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Abstract This paper proposes a framework to obtain

ensembles of classifiers from a Multi-objective Evolu-

tionary Algorithm (MOEA), improving the restrictions

imposed by two non-cooperative performance measures for

multiclass problems: (1) the Correct Classification Rate or

Accuracy (CCR) and, (2) the Minimum Sensitivity (MS) of

all classes, i.e., the lowest percentage of examples correctly

predicted as belonging to each class with respect to the

total number of examples in the corresponding class. The

proposed framework is based on collecting Pareto fronts of

Artificial Neural Networks models for multiclass problems

by the Memetic Pareto Evolutionary NSGA2

(MPENSGA2) algorithm, and it builds a new Pareto front

(ensemble) from stored fronts. The ensemble built signifi-

cantly improves the closeness to the optimum solutions and

the diversity of the Pareto front. For verifying it, the per-

formance of the new front obtained has been measured

with the habitual use of weighting methodologies, such as

Majority Voting, Simple Averaging and Winner Takes All.

In addition to CCR and MS measures, three trade-off

measures have been used to obtain the goodness of a Pareto

front as a whole: Hyperarea, Laumanns’s Hyperarea

(LAUMANNS) and Zitzler’s Spread (M3). The proposed

framework can be adapted for any MOEA that aims to

improve the compaction and diversity of its Pareto front,

and whose fitness functions impose severe restrictions for

multiclass problems.

Keywords Ensemble � Multi-objective Evolutionary

Algorithm � Multiclass classification � Artificial Neural
Networks � Minimum Sensitivity � Pareto Performance

measures

1 Introduction

Pattern classification is the scientific discipline with the

purpose of labeling patterns into a set of categories.

Commonly the classification is based on individual statis-

tical models (classifiers or learners) that are induced from

an exemplary set of preclassified patterns [1, 2]. Never-

theless, it has also been theoretically and empirically ver-

ified that the combination of the results obtained by

different classifiers may improve the results that each

classifier provides [3, 4]. This combination is named in the

literature as an ensemble [5, 6]. In contrast to ordinary

learning, which attempts to construct one learner or clas-

sifier from training data, ensemble methods try to train and

build a set of learners that are then combined, using in most

cases a single base learning algorithm to produce homo-

geneous base learners.

On the other hand, sometimes it is necessary to optimize

several non-cooperative objectives for solving classifica-

tion problems [7, 8]. For this purpose, Multi-objective

Evolutionary Algorithms (MOEAs) have arisen based on

the Pareto dominance concept [9]. MOEAs provide a set of

solutions for a final decider, all it equally valid, instead of

only one solution [10]. Other potential advantage of the

Pareto-based evolutionary learning approach is that using
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multi-objective techniques based on the concept of domi-

nance in a search space may help the learning algorithm to

get out from local optima [11–13], thus improving the

performance of the learning model. This potential advan-

tage together with the iterative changes over the genera-

tions of a MOEA can make good solutions be obtained

even if there are many local optima in the multidimen-

sional search space [14]. Note that these advantages are

potential, depending on how the problem is ‘‘objectivized,’’

the characteristics of the algorithm used to explore the

multi-objective problem space, and the type of problem

itself.

Once the ideas of ensemble and MOEAs as a potential

methodology for multiclass classification optimization with

more than one objective have been briefly discussed, it is

also necessary to comment that, in a general, most machine

learning (ML) methodologies in the literature try to

improve overall generalization capability of a classifier

designed, but they do not tend to pay attention to the

classification level per class. In the case of binary prob-

lems, the sensitivity and specificity can be optimized, but

regarding multiclass classification, the dimensionality of

the problem makes the optimization of the classification

level per class much more complex and computationally

costly. Sometimes improving overall generalization capa-

bility means sacrificing accuracy in one or more classes

(see Fig. 1 as an illustrative example, discussed below), so

that using only the CCR measure for training and evalu-

ating classifiers is not enough for imbalanced problems

[15, 16] and for problems in which all classes are equally

important (misclassifications are equally costly). Addi-

tionally, CCR cannot capture all the different behavioral

aspects found in two different classifiers [17, 18]. Thus, in

this work, two non-cooperative measures or fitness func-

tions with a MOEA are used for building ensembles

[19, 20] for multiclass classification tasks: (1) CCR and, (2)

MS as the rate of the worse classified class. This framework

tries to improve the sensitivity of each of the classes for the

problem considered, maximizing the minimum of all them

(MS), while maintaining an acceptable overall generaliza-

tion capability (CCR). This objective is not easy and it is

necessary to emphasize the difficulty especially for prob-

lems with many classes or many unbalanced classes, where

resampling is not as common as in the binary case [21].

Mono-objective algorithms have already shown

promising results in convergence to the optimal front, but

its high selection pressure, with a possible diversity loss,

may lead the algorithm to prefer some specific areas of the

Pareto front. Also note that in a mono-objective context,

measures based on weighing other measures or those using

an aggregation function of all the individual objectives,

convert a multiclass problem in a binary one by the One

versus All (OvO) and One versus One (OvA)

methodologies [22, 23], but they do not address the prob-

lem as a whole. In this sense, a MOEA could provide better

results using MS than a mono-objective algorithm if a good

classification rate per class is needed.

Continuing with the CCR and MS measures for building

multiclass classification models, these measures have a

number of restrictive properties that are alleviated by

building an ensemble of models. Both measures generate

classifiers with a good classification rate per class, but, in a

multi-objective context, they are very restrictive in the

number of elements of the Pareto front generated by the

MOEA, in the shape, in the closeness to the optimum

solution, and in the diversity of the solution set, as shown

in [24]. It is well-known [25]) that the diversity and the

geometrical shapes of the Pareto fronts, among other

characteristics of the multi-objective problem, can affect

the performance of MOEAs. Therefore, one of the objec-

tives of this work, besides obtaining good levels of clas-

sification accuracy for each of the classes, is to build an

ensemble of multiclass classifiers using a framework to

improve the performance of the Pareto fronts obtained with

a MOEA, considering the CCR and MS measures.

