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Abstract As a novel evolutionary technique, grouping

evolutionary strategy (GES) has proved efficient and

effective on grouping problems in which the task is to

partition a set of items into disjoint groups. This paper

investigates the first application of GES to tackle the par-

allel-machines scheduling problem as a well-known

grouping problem in which machines can be treated as

groups and jobs can be regarded as the items and the task is

to partition a set of jobs into disjoint groups (and process

all jobs in a same group by the same machines) to mini-

mize makespan (Cmax) criterion. The main features of GES

algorithm that make it different from the typical evolu-

tionary approaches proposed for the parallel-machines

scheduling problem, lie in exploiting a suitable chromoso-

mal representation and a well-designed mutation operator

that works with the set of jobs assigned to each machine

instead of jobs isolatedly, and uses a two-phase procedure

to generate the new schedules more effectively. In addition,

we hybridized GES with an efficient local search heuristic

and proved that it has an important descent property. To

verify the performance of our proposed algorithm, com-

parisons are made using available methodologies in the

literature. Computational results signify that the proposed

approach is fast and competitive in providing high quality

results.

Keywords Scheduling � Parallel-machines � Makespan �
Grouping evolutionary strategy

1 Introduction

Identical parallel-machines scheduling problem is formally

described as follows: a set of n independent jobs,

J ¼ fJ1; J2; . . .; Jng, each having an associated processing

time pi, i = 1,…,n, are to be processed on a set M ¼
fM1;M2; . . .;Mmg of m machines. Each job should be

processed on one of the machines, and preemption is not

allowed during processing. The subset of jobs assigned to

machine Mj in a schedule is denoted by SMj
. Furthermore,

each machine can only process one job at a time, and there

is no precedence relation between jobs. The paper inves-

tigates the problem of optimal assignment of jobs to

machines in order to minimize the completion time of the

last job, i.e., the makespan criterion (Cmax). Due to the fact

that this problem is NP-hard [13], it is unlikely to obtain

the optimal schedule through polynomial time-bounded

algorithms. Over the years extensive research has been

carried out to develop efficient approaches for the problem.

As a member of a family of algorithms known as list-

scheduling algorithms, the well-known longest processing

time (LPT) rule of Graham [15] has received considerable

attention because it tends to perform better in terms of

performance guarantee. According to LPT rule, we start

with an empty schedule and iteratively assign a non-

scheduled job with the longest processing time of all

remaining jobs to the machine with currently minimal

workload. This method generates a schedule that is no

worse than
CmaxðLPTÞ

C�
max

� 4
3
� 1

3m
, where Cmax(LPT) denotes

the makespan obtained based on the LPT rule. Coffman
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et al. [7] developed an algorithm entitled MULTIFIT that

establishes the relation between bin-packing and makespan

problems. Although the performance guarantee for MUL-

TIFIT algorithm is tighter than that of LPT algorithm, it

does not imply that MULTIFIT algorithm will yield better

makespan than LPT algorithm for any given problem.

Min and Cheng [37] proposed a modified version of

genetic algorithm based on machine code for minimizing

the makespan on identical machines scheduling problem.

Fatemi Ghomi and Jolai Ghazvini [12] developed an

algorithm for the problem that is also applicable to

schedule nonidentical parallel-machines and also the case

of non-simultaneous job arrivals. With the idea that the

variance of the last job’s completion times on each

machine in the presence of job preemption is zero, they

tried to minimize sum of ranges of machine finish times

instead of the makespan. Gupta and Ruiz-Torres [16]

proposed a heuristic named LISTFIT based on bin-packing

problem and list scheduling that its worst-case performance

bound is no worse than that of MULTIFIT algorithm. Their

computational results demonstrated that the heuristic out-

performs the LPT algorithm, the MULTIFIT algorithm and

the COMBINE methods of Lee and Massey [33] that uti-

lizes the output of LPT algorithm as an initial solution for

the MULTIFIT algorithm. Mokotoff [38] proposed an exact

cutting plane algorithm for minimizing the makespan in

parallel-machines scheduling problem. Dell’Amico and

Martello [8] provided a note, demonstrating that their

proposed exact algorithm in Dell’Amico and Martello [9]

outperforms the exact algorithm proposed by Mokotoff

[38] in terms of time and quality of solutions for mini-

mizing makespan. Gharbi and Haouari [14] proposed an

approximate decomposition algorithm that calls for itera-

tively solving a sequence of two-machine problems. Iori

and Martello [28] reviewed, evaluated and compared

scatter search algorithms for two generalizations of iden-

tical parallel machine scheduling problem. Mellouli et al.

[36] studied the identical parallel-machines scheduling

problem with a planned maintenance period on each

machine with the objective of minimizing the sum of

completion times. They proposed three exact methods to

solve the problem at hand: mixed integer–linear program-

ming method, a dynamic programming-based method and a

branch-and-bound method. Lee et al. [34] presented a

simulated annealing (SA) algorithm for the problem and

evaluated its performance in comparison to LISTFIT and PI

algorithms. They asserted that their approach outperforms

comparator algorithms for all experimental frameworks.

Husseinzadeh Kashan et al. [23] introduced a local search

heuristic for enhancing the performance of the genetic

algorithm for scheduling parallel batch-processing

machines. Husseinzadeh Kashan and Karimi [20] proposed

a discrete particle swarm optimization algorithm and its

hybridized version for the problem of scheduling identical

parallel machines and evaluated their performance in

comparison to the SA algorithm. Jing et al. [29] proposed a

discrete harmony search (HS) algorithm to solve identical

parallel-machines scheduling problem. They embedded a

local search in the HS algorithm to enhance its perfor-

mance. Balin [3] proposed a new crossover operator and a

new optimality criterion to adapt genetic algorithm to

nonidentical machines scheduling problem. A dynamic

harmony search (DHS) was presented by Chen et al. [6] to

minimize makespan in a parallel-machines system. The

proposed algorithm was also incorporated with a VNS-

based local search to improve its effectiveness. Bathrinath

et al. [4] proposed a genetic algorithm and a simulated

annealing algorithm to solve parallel-machines scheduling

problem with the objectives of simultaneous minimization

of makespan and number of tardy jobs. The effectiveness

of the proposed algorithms was compared by solving

benchmark problems. Zarandi and Kayvanfar [42] com-

pared NSGAII and NRGA in scheduling identical parallel-

machines considering controllability of processing times

and just-in-time (JIT) philosophy, when minimizing total

cost and makespan. Hashemian et al. [17] considered the

existence of non-availability periods of machines in their

proposed model and utilized constructive and backtracking

heuristics to solve the model. Bathrinath et al. [5] com-

pared a VNS-based heuristic with an SA-based heuristic in

parallel-machines scheduling problem with weighted

objective function of makespan and number of tardy jobs.

Kuruvilla and Paletta [32] proposed and evaluated a

heuristic algorithm combining LPT and

MULTIFIT heuristics to solve the parallel-machines

scheduling problem with the objective of minimizing the

makespan. Diana et al. [10] proposed an immune-inspired

algorithm incorporating greedy randomized adaptive

search (GRASP) and variable neighborhood descent (VND)

algorithms for minimizing the makespan and compared it

to three recently proposed genetic algorithm (GA), ant

colony optimization (ACO) algorithm and simulated

annealing (SA) algorithm for the parallel-machines

scheduling problem. Pakzad-Moghaddam [39] presented a

mixed integer programming formulation with the objec-

tives of makespan and total hiring cost for the problem and

proposed a particle swarm optimization (PSO) algorithm,

embedded with Lévy flights in replacement for random

walks, to solve large-sized problems. Kowalczyk and Leus

[31] proposed a branch-and-price algorithm for the prob-

lem of parallel-machines scheduling with conflicts by

combining bin-packing, scheduling and graph coloring

methods. They demonstrated the algorithm’s efficiency for

problems with and without conflicting jobs. Low and Wu

[35] proposed two ACO algorithms for the problem where

parallel machines are unrelated and each job can be
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processed on a subset of machines and compared the

algorithms on different sizes of the problem.

