, we explore the relation between metric

learning and LSSVM. LSSVM can be regarded as a slack

version of the method with pairwise constraints, which is

Table 2 Characteristics of

selected datasets
Category Datasets Instance Feature Class Datasets Instance Feature Class

Binary class Coloncancer 62 2000 2 Ionosphere 351 34 2

Leuke 72 7129 2 Dermatology 366 34 2

Hepatitis 155 19 2 Votes 435 16 2

WPBC 198 33 2 Arrhythmia 452 279 2

Sonar 208 60 2 Clean1 476 166 2

Spectf 267 44 2 WDBC 569 30 2

Heart 270 13 2 Australian 690 14 2

Hungarian 294 13 2 Blood 748 4 2

Heartc 303 13 2 Pima 768 8 2

Bupa-liver 345 6 2 German 1000 20 2

Multi-class Circle 200 2 4 Libras 360 90 15

Iris 150 4 3 Gem 712 3 4

Wine 178 13 3 Vehicle 846 18 4

Seeds 210 7 3 Vowel 528 10 11

Thyroid 215 5 3
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Table 3 Error rate of binary

classification in linear and

nonlinear kernel

Dataset Linear Poly

e-SVM LSSVM ML-LSSVM LMNN e-SVM LSSVM ML-LSSVM

Coloncancer 19.52 19.52 16.19 17.62 11.19 13.33

Leuke 2.86 2.86 1.43 1.43 1.43 1.25

Hepatitis 16.13 16.13 14.84 17.42 19.35 19.35 12.90

WPBC 21.76 21.72 19.78 26.15 20.29 20.26 20.29

Sonar 28.74 27.79 21.59 15.86 18.66 19.63 18.17

Spectf 20.58 19.82 20.60 20.59 25.48 23.96 23.26

Heart 17.41 16.67 15.19 22.22 17.78 19.63 18.15

Hungarian 17.58 17.90 17.66 21.78 17.94 18.61 17.71

Heartc 16.14 16.17 15.14 20.14 16.48 20.14 17.49

Bupa 31.30 31.88 30.72 34.20 26.38 26.09 25.51

Ionosphere 17.09 11.95 11.96 15.11 11.97 15.68 10.82

Dermatology 3.83 2.73 2.46 3.00 3.27 3.55 3.00

Votes 4.37 5.29 5.29 5.06 4.14 4.60 4.14

Arrhythmia 24.33 23.46 22.14 28.97 36.25 43.12 34.94

Clean1 15.76 18.07 17.85 9.88 22.27 30.87 21.00

WDBC 6.50 3.70 3.69 4.20 4.05 3.52 3.14

Australian 14.35 13.77 13.91 16.38 12.32 13.48 13.62

Blood 23.14 22.73 22.59 29.02 19.80 20.74 20.99

Pima 30.47 21.88 22.67 25.90 22.28 22.28 22.53

German 25.3 24.40 23.50 29.30 36.90 25.70 28.30

Dataset Rbf Sigmoid

e-SVM LSSVM ML-LSSVM e-SVM LSSVM ML-LSSVM

Coloncancer 14.52 17.62 14.29 35.48 35.24 35.48

Leuke 20.71 30.18 33.04 34.82 34.46 34.46

Hepatitis 17.42 20.81 14.19 14.84 18.71 14.19

WPBC 19.30 20.81 17.77 23.33 20.66 20.22

Sonar 14.30 16.25 11.51 22.49 23.96 21.55

Spectf 18.72 14.97 18.35 20.58 20.56 20.56

Heart 15.56 15.56 15.19 16.30 16.30 15.56

Hungarian 18.65 18.24 17.39 18.63 19.37 18.74

Heartc 15.51 16.49 15.14 15.49 16.16 15.46

Bupa 28.12 26.09 26.09 28.99 29.57 28.99

Ionosphere 5.41 4.56 4.56 11.67 13.09 12.24

Dermatology 2.46 2.46 2.18 2.45 2.46 2.72

Votes 4.14 4.14 4.37 4.37 4.14 4.14

Arrhythmia 22.79 22.34 21.03 26.31 31.67 29.01

Clean1 7.56 5.88 4.83 22.50 25.41 23.94

WDBC 1.76 1.76 1.75 3.35 2.11 1.76

Australian 13.77 12.75 13.33 13.77 13.48 13.48

Blood 20.46 20.34 20.98 20.20 20.59 21.25

Pima 21.89 22.13 22.53 22.80 22.14 22.67

German 23.9 23.3 22.9 24.80 23.90 23.10
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one of the earliest work in metric learning. Within-class

distance and between-class distance are defined by the sum

of pairwise distances with respect to a new learned

Mahalanobis matrix. But LSSVM seeks for two parallel

hyperplanes, treated as a center marks for each class,

respectively. Within-class distance is measured by the sum

of distances between points and corresponding hyperplane.

The distance between the two center marks is the between-

class distance. In fact, LSSVM implements the idea of

metric learning essentially. Though, LSSVM can be

(a) (b) (c) (d)

Fig. 5 Comparisons of CPU time. a Linear, b Poly, c Rbf, d Sigmoid

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

Fig. 6 Error rate of Multi-class classification. a Circle, b iris, c wine, d seeds, e thyroid, f libras, g gem, h vehicle, i vowel
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improved by revising between-class distance. A novel

method, called ML-LSSVM, is presented, which add con-

straints of inter-class into the primary LSSVM. ML-

LSSVM can be solved effectively by ADMM algorithm,

breaking large convex problems into smaller ones. Further,

LMNN has an inner relation with ML-LSSVM and its local

version is equivalent to ML-LSSVM, just different in

training sets. Numerical experiments shown that the extra

constraints in ML-LSSVM are advantageous in improving

classification performance. In the future, we will investi-

gate the relation of metric learning with more variants of

SVM for improved performance.
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