MS

CCR

g1(MS,CCR)

Class 1
Class 2

Class 3 g2(MS,CCR)

S1=7/9
S2=5/8
S3=2/4

CCR=14/21, MS=2/4Class 1 (9)
Class 2 (8)
Class 3 (4)

MS

CCR

g1(MS,CCR)

Class 1
Class 2

Class 3 g2(MS,CCR)

S1=4/9
S2=8/8
S3=4/4

Class 1 (9)
Class 2 (8)
Class 3 (4)

CCR=16/21, MS=4/9

Fig. 1 Illustration of CCR and MS as conflicting objectives.

gjðMS;CCRÞ denotes a classifier, and Si denotes the sensitivity of

the class i
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The proposed framework builds a new and improved

front of fronts (ensemble) using the MPENSGA2 algorithm

[24], a MOEA that evolves a population of Artificial

Neural Networks (ANNs) [26]. Then, a weighting

methodology to obtain the prediction of the ensemble, such

as Majority Voting (MV), Simple Averaging (SA) and

Winner Takes All (WTA) [27], is applied. Also, three

trade-off measures to obtain the quality of a Pareto front as

a whole, Hyperarea (HA), Laumanns’s Hyperarea (LAU-

MANNS) and Zitzler’s Spread (M3), have been used. The

new front minimizes the restrictions of the CCR and MS

measures when they are used as fitness functions, obtaining

a Pareto that is closer to the optimal solutions. Although

the proposed framework has been used to improve the

performance of the Pareto fronts obtained by the

MPENSGA2 algorithm, it could be adapted to any MOEA

based on the Pareto dominance concept, which uses non-

cooperative fitness functions, especially those that are very

restrictive in the search space.

In summary, the main contributions of the paper are the

following:

– Based on a MOEA that evolves ANNs, the approach is

able to produce a more diverse ensemble, increasing the

number of models to solve multiclass problems. Some

models are good at maximizing CCR, while others

maximize MS, and some pay more attention to the

cooperation of both measures. This extends the possi-

bilities for the final decider.

– There is no need to weight the different objectives by

optimizing the coefficient parameters. Being a frame-

work based on a MOEA, an aggregation function

considering the two single objectives is not needed.

Also, the parameters of the individual networks can be

effectively obtained in the MOEA.

– In general, the proposed framework obtains improved

models with an acceptable overall generalization

capability, while maximizing the sensitivity of each

of the classes. Using conflicting metrics for this

purpose is not very usual, which gives to this work

an important novelty in the area.

– Due to the structure of the resulting Pareto front

(ensemble), additional trade-off metrics to measure the

quality of the new Pareto are employed to assess our

proposal. The ensemble obtains better results in

different trade-off metrics and better performance in

CCR and MS, compared with a Pareto front method-

ology proposed in a previous work [24]. That is, the

new framework improves the constraints imposed by

both measures as fitness functions when a Pareto front

is built.

Once explained the motivation of this paper the following

sections are organized as follows: Sect. 2 is devoted to an

analysis of some works for building of ensembles from

MOEAs with ANNs and from other methodologies; Sect. 3

shows the MOEA used for obtaining ensemble models in

multiclass problems, the fitness functions used to obtain

classifier models, and the proposed framework for building

ensembles. Section 4 describes the datasets used in the

experimentation, the experimental setup, and the obtained

results in the comparison procedure. Finally, Sect. 5 sum-

marizes the conclusions and future improvements.

2 Artificial Neural Network ensembles from Muti-
objective Evolutionary Algorithms

Generally when speaking of ensembles it is necessary to

distinguish between the following: (1) how to generate

classifiers, (2) how to choose the classifiers among those

available to form the ensemble (linked to the concept of

diversity), and (3) the rules or methods with which to use

the ensemble to classify a given pattern or instance.

Depending on what is taken into account, authors can

create different ensemble taxonomies. For example, there

are taxonomies that are based on how to combine the

obtained classification by several base classifiers, and

taxonomies based on what techniques are used for training

classifiers that compose an ensemble [3, 27, 28]. Others are

based on the starting point of the search space, on how the

inducer or the training set are manipulated, or even on how

the number of elements that form the ensemble is deter-

mined. The reader can find an extensive and updated state

of the art with respect to references and taxonomies for

building ensembles in [5, 29–31].

Another aspect in forming ensembles is the manner in

which classifiers are trained, through a dependent or

independent framework [27]. For a dependent framework

the result of a classifier affects to the creation of the next,

so there is interaction in the learning process. In this way,

the previous knowledge can be used to guide future

learning iterations. For an independent framework the

original dataset is partitioned into several subsets (dis-

jointed or overlapping) or even from the same dataset

several inducers can be used, from which several classi-

fiers are obtained. For problems in which each of the

classifiers performs the same task and has comparable

success, the classification techniques most widely used for

measuring the performance of an ensemble are the

weighting methods [27, 32], being the most popular MV,

SA and WTA, which have been successfully proven in

previous ensemble learning approaches [33–35]. In this

paper an independent framework for building ANN

ensembles from a MOEA is proposed, and these three

trade-off techniques to classify patterns from the built

ensemble are used.
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2.1 Ensembles based on negative correlation

learning

Neural network ensembles [36] are a learning paradigm

where the ML models are collection of ANNs trained for

the same task. Negative correlation learning (NCL) [37] is

a successful ANN ensemble learning algorithm. It is dif-

ferent from previous works such as Bagging [38] or

Boosting [39], since NCL emphasizes interaction and

cooperation among individual learners in the ensemble by

using an unsupervised penalty term in the error function to

produce biased individuals whose errors tend to be nega-

tively correlated. From here starts a new methodology

associated with obtaining diversity in an ensemble by NCL,

and the authors and other contributors made improvements

over the years.

Thus, in [40], Liu and Yao describe an approach to

designing ANN ensembles for both regression and clas-

sification problems with noise called the cooperative

ensemble learning system (CELS). This approach can be

regarded as one way of decomposing a large problem

into smaller and specialized ones, so that each sub-

problem can be addressed by an individual ANN. A

correlation penalty term in the error function was pro-

posed to encourage the formation of specialists in the

ensemble. CELS produces biased ANNs whose errors

tend to be negatively correlated, showing very competi-

tive results. A year later, the same authors showed in

[41] an evolutionary ensemble with NCL (EENCL) to

address the issues of automatic determination of the

number of ANNs in an ensemble and the exploitation of

the interaction between the design and combination of

ANN. The idea of EENCL is to encourage different

individual ANNs in the ensemble to learn different parts

or aspects of the training data so that the ensemble can

better learn the entire training data. The cooperation and

specialization among different individual ANNs are

considered during the individual ANN design. Experi-

ments on two real-world problems demonstrated that

EENCL could produce ANN ensembles with good gen-

eralization capability.

In [42], Chen and Yao propose an algorithm with

Multi-objective Regularised Negative Correlation Learn-

ing (MRNCL) by formulating the RNCL algorithm [43]

within an evolutionary framework and using a MOEA,

which adds an additional regularization term to the fit-

ness function. The additional regularization term to

penalize large network weights to improve generalization

are used to evolve a radial basis function (RBF) network

ensemble. The new approach is shown to outperform a

two-objective version using only accuracy and NCL,

particularly on noisy problems.