2 Motivation

Since its introduction in 1994, grouping genetic algorithm

(GGA) is the most predominant algorithm for grouping

problems in which the aim is to group a set of items in

disjoint groups [11]. Many NP-hard combinatorial opti-

mization problems such as graph coloring problem, bin-

packing problem, batch-processing machine scheduling

problem, line-balancing problem, timetabling problem,

parallel-machines scheduling problem, cell formation

problem and pickup and delivery problem are well-used

examples of grouping problems.

Grouping evolution strategies (GES) which has been

introduced in 2009 [24] is one of the latest evolutionary

algorithms introduced just for grouping problems. GES is

the grouping version of the well-known evolution strategies

which have been heavily modified to suit the structure of

grouping problems. GES has been successfully applied to

bin-packing problem [24, 26], batch-processing machine

scheduling problem [26] and fuzzy data clustering [25].

Results showed that on bin-packing problem and batch-

processing machine scheduling problem, GGA is inferior to

GES. Moreover, the design of GES gives it some advan-

tages over GGA.

Given the fact that parallel-machines scheduling prob-

lem is a grouping problem, the aim of this paper is to

propose an algorithm which takes into account the struc-

tural knowledge along with the grouping nature of this

problem. The aim of the paper is to propose a GES-based

algorithm for the parallel-machines scheduling problem.

We believe that it is not straightforward to propose a GGA

with its classic operators for this problem, because:

• When the structure of the grouping problem is in such a

way that the number of groups is very small, the use of

GGA to form the groups may be irrelevant. Short

chromosome lengths imposed by the very small number

of groups make the GGA operators less applicable. For

example, in the parallel-machines scheduling problem

with two machines, every solution (i.e., grouping of

jobs) has inevitably two groups. Here, the GGA

crossover and mutation operators as those described

in [11] are completely inapplicable because there are

only three positions for crossing sections (given that the

operators work with groups). The performance of GGA

is worsened due to the fact that the chromosomes

become proportionally shorter in length, thus placing

possible limitations on the search capabilities of the

GGA operators. Hopefully, GES does not suffer from

this deficiency.

• While we can simply apply GES on grouping problems

with nonidentical groups, this is not true for GGA. Let

us consider the parallel-machines scheduling problem

with nonidentical machines and the objective of

minimizing makespan. Since the classic GGA performs

under whole-group sharing rationale, it cannot be

applied to this scheduling problem. However, under

subgroup sharing rationale which is followed by GES,

there is no matter whether groups are identical or

nonidentical [26] .

The remainder of the paper is organized as follows. In

the following section, we give a brief introduction to

evolution strategies (ES) and its source of inspiration. The

grouping version of evolution strategies (GES) for parallel-

machines scheduling problems is presented in Sect. 4.

Section 5 generalizes the proposed methodology for job

scheduling on nonidentical machines. Section 6 investi-

gates the effectiveness of GES through computational

experiments. The paper will be concluded in Sect. 7.

3 An introduction to evolution strategies (ES)

According to Darwin’s theory about the development of

species, the most important characteristics of the evolution

process are inheritance, mutation and selection. Only these

properties of the biological evolution had to be translated

into mathematical terms to develop a most general and

effective optimization technique. Evolution strategies (ES)

of Rechenberg [40] are methods which translate the prop-

erties of the Darwinian biological evolution into mathe-

matical terms to formulate a general optimization method.

The family of evolution strategies is introduced by

ðl=qþ; kÞ � ES notation. All members operate with a

populationPt of l candidate solutions. In every time step t,

a set Qt of l candidate solutions is generated from Pt by

employing the recombination and mutation operators. The

symbol q indicates the number of parental solutions

involved in the generation of every single offspring solu-

tion. When q ¼ 1, it will be omitted. To form Ptþ1, the

candidate solutions are selected on the basis of their fitness.

Selection which is the goal-directed element of the evolu-

tionary search is represented by ‘‘
þ
;
’’, denoting the two

mutually exclusive selection types. Employing ‘‘?’’

selection, the l best of lþ k candidates in Pt [ Qt are

selected to form Ptþ1. Using ‘‘,’’ selection, it is the l best

of k candidate solutions in Qt that form Ptþ1.
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Generation of an offspring candidate solution is sup-

ported via mutation. Mutation consists of adding to cen-

troid, a random noise drawn from an isotropic normal

distribution. For a population Pt ¼ Xt
1;X

t
2; . . .;X

t
l

n o
in

which Xt
k ¼ xtk1; x

t
k2; . . .; x

t
km

� �
8k ¼ 1; . . .; l, is a m-di-

mensional solution vector in a continuous search space, the

set Qt will be composed of offspring candidate solutions

Yt
i ¼ yti1; y

t
i2; . . .; y

t
im

� �
8i ¼ 1; . . .; k, where:

ytij ¼ xtikj þ ztj; 8j ¼ 1; . . .;m; 8i ¼ 1; . . .; k ð1Þ

with ztj ¼ rtNjð0; 1Þ, where Njð0; 1Þ is a random number

associated to dimension j generated from a standardized

normal distribution (i.e., the variation source). The positive

scalar variable rt; which is learnt during the evolution

process is referred to as the strategy parameter or mutation

strength and determines the expected distance (variation)

of an offspring candidate solution from the centroid of its

parents. Index ik is drawn with replacement from the set

f1; . . .; lg.
Too low values for mutation strength can slow down the

progress while too high values may lead to divergence.

Therefore, the mutation strength rt should be adapted in

course of search. The first mutation strength adaptation

strategy was proposed for ð1þ 1Þ � ES by Rechenberg

[41]. Rechenberg’s recommendation was to monitor suc-

cess probabilities (i.e., the probability that an offspring

candidate solution is superior to its parent) by averaging

over the number of time steps. The mutation strength is

increased if the observed estimate of the success proba-

bility is[0.2 and it is decreased if the success probability is

\0.2. This mutation strength adaptation scheme is known

as 1/5-success rule.

4 Grouping evolution strategies (GES)
for parallel-machines scheduling problems

In this section our aim is to propose an efficient and

effective algorithm for parallel-machines scheduling

problem based on GES. The algorithm employs an

encoding scheme which is called assignments encoding. A

particular mutation operator is used which works based on

the composition of job assignments to machines and not the

jobs isolatedly. The mutation strategy is implemented via a

two-phase heuristic.

4.1 The structure of assignments encoding

When optimizing a continuous function by ES, each

solution is represented by a chromosome of length m of

real numbers (m is the problem dimension, i.e., the

number of variables). Similarly, for parallel-machines

scheduling problem, one can represent a solution as a

structure whose length is equal to the number of

machines. The content of each element in the structure

demonstrate all jobs assigned to the relevant machine (see

the left part in Fig. 1). Figure 1 demonstrates a schedule

for a five jobs and two machines problem. Any feasible

schedule must inevitably partition the set of jobs into two

groups. In the exampled schedule, jobs J1, J2 and J5 are

assigned to machine M1 and form the first group. Jobs J3,

J4 are assigned to machine M2 which forms the second

group. Thus, machines play the role of groups. Adopting

the structure of assignments encoding, GES works with

the sets {J1, J2, J5}, {J3, J4} as a chromosomal structure

with only two genes (one gene for each group). Hence,

the GES operations are designed based on the set/groups

of jobs rather than jobs isolatedly. The rationale is that in

a grouping problem like parallel-machines scheduling

problem, these are the job groups that are the innate

building blocks of the problem, which can convey infor-

mation on the expected quality of the schedule they are

part of, and not the particular positions of any one job on

its own.