2.2 Ensembles based on Differential Evolution

In addition to methodologies based on NCL, there are

others in the literature, e.g., those using Differential Evo-

lution (DE) concepts and other penalty terms. In [35, 44]

two multi-objective formulations based on DE are pro-

posed to evolve neuron ensembles by Abbaas et al. The

first approach splits the training set into two subsets and

uses the error on the subsets as the learning objectives,

while the second proposal adds Gaussian noise to the

training set as the second objective. The first formulation

shows better results than the second one, and these methods

are competitive compared to NCL for two (binary)

benchmark classification tasks.

In [34], Chandra and Yao propose an algorithm called

Diverse and Accurate Ensemble Learning Algorithm

(DIVACE), which makes use of ideas found in NCL and

Memetic Pareto algorithm for ANNs (MPANN) based on

DE algorithm developed previously by Abbaas et al. [35].

DIVACE formulates the ensemble learning problem as an

explicit multi-objective problem within an evolutionary

setup aimed at finding a good trade-off between diversity

and accuracy. Later, Chandra and Yao [45] improve

DIVACE using a new diversity measure that they call

Pairwise Failure Crediting (PFC) in place of the NCL

penalty function term. PFC credits individuals in the

ensemble with differences in the failure patterns, taking

each pair of individuals and accruing credits in a manner

similar to implicit fitness sharing.

In [33], Jin compares three Pareto-based multi-objective

approaches to ensemble generation: DIVACE, MPANN

and an algorithm with a hybrid binary and real-valued

coding for optimizing the structure and weights of ANNs

[46]. The three works evolve the structure of the ANN

models for maintaining diversity, using as objectives the

error and the complexity of the ANNs. The authors con-

clude that a deeper insight into the learning problem can be

gained by analyzing the Pareto front composed of multiple

Pareto-optimal solutions.

2.3 Ensembles based on co-evolution

and cooperation

On the other hand arise works based on the idea of co-

evolution and cooperation, e.g, in [47] a framework to

generate ensembles of ANNs by cooperative co-evolution

is proposed. This framework uses a MOEA where several

subsets of ANNs are evolved. In [48], a methodology for

creating ensembles with clustering based on co-evolution is

proposed, using for it a multi-objective co-evolutionary

strategy. This methodology is called CONE (Clustering

and Co-evolution to Construct Neural Network
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Ensembles). A clustering method is used to divide the input

space of the training set into several subspaces without

intersecting each other, so that they are used to train dif-

ferent species of ANNs with a MOEA. In the year 2003,

Islam et al. [49] present a constructive algorithm for

training cooperative ANN ensembles (CNNEs). This

algorithm combines ensemble architecture design with

cooperative training for ANNs in ensembles, obtaining

diversity using NCL and different training epochs showing

good results in an extensive number of benchmark prob-

lems in ML.

2.4 Ensembles based on other techniques

There are also jobs about ANN ensembles [19, 50–53] that

are not based on the ideas of NCL, DE, Cooperation and

Co-evolution, e.g., in [54], Dong et al. propose an

ensemble neural network-based hybrid data-driven model

for short-term load forecasting for high-efficiency elec-

tricity production, obtaining accurate predictions. The

parameters and structures for the model are calibrated by

using the NSGAII multi-objective optimization algorithm

and the early stopping Levenberg–Marquardt algorithm.

Although this paper is focused on ensembles for ANNs

and MOEAs, there are other ensemble methods studied in

the literature and not based on it, some very popular as

Bagging [38] and Boosting [39]. Both methodologies use a

resampling technique to create different datasets for

training different ML models in an ensemble. The training

collection of each individual model is decided by the

behavior in previous models. If the sample has been mis-

taken in previous models, then it will be present to the

training collection of new models with higher probability.

The new model can effectively deal with the samples

which were difficult for the previous one. The main dif-

ference of Bagging and Boosting is that the training col-

lection choose of Bagging is stochastic and that of

Boosting is in sequence.

There are also evolutionary methodologies that not

necessarily comprise ANNs or MOEAS and they can be

used for classification task with ensembles. For example in

[55] an ensemble particle swarm model selection (EPSMS)

is used in the context of type/subtype of acute leukemia

classification, achieving the best performance in this type

of problem with respect to the methods used so far. This

methodology is an improvement in the particle swarm

procedure proposed in [56] for obtaining full models,

where a PSMS searches for the best combination of

methods for preprocessing, feature selection and classifi-

cation from a predefined set of methods that are available

in a ML toolbox. EPSMS automatically selects ensembles

instead of single PSMS models, so it is more robust to

noisy data and it provides more stable predictions. For this

purpose EPMS uses an one-vs-all (OvA) method where a

set of independent binary classifiers (PSMS partial solu-

tions) is built given a multiclass classification problem.

Each classifier is able to discriminate examples of one class

of the problem and a pattern is assigned to the class cor-

responding to the classifier with the highest confidence in

the correct labeling. In [57] an approach which builds

heterogeneous ensembles based on genetic programming

(GP) is also used for classification tasks, outperforming

alternative ensemble methodologies. The objective of the

methodology is to determine a fusion function that maxi-

mizes the classification performance on unseen data. The

genetic algorithm uses mutation and crossover operators

for combining multiple models outputs and returns a

function which produces an output matrix with the actual

prediction, taking into account the confidence of each

model for each instance.

Wang et al. [58] make an experimental study for

building ensembles with evolutionary algorithms (EAs)

presenting three novel evolutionary approaches in super-

vised data mining scenarios. The first approach is based on

encoding rule sets with bit string genomes which evolve

via crossovers, while the second one utilizes Genetic Pro-

gramming (GP) to create decision trees with arbitrary

expressions attached to the nodes, both using solutions

based on the Pareto concept for building an ensemble. The

third approach uses GP but with an advanced fitness

measure and some novel genetic operators so far. The

performance comparison of the three methods over other

existing in the literature shows that evolutionary method-

ologies are an important tool to consider for building

ensembles of classifiers. In [59] an ensemble of classifiers

for face detection is built, each of which is trained based on

a particular weighting over the training examples by a

genetic algorithm (GA). The difference from a traditional

GA is that all the weightings (chromosomes) throughout

evolution are exploited to form the final ensemble with a

voting procedure, not just the best weighting. Comparative

results with the AdaBoost and Bagging algorithms show

that proposed method is very competitive in performance

and computational cost. A complete general review about

evolutionary ensemble methodologies in classification

tasks can be consulted by the reader in [4, 27].

3 A methodology for building ensembles

This section shows the proposed framework for building an

ensemble of classifiers from Pareto fronts provided by a

MOEA, specifically the MPENSGA2 (Memetic Pareto

Evolutionary NSGA2) algorithm [24]. Firstly, the non-co-

operatives measures to optimize during the evolutionary

process are presented, and then the procedure for building
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an ensemble is shown. Note that the main objective is to

improve the structure of the Pareto fronts building a final

ensemble, so that the number of models to solve multiclass

problems may be increased, expanding the possibilities for

the final decider and improving the performance and

quality of the ensemble.

3.1 Non-cooperative objective functions

Two measures as fitness functions for obtaining classifi-

cation models are used in this work: (1) the Correct Clas-

sification Rate or Accuracy (CCR) and, (2) the Minimum

Sensitivity (MS), defined as the minimum of the sensitiv-

ities of all classes (for more details see [24]).

The CCR measure is given by the following expression:

CCR ¼ 1

N

XQ

i¼1

nii; ð1Þ

where Q is the number of classes, N is the number of

patterns in the training or testing set, and nii is the number

of patterns from the i-th class that are correctly classified in

that class.

Let Si ¼ nii=fi be the number of patterns correctly pre-

dicted to be in class i with respect to the total number of

patterns in class i, fi. Then, the MS measure is given by the

following expression:

MS ¼ minðSi; i ¼ 1:::QÞ; ð2Þ

The MS measure is necessary to check the quality of a

multiclass classifier. This is because most techniques

improve the overall generalization capability of the clas-

sifier designed, but they do not maintain this capability in

all classes. Therefore, the MS versus CCR pair, (MS, CCR),

expresses two features associated with a classifier where

each misclassification has the same importance in each

class: the global performance and the rate of the worse

classified class (the value of both measures must be

maximized).

The selection of MS as a measure that is complementary

to CCR can be justified by considering that CCR is the

weighted average of the sensitivities of each class (the

weights depend on the data set):

CCR ¼
XQ

i¼1

fi

N
Si; ð3Þ

providing both intuitive and computational support of the

sensitivities of each one of the Q classes. CCR is estimated

based on the fixed weight fi, and it is such that minimizes

the variance of Si. MS will improve CCR as a weighted

average of the correct classification rates of each of the

classes. This perspective involves two objectives that have

not been used previously in a multi-objective context for

multiclass classification, although they are equivalent

subsets to those points on the QðQ� 1Þ surface that trade-

off the smallest total error (with respect to the Q � Q

contingency or confusion matrix), sum of the QðQ� 1Þ
elements, against the worst misclassification rate for any

class (i.e., the largest sums in the rows of the off-diagonal

elements in the confusion matrix) [60]. Then in a Pareto

sense, a 2-D line is traced out on the QðQ� 1Þ surface.
The (MS, CCR) point of view allows to represent the

classifiers in a two-dimensional space to visualize their

performance, regardless of the number of classes in the

problem. MS is represented in the abscissa and CCR in the

ordinate (Fig. 2). In this way, the (MS, CCR) pair tries to

find the point between the scalar CCR measure and the

multidimensional ones based on misclassification rates.

Let CCR and MS be associated with the classifier g, then

these measures verify that

MS�CCR� 1� ð1�MSÞp�; ð4Þ

where p� is the minimum of the estimated prior probabil-

ities. Therefore, each classifier will be represented as a

point in the white region in Fig. 2; hence, the area outside

of the triangle is marked as unfeasible. It is important to

note that the area inside the triangle may be feasible or not

(attainable), depending upon the classifier and the difficulty

of the problem. Also, it should be noted that high values of

p� make more difficult to obtain Pareto fronts near to the

optimal, diverse and with an acceptable number of solu-

tions, specially when the number of classes is high or the

dataset is not balanced. Because of this restrictions, the

number of individuals or classifiers in a Pareto front should

usually be small, by the difficulty of approaching the (1, 1)

point in (MS, CCR) space.

Fig. 2 Pareto front in the feasible region in the two-dimensional non-

cooperative space (MS, CCR) for a multiclass classification problem

294 Neural Comput & Applic (2018) 30:289–305
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Additionally, a priori it could seem that MS and CCR

objectives could be positively correlated; while this may be

true for small values of MS and CCR, it is not so for values

close to 1 in either MS or CCR, being highly competitive

objectives (this fact justifies the use of a MOEA) at the top

right corner of the white region, as it is demonstrated in

more detail in [24]. First, observe that an increase in CCR

does not imply an increase inMS. Reciprocally, an increase

in MS does not mean an increase in CCR, since this means

that the sensitivity of the worse classified class increases,

but it may be at the expense of decrease in the sensitivities

of other classes. Given the context of MOEAs, at the

beginning of the evolutionary process, CCR and MS could

be cooperative, but after a certain level, when their values

are approaching the optimum value of 1, the objectives

become competitive and an improvement in one objective

tends to involve a decrease in the other one. Figure 1 shows

an simple multiclass problem where in the first graph, a

value of CCR ¼ 14
21

and MS ¼ 2
4
is obtained, being Si the

sensitivities of each class i. If the CCR value wants to be

increased, the decision boundary should be moved to sep-

arate the class 2 and class 3 from the class 1 (second

graph), but it would be necessary to reduce the sensitivity

value in the class 1. Therefore, is needed to improve the

Pareto fronts within the restrictive space (MS, CCR),

because it is difficult to obtain Pareto fronts with diversity,

with large numbers of individuals and close to the optimal

point.

3.2 Proposed framework using the MPENSGA2

algorithm

The MPENSGA2 algorithm is a Memetic MOEA used for

training a population of ANNs for multiclass problems,

evolving architectures and connection weights simultane-

ously, and it is based on the NSGA2 algorithm proposed by

Deb et al. [61]. The use of MOEAs along with local

optimizers have been successfully considered in the liter-

ature [54, 62, 63], and, in this sense, MPENSGA2 includes

a local search (LS) procedure called iRpropþ (improved

backpropagation) [64]. The iRpropþ lifetime learning fine-

tunes the weights, enhancing some individuals in the

population. Additionally, in the evolutionary process, five

mutations are used to obtain new individuals in the popu-

lation: four structural mutations (for introducing diversity),

add/delete neurons and add/delete links, and one para-

metric mutation based on the addition of Gaussian noise to

the weights of the ANNs. The crossover operator is not

considered due to its potential disadvantages in evolving

ANNs [65]. Figure 3 shows the steps of MPENSGA2.

Regarding the ANN models used in the population, we

consider a standard feedforward Multilayer Perceptron

(MLP), with one input layer with K independent variables

or features, one hidden layer with M sigmoidal hidden

nodes and Q� 1 outputs nodes in the output layer. We

adopt the common technique of representing the class

levels using a 1� of � Q encoding vector

y ¼ ðy1; y2; :::; yQÞ, such as yl ¼ 1 if x corresponds to an

example belonging to class l, and yl ¼ 0 otherwise. The

output layer is interpreted from a probability point of view

that considers the softmax activation function. Taking this

consideration into account, it can be observed that the class

predicted by the classifier corresponds to the neuron on the

output layer whose a posteriori probability is greater.