4.2 The GES mutation operator

Given the structure of assignments encoding, the aim of

this section is to adapt mutation (1) to obtain the one which

works with the whole jobs assigned to a machine instead of

scalars. Reconstructing (1) to work with whole jobs

assigned to a machine, the major idea would be to use

suitable operators as a substitute for arithmetic operators.

In particular, we substitute ‘‘–’’ operator with a dissimi-

larity measure. Similar to ‘‘–’’ operator that measures the

magnitude of difference between two scalars, a dissimi-

larity measure quantifies the distance/dissimilarity between

two pattern of job assignments. We use ‘‘Distance’’ to

address such a measure.

Let A and A0 be two different subset of jobs assigned to a
given machine (say M1) in two different solutions of the

problem, respectively. Let jAj denotes the cardinality of

A. Measuring the degree of similarity between A and A0

helps us to determine how similar the assignments are to

each other or how far apart they are from each other. One

of the most commonly used measures to determine the

degree of dissimilarity between A and A0 is the Jaccard’s

coefficient of dissimilarity defined as follows:

Machine M1

{{J1, J2, J5}, {J3, J4}} M1 M1 M2 M2 M1

Machine M2 J1 J2 J3 J4 J5

Fig. 1 Structure of assignments encoding
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Dis(A;A0) ¼ 1� jA \ A0j
jA [ A0j ð2Þ

It is obvious that 0�Dis (A;A0)� 1. To develop an

analogous Gaussian mutation let us reshape (1) in form of

ytij � xtikj ¼ ztj and substitute ‘‘–’’ by ‘‘Dis.’’ The Gaussian

mutation can be introduced as follows:

Dis(ytij; x
t
ikj
Þ � ztj ð3Þ

where j ¼ 1; . . .;m; i ¼ 1; . . .; k and ztj ¼ rtNjð0; 1Þ. While

in (1), xtikj and ytij are scalars, in (3) xtikj and ytij denote the

subset of jobs assigned to a machine Mj in schedules Xt
ik

and Yt
i , respectively.

In (4), ‘‘&’’ implies ‘‘approximately equal to.’’ We use

this symbol instead of ‘‘=’’ because it may not be possible

to form the new group of jobs ðytijÞ assigned to machine Mj

in the offspring schedule Yt
i in such a way that the value of

Dis(ytij; x
t
ikj
Þ becomes exactly equal to ztj.

In place of Jaccard coefficient of dissimilarity, it may be

used the Kulczynski’s coefficient or Sørensen–Dices’

coefficient. However, presumably the most widely used

dissimilarity measure is the Jaccard’s coefficient of dis-

similarity. Moreover, both of these measures can perform

equivalent to the Jaccard’s coefficient of dissimilarity in

our case.

The component ztj makes use of variations depending on

the selected mutation strength rt. If rt increases, there is

more likelihood for ztj to go far away beyond the origin, and

if rt decreases, there is more likelihood for ztj to fall around

the origin. While ztj can get any arbitrary real value unre-

stricted in sign (i.e., ztj 2 �1;1ð Þ), the range of Dis(:; :Þ is
only real values in [0,1]. This is evidence that ztj may not be

an appropriate source of variation in GES.

Hence, we should devise a different type of random

variable as an alternative source of variations. It is highly

desirable that the candidate random variable take values

just in [0,1]. Moreover, similar to the normal PDF in which

changing the value of scale parameter rt changes the

chance of getting a random normal value in a specific

range, it is of interest to devise a flexible PDF that provides

different chances for getting a value in a specific sub-range

in [0,1] by means of the PDF input parameter(s). The Beta

distribution which is denoted by Bða; bÞ is an intended

PDF which is defined in [0,1] and models skew quite well.

We are therefore at the point to use Beta distribution in

place of isotropic normal distribution typically used in ES,

as the source of variation in GES. Beta distribution is

flexible in shape and takes all forms of J shape, humped

shape and U shape. But we need only J-shaped and

humped-shaped Beta distributions. We can achieve these

shapes via considering the value of one of the shape

parameters, say b, greater than one. From (3), we finally

obtain the mutation relation in GES as follows:

Dis (ytij; x
t
ikj
) � Betajðat; bÞ, 8j ¼ 1; . . .;m; 8i ¼ 1; . . .; k;

ik 2 f1; . . .; lg ð4Þ

where Betajðat; bÞ is a Beta random number associated to

machine Mj with shape parameters at and b. Keeping the

value of b constant, we can only consider at as the

endogenous strategy parameter just similar to the classic

ES.

4.3 Generating a new schedule

Generation of the new schedule in GES requires two pha-

ses. The first phase, the inheritance phase, includes

deciding about those parts of the parent that the offspring

inherits. During this phase a number of jobs may remain

unassigned. Therefore, the second phase is the post-as-

signment or reinsertion phase in which the unassigned jobs

are reassigned to machines.

The inheritance phase is handled through (4). By (4) it is

implied that the construction of the new assignment of jobs

to machine Mj (i.e., y
t
ij) in the offspring schedule during the

inheritance phase should be in such a way that its degree of

dissimilarity with its counterpart in the parent schedule

(i.e., xtikj) be around the value Betajðat; bÞ. This means that

the degree of similarity between two assignments should be

approximately equal to 1� Betajðat; bÞ:. In other words,

we seek the number of jobs shared between xtikj and ytij
(i.e.,ntid ¼ jytij \ xtikjj) in such a way that the value of

Dis (ytij; x
t
ikj
) gets close to the value of Betajðat; bÞ. Indeed,

the shared jobs between xtikj and ytij are one of the parts that

offspring schedule Yt
i inherits from parent schedule Xt

ik
.

During the inheritance phase, it is reasonable to assume

that ytij � xtikj (because, y
t
ij can inherit up to all jobs of xtikj).

Starting from (4) we have:

Dis ðytij; xtikjÞ ¼ 1�
ntij

jxtikjj
� Betajðat; bÞ ) ntij

¼ ð1� Betajðat; bÞÞjxtikjj
j k

ð5Þ

The following algorithm describes the steps of gener-

ating the offspring schedule Yt
i based on the parent

schedule Xt
ik
.
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New schedule generator (NSG) algorithm

Step 1 (the inheritance phase)
For j=1 to m
| | Let 

k

t
i jx  be the set of jobs assigned to machine Mj,

in the parent schedule
k

t
iX in iteration t;

| | t (1 ( , ))  
k

t t
ij j i jn Beta | x |α β ⎥⎢← − ⎦⎣ ; 

| | t
ijy ← ∅ ; 

| | Select t
ijn  number of jobs from 

k

t
i jx  and assign them to subset t

ijy ; 
End for
Step 2 (the post-assignment phase)
Allocate a machine to each of the remaining jobs that 

1 to update 
the relevant t

ijy s to obtain the complete schedule t
iY ;

have not been selected during Step 

Problem-dependent heuristics can be employed at both

steps of NSG algorithm. We select jobs in Step 1 of NSG

algorithm in a greedy fashion based on their attribute val-

ues (e.g., processing times). Selecting ntij number of jobs

with the longest processing times helps us to use the

structural knowledge of the problem to generate possibly

better schedules. Such a selection strategy is inspired from

LPT rule. However, we apply such a selection strategy in a

probabilistic manner. That is, everytime for each machine

Mj a random number is drawn from [0, 1]. If it becomes

less than 0.1, selection is done based on job processing

times. Otherwise, job selection is done randomly.

At step 2 of NSG algorithm any constructive heuristic

can be employed. Again we use LPT rule to iteratively

assign a remaining job with the longest processing time of

all remaining jobs, which has not been selected during Step

1, to the machine with currently minimal workload.

The selection process in GES is deterministic and sim-

ilar to what was explained in Sect. 3. Similar to the nota-

tion employed to introduce the multi-member ES, we can

use ðl þ
;
kÞ � GES notation to introduce the family of

GES algorithms. In a manner similar to ‘‘1/5-success rule,’’

starting from a0, we increase at if the observed estimate of

the success probability exceeds a given threshold (Ps)

during G successive iterations and decrease it if the success

probability gets below the threshold.

To improve the performance of GES, we hybridize it

with a pairwise interchange algorithm (PIA). For a given

schedule, PIA tries to reduce the makespan through suit-

able pairwise interchange of jobs between machines. The

structure of PIA is in such a way that it either terminates

without any improvement gained over the input schedule or

it will decrease the makespan value of the input schedule

via job interchanges. In this way it performs as a descent

algorithm.

Pairwise Interchange Algorithm (PIA)

Given an input schedule, level the number of jobs assigned 

zero processing times.
→  Reindex machines based on decreasing order of their  

load time (i.e., 
rr M jj Jx SmaC p

∈
= ∑ ); 

If all machines have the same load 
| | Terminate (the optimal schedule has been obtained); 
Else
| | 1i ← ; 
| | j m← ; 
| | 0k ← ; 
End If 
⇒ Find a job 

ia MJ S∈  and a job (or dummy job)
jb MJ S∈

such that: max max0
i ja bp p C C< − < − ; 

If there is no job Ja and Jb
| | 1j j← − ; 
| | 1k k← + ; 
| | If k m i= −
| | | | 1i i← + ; 
| | | | j m← ; 
| | | | 0k ← ; 
| | | | If i m=
| | | | | | Terminate (no more improvement is possible);
| | | | Else 
| | | | | | Go to ⇒ ; 
| | | | End If 
| | Else 
| | | | Go to ⇒ ; 
| | End If 
Else 
| | Interchange job Ja and Jb between Mi and Mj, and Go to → ; 
End If

own

to each machine by adding dummy jobs of 

In our implementation, we use ð1þ 1Þ � GES family

which is elaborated as follows. Since l ¼ 1, we omit index

ik.
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(1+1)-GES Algorithm 
0t ← ;

0sG ← ; 
0α α← ; 

Create an initial random schedule tX ; 
While stopping criteria are not true

| | If max 1,...,1
( ) max , max{ }

n
t

i ii ni
C X p n p

==

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑

| | | | Terminate (the optimal schedule has been obtained); 
| | End if 
| | Given the parent schedule ,tX  apply NSG algorithm to 

tY ; 
| | If Rand(0,1)<R 
| | | | Apply the pairwise interchange algorithm (PIA)  

tY as its input schedule to obtain the 
enhanced offspring schedule tE ; 

| | | | t tY E← ; 
| | End
| | If max max( ) ( )t tC Y C X<
| | | | 1t tX Y+ ← ; 
| | | | 1s sG G← + ; 
| | Else
| | | | 1t tX X+ ← ; 
| | End if 
| | If (  mod  ) 0t G =

| | | | s s

s s

a      if  G G P
a α          if  G G P
α

α
≥⎧

← ⎨ × <⎩
| | | | 0sG ← ; 
| | End if 
| | 1t t← + ; 
| | tα α← ; 
End while

obtain the offspring schedule 

given

5 Generalization to the case of nonidentical
machines

In the nonidentical parallel-machines scheduling problem

there are a set of n independent jobs J ¼ fJ1; J2; . . .; Jng,
each of which has to be scheduled on one of m machines

M1;M2; . . .;Mm. A job can run on only one machine at a

time, and a machine can process at most one job at a time.

If a job Ji is processed on a machine Mj, it will take a

positive processing time pij. When pij ¼ pi for all i and j,

the machines have the same speed and the machines are

called identical. When pij ¼ pi
�
sj where pi is the process-

ing time of job Ji and sj is the speed of machineMj, then the

machines are called uniform. If the pij’s are arbitrary then

the machines are called unrelated. Both of the uniform and

unrelated cases belong to nonidentical parallel-machines

scheduling problem.

The structure of GES allows it to simply work for

scheduling jobs on nonidentical parallel-machines. We

need only

• adapt the LPT rule properly for the case of nonidentical

machines, just to use it in the body of NSG algorithm.

For example, for the case of uniform machines the

following two rules can be referred to as the LPT rule.

In the case of identical processors these methods give

the same schedule.

1. As a machine finishes a job it chooses from the

queue of waiting jobs the one with the longest

processing time.

2. Assign jobs, in the order of non-increasing pro-

cessing times, to the machine on which they will

have the earliest finishing time.

• adapt the pairwise interchange algorithm to work for the

case of scheduling jobs on nonidentical machines. For

this purpose we should onlymodify the job selection step

of PIA which says ‘‘Find a job Ja 2 SMi
and a job (or

dummy job) Jb 2 SMj
such that 0\ pb � pb

\Cmaxi � Cmaxj .’’ The following lemmas help us to

determine suitable conditions for job selection.

Lemma 1 Suppose paj and pbj be the processing time of

job Ja and Jb on machine Mj, respectively; let also Cmaxj ¼P
Jr2SMj

p
r
; be the load time of machine Mj. If the condi-

tions 0\pai � pbi\Cmaxi � Cmaxj and 0\paj �
pbj\Cmaxi � Cmaxj are held for any jobs Ja 2 SMi

and Jb 2
SMj

; the following inequalities hold after interchanging job

Ja and Jb between Mi and Mj (C
0
maxj

is the load time of

machine Mj after interchange.

1. C0
maxi

� C0
maxj

���
����Cmaxi � Cmaxj

2. maxðC0
maxi

;C0
maxj

Þ\Cmaxi

Proof By interchanging job Ja and Jb between Mi and Mj

we will have C0
maxi

¼ Cmaxi � pai þ pbi and

C0
maxj

¼ Cmaxj þ paj � pbj. As a result we have C0
maxi

�
C0
maxj

¼ Cmaxi � Cmaxj � ðpai � pbiÞ � ðpaj � pbjÞ: Follow-

ing the assumptions we have �ðpai � pbiÞ�
ðpaj � pbjÞ[ � 2ðCmaxi � CmaxjÞ. We therefore arrive at

C0
maxi

� C0
maxj

[ � ðCmaxi � CmaxjÞ. On the other hand,

from our assumptions we have � pai � pbið Þ�
paj � pbj
� �

\0 which forces that C0
maxi

� C0
maxj

\ðCmaxi � CmaxjÞ. We conclude that C0
maxi

� C0
maxj

���
���
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�Cmaxi � Cmaxj . To prove the second inequality, we have

C0
maxi

¼ Cmaxi � ðpai � pbiÞ\Cmaxi and C0
maxj

¼ Cmaxjþ
ðpaj � pbjÞ\Cmaxjþ Cmaxi � Cmaxj ¼ Cmaxi . We finally get

maxðC0
maxi

;C0
maxj

Þ\Cmaxi :

Remark 1 When doing a job interchange during execu-

tion of PIA, if we have Ja 2 SMi
, then the value of make-

span will be decreased.