Therefore, one of the classes does not need to be estimated

due to the properties of the probability function.

The iRpropþ algorithm, it has been adapted to the

softmax activation function, modifying the gradient func-

tion for the weights in the hidden and output layers. This

LS procedures is used after the mutation phase, the fitness

of each individual is updated with respect to the approxi-

mation error, and the modified weights are encoded back to

the chromosome. iRpropþ is applied only to the CCR

measure to not adding computational cost to the algorithm,

Fig. 3 Steps in MPENSGA2
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and it occurs in only three generations of the evolutionary

process, at the beginning, middle and end (this reduces the

computational cost, and a greater number of lifetime

learning does not improve performance). For a complete

description see [24].

Once the algorithm and its fitness functions have been

defined, it is explained how to improve the performance

of the Pareto fronts obtained and how to apply ensemble

methods. Using weighting methodologies such as MV,

SA and WTA, the habitual procedure for measuring the

performance of a Pareto front is described in Procedure

1 and it can be observed in Fig. 4. Additionally, Fig. 5

has been introduced here to show an example about how

Pareto fronts can be obtained by this procedure for

making statistical studies, applying it to a fold which is

run N times for a dataset. This figure serves the reader

as help to clarify the experimental section of this paper

and shows the common way to obtain results from the

MOEA.

Procedure 1 Ensemble methodologies applied to the
Pareto Front provided by one MOEA.

STEP 1. Run the MOEA using the training set. 
STEP 2.
while (last generation not reaches) do

Train and evaluate the individuals (models for multidass 
classification) of the population by the non-cooperative 
fitness functions.

end while
STEP 3. Store the individuals of the Pareto front obtained 
in the last generation.
STEP 4.  Apply MV, SA or WTA to obtain with the train-
ing and testing sets the performance of the Pareto front 

and (CCR MS).
STEP 5.  Apply Pareto measures to obtain the  perfor -
mance of the trade-off surface.

Similarly, the procedure for obtaining an ensemblewith the

proposed framework is detailed in Procedure 2 and it can be

observed in Fig. 6. The evolutionary process is repeated for a

number of runs, storing each Pareto front. At the end of the

Fig. 4 Procedure 1 for obtaining a Pareto front and how to apply weighting methodologies and trade-off measures
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procedure, a new Pareto front (from all stored fronts) closer to

the optimal solutions more diverse and with more perfor-

mance is derived.

Procedure 2 Ensemble methodologies applied to the
Pareto front provided by the proposed framework. 

STEP 1. Run the MOEA using the training set with  a 
different seed in each run.
STEP 2.
while (last generation not reaches) do

Train and evaluate the individuals of the population by 
the non-cooperative fitness functions.

end while
STEP 3. Store the individuals of the Pareto front obtained 
in the last generation.
STEP 4.
if (all runs have not been run) then

go to STEP 1.
end if
STEP 5. Recovery the Pareto fronts stored.
STEP 6. Build a new Pareto front  (set of Pareto fronts)1 

checking the new Pareto dominance of the individuals. 
STEP 7. Apply MV, SA or WTA to obtain with the train-
ing and testing sets the performance of the new Pareto front 

and (CCR MS).
STEP 8.  Apply  Pareto measures to obtain the  perfor -
mance of the trade-off surface.

In the proposed framework, the precision of the

ensemble is covered considering CCR and MS as objective

functions to optimize, and the diversity of the individuals

in the population is based on the following: (1) the NSGAII

algorithm, which uses the concept of order and crowding

distance, (2) the variation of the training set for each

dataset (see Sect. 4.2) through k-folds (randomness of the

method itself), and (3) using various initial random weights

and varying the network architecture by the mutation

operator of the evolutionary algorithm.

4 Experiments

4.1 Datasets

The proposed methodology is applied to 11 classification

datasets taken from the UCI machine learning repository

[66] and 3 interesting problems. Table 1 shows the features

for each dataset, including number of patterns, number of

input variables, number of classes, number of patterns per

class and the p� value. p� is defined as the minimum of the

estimated prior probabilities, value that has an important

role in the relationship between the two measures.

A brief description of the three datasets outside the UCI

machine learning repository is the following:

Agrarian This dataset corresponds to a complete

socio-economic structure of 1620

agrarian enterprises in the south of

Spain based on both the Gross Value

Added (GVA) of the main productive

activity and the size of the farm (very

small, small, medium sized, big and

very big). The dataset contains

information about farmer

characteristics, mechanization, the size

of the farm and the costs and revenues

of all productive activities. For more

information see [67].

RichesRanking The Center for Global Development

created the Commitment to

Development Index (CDI) in 2003 [68],

which ranks countries according to their

contribution to the reduction in poverty

in developing countries. The dataset

contains ranked rich countries in terms

of 22 OECD countries (after the

incorporation of South Korea in 2008).

The CDI assesses the commitment of

these rich countries in terms of seven

different policy areas. The countries are

intended to classify according to the

commitment to development: Highly

committed countries, improving

commitment countries, enough

committed countries, not enough

committed countries and not committed

countries. For more information about

this dataset, the reader can see [69].

Bankrupt This dataset corresponds to Financial

Crisis study of 79 countries in the period

1981–1999 (annual data) for the

detection and prediction of banking

crises. The independent variables of the

dataset are based on monetary policy

strategies, being classified each case on

crisis and non-crisis. For more details

see [70].

4.2 Experimental setup

For the experimentation, three measures frequently used in

the literature that consider the closeness and diversity of

the trade-off surface of a Pareto front [71] have been

selected in this work:
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Hypervolume or

Hyperarea (HA)

The Hyperarea measure [72]

calculates the volume or area in

the objective space covered by

the members of a Pareto front.

HA is widely used in the

literature as a closeness

(convergence) and diversity

measure.

Laumanns’s

Hyperarea

(LAUMANNS)

Another measure of closeness

and diversity for checking the

size of the dominated space of

the objective functions is the

Laummans’s measure [73].

Laumanns’s measure is an elitist

measure based on the Lebesgue

measurement, which also allows

to measure the size of Pareto

Front even if the set is composed

of an infinite number of

elements.

Zitzler’s Spread (M3) M3 measures the spread of the

trade-off surface. This measure

was proposed by Zitzler in

[9, 72]. It is a measure that also

obtains the hypervolume that

contains the trade-off surface

using the sum of the greatest

distance for each component i of

the Pareto front. For two

objectives, this measure refers to

the Euclidean distance between

the two extreme solutions in the

objective space.