Remark 2 When the scheduling criterion is the mini-

mization of total flow time, any job interchange during

execution of PIA will decrease the value of total flow time.

To adapt the pairwise interchange algorithm to work for

the problem of scheduling jobs on nonidentical machines,

we only modify the job selection step of PIA as follows:

‘‘Find a job Ja 2 SMi
and a job (or dummy job) Jb 2 SMj

such that: 0\ pai � pbi \Cmaxi � Cmaxj and

0\ paj � pbj \Cmaxi � Cmaxj .’’

6 Computational experiments

In this section, we investigate a comparison study on the

effectiveness of the proposed GES algorithm on a large

number of test problem instances. We benchmark the

experimental frameworks used in Lee et al. [34] that have

originally been designed by Gupta and Ruiz-Torres [16],

Lee and Massey [33] and Kedia [30]. Four experimental

frameworks, namely E1, E2, E3 and E4 are considered each

of them having three influencing variables: the number of

machines (m); the number of jobs (n); and the type of

discrete uniform distribution used to generate job pro-

cessing times (p).

Table 1 presents a summary of the experimental

framework which is composed of 120 problems. Given the

problem parameters of Table 1, 50 test instances are gen-

erated for each problem. This yields 6000 test problem

instances in total.

To implement our GES and its hybridized version,

GES ? PIA, the following set of parameters are used. The

maximum number of iterations is 1000. Only 1000

schedules are generated and evaluated. G is 6, Ps is 6-1,

a is 0.98, b is 5 and a0 is 10. Every generated offspring in

GES ? PIA is selected to be improved by PIA with prob-

ability of 0.1. We found these values suitable through

preliminary experiments. We have done the value selection

process in a greedy fashion, though GES is relaxed to the

exact tuning of parameters.

Tables 2, 3, 4, 5, 6 and 7 report the results acquired from

the computations. The column with the title ‘‘Mean’’

reports the mean performance obtained by the corre-

sponding algorithm. The ratio of the makespan over the

lower bound is averaged for 50 replications to obtain the

mean performance of an algorithm for an experiment. It

should be mentioned that the mean performance values are

given by four digits precision without rounding. The col-

umn with the title ‘‘Time (s)’’ reports the average running

time (in seconds) to solve each of 50 test instances of a

problem. The last three columns demonstrate the relative

performance of the algorithms. Each cell in these three

columns indicate the number of times, out of 50, a given

algorithm reports a better makespan compared to the other

algorithm. For instance, a value of c versus d in GES versus

SA column means that, out of 50 replications, there are

c test instances for which GES performs better than SA,

d problems for which SA finds a better schedule, and 50-c-

d test instances for which GES and SA yield the same

makespan.

We have implemented both of GES and GES ? PIA

algorithms in MATLAB and run them on a laptop com-

puter with 2.67 GHz of CPU speed and 4 GB of RAM. The

results of GES and GES ? PIA are compared with the SA

algorithm of Lee et al. [34].

The results for the experiment E1 are summarized in

Table 2. In terms of the mean performance there is a

negligible difference between GES and GES ? PIA algo-

rithms. Only on two problems (e.g., m = 4, n = 8,

p * U(20,50) and m = 5, n = 15, p * U(20,50))

GES ? PIA performs slightly better than GES. SA’s mean

performance is inferior to GES and GES ? PIA algorithms

on seven problems, but superior on three problems. As the

number of jobs increases, at a fixed level of m, the mean

performance of all algorithms improves. Here, SA performs

faster than others on average.

Table 1 Summary of the

computational experiments
Experiments m n P

E1 3, 4, 5 2 m, 3 m, 5 m U(1,20), U(20,50)

E2 2, 3, 4, 6, 8, 10 10, 30, 50, 100 U(100,800)

E3 3, 5, 8, 10 3 m ? 1, 3 m ? 2, 4 m ? 1,

4 m ? 2, 5 m ? 1, 5 m ? 2

U(1,100), U(100,200),

U(100,800)

E4 2 9 U(1,20), U(20,50), U(50,100),

U(100,200), U(100,800)3 10

The bold rows are the average values over all rows
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Table 2 Results for experiment E1

m n p SA GES GES ? PIA GES versus

SA

GES ? PIA versus

SA

GES ? PIA versus

GES
Mean Time

(s)

Mean Time

(s)

Mean Time

(s)

3 6 U(1,20) 1.0592 0.0653 1.0592 0.3032 1.0592 0.3120 0 versus 0 0 versus 0 0 versus 0

9 1.0089 0.0546 1.0089 0.1560 1.0089 0.1482 0 versus 0 0 versus 0 0 versus 0

15 1.0000 0.0187 1.0000 0.0093 1.0000 0.0043 0 versus 0 0 versus 0 0 versus 0

6 U(20,50) 1.0567 0.0771 1.0577 0.5312 1.0577 0.3171 0 versus 1 0 versus 1 0 versus 0

9 1.0084 0.0906 1.0084 0.3260 1.0084 0.3232 0 versus 0 0 versus 0 0 versus 0

15 1.0007 0.1003 1.0001 0.0280 1.0001 0.0240 5 versus 0 5 versus 0 0 versus 0

4 8 U(1,20) 1.0687 0.0868 1.0687 0.4330 1.0687 0.4099 0 versus 0 0 versus 0 0 versus 0

12 1.0036 0.0487 1.0022 0.0502 1.0022 0.0349 2 versus 0 2 versus 0 0 versus 0

20 1.0000 0.0690 1.0000 0.0081 1.0000 0.0062 0 versus 0 0 versus 0 0 versus 0

8 U(20,50) 1.0597 0.1047 1.0621 0.5403 1.0601 0.3989 0 versus 2 0 versus 1 1 versus 0

12 1.0110 0.1834 1.0088 0.3943 1.0088 0.3890 12 versus 0 12 versus 0 0 versus 0

20 1.0010 0.2071 1.0000 0.0402 1.0000 0.0109 9 versus 0 9 versus 0 0 versus 0

5 10 U(1,20) 1.0587 0.1015 1.0587 0.4517 1.0587 0.4885 0 versus 0 0 versus 0 0 versus 0

15 1.0101 0.1109 1.0079 0.1279 1.0079 0.1244 4 versus 0 4 versus 0 0 versus 0

25 1.0000 0.1094 1.0000 0.0093 1.0000 0.0074 0 versus 0 0 versus 0 0 versus 0

10 U(20,50) 1.0589 0.1337 1.0602 0.7909 1.0602 0.5881 0 versus 1 0 versus 1 0 versus 0

15 1.0091 0.2528 1.0071 0.3756 1.0069 0.3818 8 versus 0 9 versus 0 1 versus 0

25 1.0011 0.3056 1.0000 0.0852 1.0000 0.0119 10 versus 0 10 versus 0 0 versus 0

Average 1.0231 0.1177 1.0227 0.2589 1.0226 0.2211 2.77 versus
0.22

2.83 versus 0.16 0.11 versus 0.00

The bold rows are the average values over all rows

Table 3 Results for experiment E2

m n SA GES GES ? PIA GES versus SA GES ? PIA versus

SA

GES ? PIA versus

GES
Mean Time (s) Mean Time (s) Mean Time (s)