On the other hand, to analyze the performance of the

Pareto fronts obtained from the proposed framework, three

generic and well-known weighting methodologies [4, 32]

from the literature have been utilized: MV, SA and WTA.

In the comparison, a tenfold cross-validation was used for

each dataset. The two procedures described are not deter-

ministic, therefore, MPENSGA2 is run with several seeds

Fig. 5 Procedure 1 for obtaining a Pareto front and how to apply weighting methodologies and trade-off measures in a fold run N times for a

dataset
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for each fold. For Procedure 1, in order to take into

account the randomness of the method, 30 runs were per-

formed per fold, resulting in a total of 300 runs. Then, there

are 300 Pareto fronts, so that the weighting methodologies

are used for each front provided by each run of the i� th

fold. Figure 5 has been introduced for further clarification.

Regarding Procedure 2, 30 runs were also carried out

for each fold, but, in this case, each fold provides an

ensemble of 30 Pareto fronts. Hence, a new Pareto front is

built from the set of the 30 Pareto fronts belonging to the

concrete fold (see Fig. 6), and therefore, there are 10 Pareto

fronts from the experimentation. The reader should keep in

Fig. 6 Procedure 2 for obtaining an ensemble from Pareto fronts and how to apply weighting methodologies and trade-off measures

Table 1 Characteristics of 11

UCI Benchmarks and 3

interesting problems

Dataset #Patterns #Inputs var. #Classes #Patterns per class p�

Agrarian 1620 17 3 252-1047-321 0.155

RichesRanking 193 33 5 24-37-60-57-15 0.077

Autos 205 72 6 67-3-22-54-32-27 0.015

Balance 625 4 3 288-49-288 0.078

Bankrupt 521 22 2 357-164 0.315

German 1000 61 2 700-300 0.300

Heart 270 13 2 150-120 0.444

Horse 367 58 3 225-89-53 0.144

Liver 345 6 2 145-200 0.420

PageBlocks 5478 10 5 4914-330-29-89-116 0.005

Pima 768 8 2 500-268 0.349

Satimage 6435 36 6 1533-703-1358-626-707-1508 0.097

Segment 2310 19 7 330-330-330-330-330-330-330 0.142

Vehicle 846 18 4 204-218-217-207 0.241
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mind these clarifications together with Figs. 6 and 5 to

properly analyze the experimental results.

In all experiments, the population size for MPENSGA2

is established at Np ¼ 100. The mutation probability for

each operator is equal to 1/5. The number of neurons that

can be added or deleted has been established at a minimum

of one neuron and a maximum of two (random value every

time a mutation is used). With respect to the number of

links, randomly are added or deleted 30% of the total

number of links in the input-hidden layers, and 5% of the

total number of links in the hidden-output layers. These

values have been obtained experimentally by cross-vali-

dation over the training set. For the iRprop þ algorithm, the

number of epochs established for each LS is 10 (a greater

number of epochs does not improve the results), gþ ¼ 1:2,

g� ¼ 0:5, D0 ¼ 0:0125 (the initial value of the Dij), Dmin ¼
0 and Dmax ¼ 50 (see [64] for iRprop þ parameter

descriptions).

4.3 Comparison procedure

A comparison of the new framework against the previous

methodology presented in [24] and described in Fig. 1 is

carried out. Table 2 compares Procedure 1 (P1) versus

Procedure 2 (P2) in terms of HA, LAUMANNS and M3

trade-off measures applied to the Pareto fronts obtained by

each procedure, showing the mean for each measure

(Metric). It is observed, and only from a descriptive point

of view, that P2 obtains the best mean result (Metric) with

respect to the use of P1.

Using the trade-off measures the intention is to prove

whether the new proposed framework builds better Pareto

fronts (as a whole) within the restrictive space (MS, CCR).

It be must clarified that the comparison using trade-off

measures can be only made between P1 and P2 without

specifying the MV, SA or WTA weighting methodologies.

This is because the three philosophies use the same Pareto

front to make their predictions, each using a different

calculation of the performance from the same front. That is,

each weighting methodology has the same number of ele-

ments in the same position in the Euclidean plane with

respect to the same dataset and for a given run. The main

difference between the weighting methodologies when are

used together with P1 or P2 is in how the Pareto front is

obtained, which is built in P2 from a set of fronts

(ensemble). Mean and standard deviation values are

extracted from the tenfold used in the experimentation in

the way each procedure proposes and explained above.

Note that a Pareto front obtained in training in the

(MS, CCR) space does not have to be a Pareto front by

using the testing dataset on the same individuals. There-

fore, trade-off measures are always used in training and

then accuracy measures are used to obtain a performance

value in testing. For this reason, in Figs. 4, 5 and 6, the

trade-off measures are joined by an arrow from the Pareto

front obtained in training.

To compare P1 versus P2 in terms of HA, LAUMANNS

and M3 trade-off measures on the basis of both statistical

and practical considerations, a signed-rank Wilcoxon’s test

is performed with the mean values obtained for each

dataset (see Table 3), since there are only two method-

ologies with which to compare the mean rankings in 14

datasets,for each of the three trade-off measures for the

Pareto fronts. The results show significant differences in

mean for HA, p value = 0.001 (for a signification level

a ¼ 0:05), while no significant differences for the measures

LAUMANNS and M3, p value = 0.149 and

p value = 0.572, respectively. This indicates that it is

difficult in some datasets to improve the structure of the

Pareto front obtained with P1 methodology when in certain

levels the front is approached the (1, 1) point in (MS, CCR)

space and p� has a high value.

On the other hand, Table 4 shows the MV, SA and

WTA weighting methods comparing P1 versus P2 in terms

of CCR and MS in the testing set (G); therefore, this

table contains six methodologies: P1-MV, P1-SA, P1-

WTA, P2-MV, P2-SA and P2-WTA. Mean Accuracy,

Minimum Sensitivity (CCRðGÞ, MSðGÞ) and Mean Rank-

ing (RðGÞ) are also shown. From a descriptive point of

view, first it should be noted the improvement obtained in

the mean values for the testing sets for the CCR and MS

measures with the new proposed procedure regarding the

habitual one. The best Mean Accuracy (CCRðGÞ) value is

obtained by the WTA ensemble method with P2, followed

by the SA ensemble method, also with P2.

For the mean Minimum Sensitivity (MSðGÞ), the best

result is obtained by the MV ensemble method with the P2,

and the second best value is obtained by the SA ensemble

method, also with the same procedure. It can be said that

while using P2 the best methodology for the CCR measure

is the WTA method, and the best methodology for the MS

measure is the MV method. The SA method is an inter-

mediate point between the three weighting philosophies,

and the use of P1 always obtains worse results. If the mean

rankings are observed, (RðGÞ ¼ 1 for the best performing

method and RðGÞ ¼ 6 for the worst one), the descriptive

conclusions are the same, that is, the best mean ranking in

CCR is obtained by the WTA weighting methodology

using P2, followed by the SA weighting methodology. In

the case of MS, the best result is obtained by the MV

weighting methodology, followed by the SA weighting

methodology. The SA philosophy is again an intermediate

point between the three methodologies, and the use of P1

always obtains worse results. Therefore, it can be said that
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in the case of MS metric, it is reasonable that the MV

methodology obtains the best results, as each model can

have different results because of its greater variability,

being reasonable to take decisions by majority. In the case

of CCR metric, its values in each model are more homo-

geneous and then the WTA or SA methodologies are more

appropriate.

To determine if there are statistical significant differ-

ences between the 6 weighting methodologies in terms of

CCR and MS, and not only from a descriptive point of

view, a procedure for comparing multiple classifiers over

multiple datasets is employed [74] (the average ranking of

each method in each dataset shown in Table 4 is used for

it). The study begins with the non-parametric Friedman’s

test for the CCR and MS measures (now there are 6

methodologies and the distributions of the results are not

normal), establishing the significance level at a ¼ 0:05 and

rejecting the null-hypothesis by the test (all methods per-

form equally in mean ranking).

On the basis of this rejection a Holm’s test [74] is

conducted with respect to the six weighting methodologies.

The Holm’s test is a multiple comparison procedure that

works with a control algorithm and compares it to the

remaining methods, taking into account all datasets used in

the experimentation for a concrete measure. The test

statistics for comparing the ith and jth method using this

procedure as follow:

z ¼ Ri � Rjffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q ð5Þ

where k is the number of algorithms, N is the number of

data sets, and Ri is the mean ranking of the ith method. The

z value is used to find the corresponding probability from

the table of normal distribution, which is then compared

Table 2 Comparison of P1 versus P2 in terms of HA, LAUMANNS and M3 trade-off measures

Dataset HA LAUMANNS M3

(Zitzler’s Hyperarea) (Laumanns’s Hyperarea) (Zitzler’s Spread)

Procedure 1 Procedure 2 Procedure 1 Procedure 2 Procedure 1 Procedure 2

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Agrarian 0.343 ± 0.009 0.364 ± 0.006 0.555 ± 0.097 0.635 ± 0.036 0.152 ± 0.031 0.181 ± 0.038

RichesRanking 0.373 ± 0.036 0.432 ± 0.007 0.203 ± 0.220 0.243 ± 0.263 0.049 ± 0.046 0.023 ± 0.015

Autos 0.292 ± 0.032 0.337 ± 0.017 0.257 ± 0.219 0.307 ± 0.233 0.119 ± 0.069 0.181 ± 0.100

Balance 0.535 ± 0.029 0.575 ± 0.004 0.349 ± 0.248 0.309 ± 0.237 0.159 ± 0.104 0.121 ± 0.045

Bankrupt 0.549 ± 0.009 0.567 ± 0.005 0.494 ± 0.126 0.526 ± 0.158 0.077 ± 0.025 0.091 ± 0.029

German 0.536 ± 0.012 0.561 ± 0.003 0.503 ± 0.121 0.500 ± 0.181 0.082 ± 0.028 0.072 ± 0.019

Heart 0.602 ± 0.011 0.624 ± 0.008 0.218 ± 0.208 0.237 ± 0.197 0.028 ± 0.012 0.030 ± 0.012

Horse 0.420 ± 0.021 0.469 ± 0.014 0.401 ± 0.222 0.521 ± 0.226 0.085 ± 0.047 0.091 ± 0.027

Liver 0.507 ± 0.015 0.531 ± 0.008 0.375 ± 0.195 0.288 ± 0.263 0.049 ± 0.023 0.047 ± 0.020

Pageblk. 0.369 ± 0.035 0.428 ± 0.013 0.649 ± 0.170 0.751 ± 0.079 0.144 ± 0.063 0.202 ± 0.055

Pima 0.535 ± 0.007 0.549 ± 0.005 0.471 ± 0.145 0.487 ± 0.147 0.064 ± 0.025 0.059 ± 0.023

Satimage 0.345 ± 0.011 0.359 ± 0.002 0.730 ± 0.070 0.750 ± 0.052 0.089 ± 0.032 0.098 ± 0.029

Segment 0.362 ± 0.028 0.398 ± 0.006 0.501 ± 0.233 0.428 ± 0.219 0.030 ± 0.025 0.014 ± 0.007

Vehicle 0.380 ± 0.011 0.400 ± 0.004 0.654 ± 0.136 0.699 ± 0.089 0.040 ± 0.015 0.044 ± 0.012

Metric 0.438 0.47114 0.45429 0.47721 0.08336 0.08957

Mean and standard deviation are extracted from the tenfold used in the experimentation. Mean for each measure, (Metric), is also shown. The

results are expressed between [0,1]. The best result is in boldface

Table 3 Comparison of P1 versus P2 in terms of HA, LAUMANNS and M3 measures using a signed-rank Wilcoxon’s test with a ¼ 0:05

Z P2HA-P1HA P2LAUMANNS-P1LAUMANNS P2M3-P1M3

-3.297(a) -1.444(a) -0.565(a)

Asymp. Sig. (2-tailed) 0.001 0.149 0.572

(a) Based on negative ranks
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with an appropriate level of significance a. The Holm’s test

adjusts the value for a to compensate for multiple com-

parisons. This is done in a step-up procedure that sequen-

tially tests the hypotheses ordered by their significance. We

denote the ordered p values by p1� p2� � � � � pk�1. The

Holm’s test compares each pi with a
0
Holm ¼ a=ðk � iÞ,

starting from the most significant p value. If p1 is below

a=ðk � 1Þ, the corresponding hypothesis is rejected and we

allow it to compare p2 with a=ðk � 2Þ. If the second

hypothesis is rejected, the test proceeds with the third, and

so on. As soon as a certain null-hypothesis cannot be

rejected, all the remaining hypotheses are retained as well.