2 10 1.0009 0.1568 1.0009 0.3123 1.0008 0.3129 3 versus 4 3 versus 2 4 versus 2

3 1.0071 0.2197 1.0068 0.5684 1.0063 0.4042 8 versus 6 11 versus 0 8 versus 0

2 30 1.0000 0.2115 1.0000 0.0636 1.0000 0.0149 0 versus 0 0 versus 0 0 versus 0

3 1.0002 1.5393 1.0001 0.5035 1.0000 0.0711 23 versus 9 38 versus 0 27 versus 0

4 1.0009 2.3543 1.0004 0.6664 1.0000 0.2414 35 versus 6 47 versus 0 42 versus 0

6 1.0027 2.1303 1.0018 0.8096 1.0004 1.0352 29 versus 13 49 versus 0 47 versus 0

8 1.0058 2.4909 1.0041 0.9731 1.0013 1.4741 33 versus 14 49 versus 0 48 versus 1

10 1.0109 2.0803 1.0075 1.1113 1.0034 1.7572 36 versus 9 48 versus 0 46 versus 0

2 50 1.0000 0.2528 1.0000 0.0312 1.0000 0.0152 0 versus 0 0 versus 0 0 versus 0

3 1.0001 4.1131 1.0000 0.4564 1.0000 0.0268 26 versus 4 37 versus 0 17 versus 0

4 1.0004 6.8368 1.0002 0.7147 1.0000 0.0558 25 versus 9 43 versus 0 44 versus 0

6 1.0014 7.8922 1.0008 1.0654 1.0000 0.4158 28 versus 14 48 versus 0 49 versus 0

8 1.0027 8.9484 1.0018 1.3060 1.0001 0.9871 34 versus 15 50 versus 0 50 versus 0

10 1.0031 7.9190 1.0029 1.1943 1.0004 2.0985 18 versus 21 49 versus 0 50 versus 0

2 100 1.0000 0.8615 1.0000 0.0315 1.0000 0.0196 0 versus 0 0 versus 0 0 versus 0

3 1.0000 12.1987 1.0000 0.3603 1.0000 0.0227 5 versus 2 9 versus 0 7 versus 0

4 1.0000 16.3625 1.0000 0.9132 1.0000 0.0302 4 versus 21 23 versus 0 37 versus 0

6 1.0002 32.1006 1.0001 0.9906 1.0000 0.0648 26 versus 12 46 versus 0 41 versus 0

8 1.0005 38.6393 1.0003 1.1696 1.0000 0.1531 33 versus 11 48 versus 0 46 versus 0

10 1.0006 40.0168 1.0004 1.3534 1.0000 0.4399 24 versus 10 46 versus 0 45 versus 0

Average 1.0018 9.3662 1.0014 0.7297 1.0006 0.4820 19.50 versus 9.00 32.20 versus 0.10 30.40 vs 0.15

The bold rows are the average values over all rows
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Table 3 reports the results on experimental framework

E2. Here the superiority of GES ? PIA over SA and GES

algorithms is more pronounced in terms of the mean per-

formance. Comparing SA with GES algorithm, there are

many problems on which GES performs better than SA. In

terms of the mean performance, there is no problem in

which SA could dominate either GES or GES ? PIA.

However, there are some problems for which all algorithms

perform the same. Among 20 problems in this experiment,

SA finds the optimal makespan of all 50 test instances of

five problems. While GES performs optimal on six prob-

lems, GES ? PIA performs optimal on 13 problems.

However, on the optimality of performance on the rest of

problems we cannot make any judgment since the lower

bound values may not be optimal and the optimal solutions

are also unknown. One can find that as the number of jobs

and the number of machines increase, GES ? PIA can

report the optimal makespan for all of test problems.

Results indicate that GES ? PIA performs better than SA

on average on 32.20 out of 50 test instances of each of 20

problems. While this record is only 0.1 out of 50 for SA

over GES ? PIA. Such a trend is also visible for

GES ? PIA versus GES. GES ? PIA performs better than

GES on average on 30.40 out of 50 test instances of each

problem. This record is only 0.15 out of 50 for GES over

GES ? PIA. Finally GES performs better than SA on

average in 19.50 out of 50 test instances of each problem.

The reverse scenario occurs only on average on nine test

instances of each problem. Tracking the trends in the mean

performance of the algorithms reveals that for a given

number of jobs, as the number of machines increases, the

mean performance decreases. Comparing the execution

times, as the number of jobs increases, the time taken by

the algorithms becomes longer. Also, increasing the num-

ber of machines adds to the running times.

The point is that the rate of increment is very smooth

and much less than that of SA. SA times may even exceed

from 40 s but for GES and GES ? PIA all times are\2 s.

This is because that GES and GES ? PIA are able to find

the optimum schedules faster and get stop sooner before

reaching the maximum allowed number of schedule eval-

uations. But, SA fails to get the optimal schedules more

Table 4 Results for experiment E3: p * U(1,100)

m n SA GES GES ? PIA GES versus SA GES ? PIA versus SA GES ? PIA versus GES

Mean Time (s) Mean Time (s) Mean Time (s)

3 10 1.0115 0.1481 1.0110 0.4327 1.0107 0.3789 3 versus 1 5 versus 0 3 versus 0

11 1.0045 0.1450 1.0038 0.3020 1.0037 0.2973 5 versus 0 6 versus 0 1 versus 0

13 1.0019 0.1503 1.0008 0.1687 1.0005 0.4394 12 versus 1 15 versus 1 3 versus 0

14 1.0009 0.1543 1.0001 0.0698 1.0000 0.0393 9 versus 0 10 versus 0 1 versus 0

16 1.0004 0.1662 1.0000 0.0430 1.0000 0.0177 6 versus 0 6 versus 0 0 versus 0

17 1.0005 0.1481 1.0000 0.0174 1.0000 0.0137 8 versus 0 8 versus 0 0 versus 0

5 16 1.0096 0.3937 1.0043 0.4449 1.0042 0.4308 28 versus 0 28 versus 0 2 versus 1

17 1.0086 0.5000 1.0038 0.4505 1.0026 0.3616 26 versus 0 34 versus 0 11 versus 1

21 1.0031 0.5228 1.0004 0.2430 1.0000 0.0627 26 versus 1 29 versus 0 5 versus 0

22 1.0030 0.5059 1.0005 0.2489 1.0000 0.0624 25 versus 1 28 versus 0 7 versus 0

26 1.0020 0.6053 1.0003 0.2361 1.0000 0.0499 22 versus 1 25 versus 0 4 versus 0

27 1.0010 0.5718 1.0001 0.1675 1.0000 0.0240 11 versus 0 13 versus 0 2 versus 0

8 25 1.0127 1.0012 1.0067 0.8286 1.0041 0.5041 32 versus 0 40 versus 0 19 versus 0

26 1.0095 0.9859 1.0039 0.7940 1.0014 0.4742 31 versus 5 39 versus 0 19 versus 1

33 1.0030 1.2787 1.0014 0.6642 1.0000 0.1123 19 versus 3 30 versus 0 15 versus 0

34 1.0033 1.4606 1.0015 0.6739 1.0000 0.1341 21 versus 3 32 versus 0 16 versus 0

41 1.0021 1.6290 1.0009 0.6080 1.0000 0.0661 14 versus 1 24 versus 0 12 versus 0

42 1.0018 1.6400 1.0012 0.5793 1.0000 0.0870 8 versus 2 22 versus 0 17 versus 0

10 31 1.0123 1.4212 1.0076 1.1044 1.0045 0.6870 25 versus 1 37 versus 0 23 versus 0

32 1.0094 1.3821 1.0038 0.9977 1.0006 0.4380 29 versus 0 42 versus 0 25 versus 0

41 1.0039 2.1531 1.0019 0.9590 1.0002 0.2134 20 versus 3 30 versus 0 18 versus 0

42 1.0045 2.5850 1.0022 0.9487 1.0002 0.2570 20 versus 1 36 versus 0 22 versus 0

51 1.0030 3.1415 1.0021 1.0311 1.0000 0.0836 13 versus 4 35 versus 0 27 versus 0

52 1.0026 3.0818 1.0013 0.9569 1.0000 0.1160 16 versus 2 30 versus 0 17 versus 0

Average 1.0048 1.0738 1.0024 0.5404 1.0013 0.2229 17.87 versus 1.25 25.16 versus 0.04 11.20 versus 0.12

The bold rows are the average values over all rows
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frequently and has to do its search until getting the maxi-

mum allowed number of schedule evaluation.

Tables 4, 5 and 6 present the results for experimental

framework E3 when the processing times are generated

within U(1,100), U(100,200) and U(100,800), respectively.

As can be found, both GES and GES ? PIA algorithms

reveal better performance than SA on all problems in each

table. There is no problem for which the mean performance

of SA becomes less than that of GES or GES ? PIA. There

is also no instance (among 3� 24� 50 test instances) for

which GES could report a better performance in compar-

ison with GES ? PIA. This indicates that the mean per-

formance of SA is not optimal since all of its ratios in

Tables 4, 5 and 6 are greater than one. This means that for

each problem, there are some test instances for which SA is

not able to find the optimal makespan. Such an observation

is almost true but less highlighted for GES. In Table 4,

there are at least 13 problems out of 24 problems that

GES ? PIA is able to find the optimal makespan in all of

50 trials. This record is 11 out of 24 for GES ? PIA in

Table 5. As the range of processing times becomes wider,

the gap between GES ? PIA and SA in terms of the success

rate becomes more sensible. In Table 4, on average on

25.16 test instances out of 50, GES ? PIA performs better

than SA. This record is 40.83 and 44.20 out of 50 in

Tables 5 and 6, respectively. The sensible gap between the

success rate of GES ? PIA and GES, and between the

success rate of GES and SA is also observable. Therefore,

when the range gets broader, GES ? PIA is expected to

strictly outperform other algorithms.

Table 7 presents the results for experiment E4. For the

experiments in E4 since the problem sizes are small, all of

the algorithms perform almost similar. However, again

GES ? PIA algorithm performs slightly better. From the

above discussions and from the results on the mean per-

formance and success rate of algorithms we can conclude

that the relation GES ? PIA[GES[ SA is held where

‘‘[’’ indicates better performance.

In Tables 3, 4 and 5, from the row with the caption

‘‘Average,’’ it can be inferred that the average time taken

Table 5 Results for experiment E3: p * U(100,200)

m n SA GES GES ? PIA GES versus SA GES ? PIA versus SA GES ? PIA versus GES

Mean Time (s) Mean Time (s) Mean Time (s)

3 10 1.0122 0.2206 1.0119 0.4801 1.0119 0.5556 3 versus 0 3 versus 0 0 versus 0

11 1.0137 0.2859 1.0134 0.4932 1.0125 0.5176 7 versus 7 10 versus 0 11 versus 0

13 1.0024 0.3459 1.0017 0.4040 1.0010 0.2836 21 versus 8 28 versus 0 17 versus 0

14 1.0021 0.3837 1.0016 0.3859 1.0007 0.1740 19 versus 9 31 versus 0 24 versus 0

16 1.0010 0.5012 1.0003 0.2471 1.0000 0.0614 21 versus 3 28 versus 0 12 versus 0

17 1.0011 0.5071 1.0002 0.3226 1.0000 0.0461 29 versus 0 33 versus 0 10 versus 0

5 16 1.0130 0.6381 1.0096 0.7104 1.0087 0.7684 30 versus 2 35 versus 0 13 versus 0

17 1.0141 0.8053 1.0107 0.6895 1.0096 0.7903 28 versus 3 37 versus 0 17 versus 0

21 1.0043 1.0784 1.0011 0.5809 1.0001 0.1769 38 versus 3 45 versus 0 27 versus 0

22 1.0042 1.2265 1.0013 0.6542 1.0001 0.2040 39 versus 3 44 versus 0 29 versus 0

26 1.0035 1.3965 1.0004 0.6102 1.0000 0.0680 46 versus 0 49 versus 0 19 versus 0

27 1.0027 1.8209 1.0006 0.6539 1.0000 0.0702 40 versus 1 46 versus 0 22 versus 0

8 25 1.0118 1.5318 1.0045 0.9484 1.0031 1.0071 44 versus 1 47 versus 0 25 versus 0

26 1.0129 1.5940 1.0043 0.9684 1.0023 0.9282 45 versus 1 49 versus 0 31 versus 0

33 1.0060 2.9440 1.0009 0.9494 1.0000 0.1790 47 versus 0 49 versus 0 25 versus 1

34 1.0068 3.1381 1.0014 0.9965 1.0000 0.1591 45 versus 2 50 versus 0 34 versus 0

41 1.0051 4.4093 1.0009 1.0021 1.0000 0.0926 43 versus 1 49 versus 0 30 versus 0

42 1.0047 4.8096 1.0010 1.0349 1.0000 0.0985 45 versus 3 47 versus 0 32 versus 0

10 31 1.0134 2.3415 1.0035 1.0645 1.0015 0.9706 50 versus 0 50 versus 0 31 versus 0

32 1.0137 2.7656 1.0035 1.1057 1.0015 0.9799 50 versus 0 50 versus 0 35 versus 1

41 1.0091 4.6090 1.0013 1.1144 1.0001 0.3332 49 versus 0 50 versus 0 28 versus 0

42 1.0085 4.8631 1.0015 1.2015 1.0000 0.2246 48 versus 0 50 versus 0 36 versus 0

51 1.0057 8.3668 1.0008 1.4589 1.0000 0.0767 50 versus 0 50 versus 0 31 versus 0

52 1.0065 8.0540 1.0015 1.5565 1.0000 0.2062 48 versus 1 50 versus 0 41 versus 0

Average 1.0074 2.4432 1.0032 0.8180 1.0022 0.3738 36.87 versus 2.00 40.83 versus 0.00 24.16 versus 0.04

The bold rows are the average values over all rows
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Table 6 Results for experiment E3: p * U(100,800)

m n SA GES GES ? PIA GES versus SA GES ? PIA versus SA GES ? PIA versus GES

Mean Time(s) Mean Time(s) Mean Time(s)

3 10 1.0089 0.2215 1.0083 0.4839 1.0078 0.5377 10 versus 6 10 versus 0 6 versus 0

11 1.0056 0.2803 1.0053 0.5107 1.0046 0.5400 10 versus 11 13 versus 2 10 versus 0

13 1.0024 0.3703 1.0017 0.5176 1.0010 0.5619 24 versus 10 31 versus 1 21 versus 0

14 1.0018 0.4834 1.0009 0.4779 1.0005 0.8769 35 versus 8 42 versus 0 25 versus 1

16 1.0014 0.5665 1.0005 0.4764 1.0001 0.3366 34 versus 2 41 versus 0 25 versus 0

17 1.0014 0.6343 1.0004 0.4717 1.0001 0.3357 40 versus 5 45 versus 0 30 versus 2

5 16 1.0102 0.5659 1.0076 0.7082 1.0058 0.8068 32 versus 4 42 versus 0 26 versus 0

17 1.0088 0.7147 1.0050 0.6882 1.0033 0.7725 37 versus 6 47 versus 0 29 versus 1

21 1.0046 1.1940 1.0023 0.7051 1.0007 0.7868 39 versus 8 46 versus 0 48 versus 0

22 1.0046 1.2043 1.0020 0.7247 1.0005 0.7453 42 versus 5 50 versus 0 45 versus 0

26 1.0035 1.7693 1.0013 0.7366 1.0002 0.7266 39 versus 9 49 versus 0 43 versus 1

27 1.0029 1.9490 1.0012 0.7550 1.0002 0.7444 41 versus 7 49 versus 0 44 versus 1

8 25 1.0119 1.5862 1.0066 0.9413 1.0032 1.2760 33 versus 11 49 versus 0 42 versus 0

26 1.0096 1.9043 1.0058 0.9597 1.0024 1.2732 37 versus 7 49 versus 0 47 versus 0

33 1.0058 3.4806 1.0031 0.9893 1.0008 1.3827 40 versus 7 50 versus 0 49 versus 0

34 1.0064 3.5006 1.0029 1.0174 1.0007 1.3350 42 versus 6 50 versus 0 47 versus 0

41 1.0036 6.0312 1.0021 1.0489 1.0003 1.3338 37 versus 8 49 versus 0 49 versus 0

42 1.0041 6.1071 1.0020 1.4352 1.0003 1.3759 39 versus 7 50 versus 0 49 versus 0

10 31 1.0125 2.5156 1.0070 1.1413 1.0030 1.6417 38 versus 9 50 versus 0 48 versus 0

32 1.0118 2.9978 1.0059 1.1597 1.0023 3.1126 40 versus 7 49 versus 1 47 versus 0

41 1.0059 5.8428 1.0035 1.1921 1.0008 1.7731 40 versus 9 50 versus 0 49 versus 0

42 1.0066 6.8100 1.0035 1.2299 1.0009 1.8395 39 versus 8 50 versus 0 49 versus 0

51 1.0046 9.2781 1.0025 1.2707 1.0004 1.9653 39 versus 9 50 versus 0 50 versus 0

52 1.0042 9.8990 1.0026 1.2764 1.0004 1.9908 34 versus 14 50 versus 0 50 versus 0

Average 1.0059 2.9127 1.0035 0.8715 1.0016 1.1696 35.04 versus 7.62 44.20 versus 0.16 38.66 versus 0.29

The bold rows are the average values over all rows

Table 7 Results for experiment E4

m n P SA GES GES ? PIA GES versus SA GES ? PIA versus

SA

GES ? PIA versus

GES
Mean Time(s) Mean Time(s) Mean Time(s)

2 9 U(1,20) 1.0000 0.0040 1.0000 0.0028 1.0000 0.0037 0 versus 0 0 versus 0 0 versus 0

U(20,50) 1.0009 0.0368 1.0009 0.0820 1.0009 0.0530 0 versus 0 0 versus 0 0 versus 0

U(1,100) 1.0009 0.0412 1.0009 0.0882 1.0009 0.0876 0 versus 0 0 versus 0 0 versus 0

U(50,100) 1.0038 0.1187 1.0040 0.2870 1.0038 0.2713 1 versus 2 1 versus 0 2 versus 0

U(100,200) 1.0042 0.1418 1.0044 0.3247 1.0040 0.3185 3 versus 5 3 versus 0 5 versus 0

U(100,800) 1.0017 0.1434 1.0018 0.3566 1.0017 0.3709 0 versus 3 0 versus 1 2 versus 0

3 10 U(1,20) 1.0014 0.0253 1.0014 0.0427 1.0014 0.0405 0 versus 0 0 versus 0 0 versus 0

U(20,50) 1.0083 0.1418 1.0073 0.3394 1.0071 0.3017 6 versus 1 6 versus 0 1 versus 0

U(1,100) 1.0095 0.1475 1.0097 0.3787 1.0092 0.3959 2 versus 2 2 versus 0 2 versus 0

U(50,100) 1.0096 0.2012 1.0094 0.4274 1.0090 0.4477 4 versus 1 6 versus 0 3 versus 0

U(100,200) 1.0167 0.2290 1.0162 0.5294 1.0162 0.5647 4 versus 0 5 versus 0 1 versus 0

U(100,800) 1.0092 0.2246 1.0095 0.4948 1.0092 0.5591 6 versus 6 7 versus 1 6 versus 0

Average 1.0055 0.1212 1.0054 0.2794 1.0052 0.2845 2.16 versus
1.66

2.50 versus 0.16 1.83 versus 0.00

The bold rows are the average values over all rows
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by GES ? PIA algorithm is shorter than GES. This is due

to the fact that hybridizing with PIA algorithm speeds up

converging toward the global optimum. Hence, our second

stopping condition, which is getting the lower bound value,

is fired soon and GES ? PIA algorithm stops. Paradoxi-

cally in Table 6, the time needed for GES is less than

GES ? PIA. Here the reason for the increment in the

required running time of GES ? PIA is most probably

related to the performance of the lower bound. Inevitably,

GES ? PIA should generate the maximum allowable

number of schedules before being stopped. We do not

conduct the execution time comparison between SA and

GES or GES ? PIA since these algorithms have been run

on different machines (the results of SA have been adopted

from Husseinzadeh Kashan and Karimi [20]). All we say is

that both of GES and GES ? PIA are computationally

efficient and can produce very good results for problems

with 100 jobs and 10 machines in less than a second.

7 Conclusions and future research

The paper proposed a new solution methodology based on

grouping evolution strategies (GES) for parallel-machines

scheduling problem to minimize makespan. The proposed

GES algorithm owns a mutation operator which is founded

based on dissimilarity measure between the set of jobs

assigned to a machine to work with job groups rather than

jobs isolatedly. Therefore, these are the job groups that

constitute the underlying building blocks of the solution in

the parallel-machines scheduling problem. The rationale of

the new mutation operator is analogous to the original

mutation of ES. It works in the real-valued space while the

consequences are used in the body of a two-phase algo-

rithm to generate an offspring schedule in the discrete

space with the aid of LPT rule. A pairwise interchange

algorithm (PIA) was hybridized with GES to improve its

local performance. Additionally, we generalized the design

of PIA to work also for the problem of scheduling with

nonidentical parallel-machines and proved that under

suitable conditions it has descent property. Results

acquired from extended computational experiments justify

the competitive performance of the proposed algorithms

compared to an already existing simulated annealing

algorithm.

GES is very easy for implementation and can be

regarded as a promising solver of the wide class of

scheduling problems. For future research, the effectiveness

of GES is worth examining on parallel-machines schedul-

ing problem while taking account of machines’ failure rates

and the case of machines’ unavailability. Considering cri-

teria other than makespan and even multiple objectives

would be worthwhile. Additionally, developing the

grouping version of the recently introduced real-valued

algorithms such as, league championship algorithm

[18, 22], Optics Inspired Optimization [19] and Find-Fix-

Finish-Exploit-Analyze (F3EA) metaheuristic algorithm

[27] and evaluating their effectiveness on parallel-machi-

nes scheduling problem is particularly encouraged. Finally,

applications of GES on other types of scheduling problems,

e.g., task scheduling in cloud computing environment

[1, 2] or scheduling batch processing machines [21], is of

great interest.
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