The Holm’s test significance level is established to be

a ¼ 0:05. As a control method each of the weighting

methodologies that use P2 (P2-MV, P2-SA and P2-WTA)

are used for the CCR and MS measures. The results of the

test are shown in Table 5. For the CCR measure, it is

shown that all weighting methodologies that use P2

Table 4 MV, SA and WTA weighting methodologies comparing P1 versus P2 in terms of CCR and MS measures for the testing sets (G)

Dataset P1-MV P1-SA P1-WTA P2-MV P2-SA P2-WTA

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

CCR (Correctly Classified Rate)

Agrarian 0.598 ± 0.044 0.611 ± 0.041 0.630 ± 0.039 0.625 ± 0.029 0.633 ± 0.034 0.661±0.027

RichesRanking 0.651 ± 0.141 0.655 ± 0.136 0.651 ± 0.137 0.690 ± 0.062 0.697 ± 0.057 0.652 ± 0.070

Autos 0.552 ± 0.112 0.545 ± 0.109 0.539 ± 0.112 0.668 ± 0.063 0.663 ± 0.052 0.669 ± 0.047

Balance 0.886 ± 0.042 0.890 ± 0.039 0.890 ± 0.040 0.917 ± 0.032 0.920 ± 0.037 0.915 ± 0.036

Bankrupt 0.737 ± 0.048 0.735 ± 0.046 0.732 ± 0.048 0.752 ± 0.041 0.756 ± 0.042 0.764 ± 0.049

German 0.705 ± 0.043 0.708 ± 0.043 0.709 ± 0.040 0.718 ± 0.030 0.717 ± 0.039 0.743 ± 0.036

Heart 0.819 ± 0.055 0.820 ± 0.052 0.821 ± 0.052 0.822 ± 0.060 0.826 ± 0.055 0.822 ± 0.049

Horse 0.604 ± 0.056 0.606 ± 0.054 0.604 ± 0.053 0.641 ± 0.061 0.636 ± 0.058 0.634 ± 0.046

Liver 0.679 ± 0.083 0.681 ± 0.084 0.684 ± 0.083 0.689 ± 0.078 0.693 ± 0.081 0.699 ± 0.089

Pageblk. 0.932 ± 0.026 0.934 ± 0.019 0.938 ± 0.013 0.935 ± 0.025 0.938 ± 0.015 0.942 ± 0.009

Pima 0.755 ± 0.049 0.754 ± 0.047 0.758 ± 0.048 0.760 ± 0.050 0.755 ± 0.052 0.760 ± 0.053

Satimage 0.832 ± 0.037 0.834 ± 0.036 0.837 ± 0.036 0.854 ± 0.011 0.857 ± 0.011 0.860 ± 0.012

Segment 0.883 ± 0.046 0.885 ± 0.046 0.884 ± 0.050 0.933 ± 0.018 0.937 ± 0.015 0.939 ± 0.014

Vehicle 0.715 ± 0.055 0.718 ± 0.053 0.722 ± 0.052 0.761 ± 0.047 0.765 ± 0.048 0.762 ± 0.046

CCRðGÞ 0.738 0.73993 0.74164 0.76921 0.77107 0.77379

RðGÞ 5.53571 4.82143 4.35714 2.57143 2.07143 1.64286

MS (Minimum Sensitivity)

Agrarian 0.192 ± 0.122 0.090 ± 0.121 0.041 ± 0.087 0.288 ± 0.126 0.113 ± 0.160 0.069 ± 0.099

RichesRanking 0.352 ± 0.244 0.351 ± 0.243 0.352 ± 0.246 0.350 ± 0.238 0.350 ± 0.238 0.290 ± 0.198

Autos 0.082 ± 0.163 0.079 ± 0.155 0.071 ± 0.144 0.230 ± 0.226 0.193 ± 0.234 0.174 ± 0.212

Balance 0.537 ± 0.276 0.527 ± 0.287 0.562 ± 0.269 0.767 ± 0.094 0.741 ± 0.101 0.665 ± 0.145

Bankrupt 0.594 ± 0.104 0.594 ± 0.102 0.599 ± 0.100 0.616 ± 0.114 0.609 ± 0.110 0.567 ± 0.106

German 0.559 ± 0.095 0.560 ± 0.093 0.557 ± 0.094 0.602 ± 0.092 0.577 ± 0.088 0.523 ± 0.085

Heart 0.740 ± 0.087 0.741 ± 0.082 0.742 ± 0.081 0.737 ± 0.079 0.747 ± 0.080 0.742 ± 0.082

Horse 0.226 ± 0.118 0.219 ± 0.117 0.212 ± 0.116 0.266 ± 0.151 0.245 ± 0.146 0.227 ± 0.124

Liver 0.585 ± 0.102 0.592 ± 0.103 0.597 ± 0.102 0.596 ± 0.100 0.595 ± 0.093 0.613 ± 0.116

Pageblk. 0.337 ± 0.179 0.311 ± 0.183 0.251 ± 0.180 0.556 ± 0.094 0.538 ± 0.114 0.459 ± 0.130

Pima 0.654 ± 0.105 0.654 ± 0.104 0.660 ± 0.106 0.705 ± 0.091 0.671 ± 0.100 0.664 ± 0.099

Satimage 0.629 ± 0.128 0.626 ± 0.131 0.600 ± 0.146 0.692 ± 0.065 0.705 ± 0.056 0.655 ± 0.067

Segment 0.691 ± 0.126 0.696 ± 0.128 0.692 ± 0.136 0.785 ± 0.069 0.795 ± 0.056 0.811 ± 0.042

Vehicle 0.493 ± 0.093 0.498 ± 0.094 0.494 ± 0.092 0.564 ± 0.076 0.565 ± 0.063 0.544 ± 0.074

MSðGÞ 0.47307 0.46357 0.45586 0.55721 0.53507 0.50436

RðGÞ 4.60714 4.71429 4.64286 1.82143 1.96429 3.25

Mean and standard deviation are extracted from the tenfold applied to each Procedure. Mean Accuracy, CCRðGÞ, Minimum Sensitivity, MSðGÞ,
and Mean Ranking, RðGÞ, are also shown. The results are expressed between [0,1]. The best result is in boldface and the second best result in

italics
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(regardless of the control method used) are significantly

better on mean compared to the same weighting method-

ologies using P1. Also, it can be observed that the variance

for P2 is smaller for all methodologies compared with P1,

indicating that the results, besides being better in mean, are

more homogeneous.

For the MS measure, it can also be seen that the

methodologies that use P2 are significantly better on mean

with respect to the methodologies that use P1 in all

methodologies, except in the WTA philosophy, that has no

significant differences when it is used as a control algorithm.

In contrast, for MS the variance of the results for P2 are not

smaller than for P1, and although there are significant

differences in mean except for WTA, as it is expected, the

results are not homogeneous due to the high variability of

the results that can be obtained with the MS measure.

5 Conclusions

In this paper a framework to obtain an ensemble of clas-

sifiers (ANN models) from an MOEA is proposed, with the

goal of improving the strong restrictions imposed by two

measures associated with the training and performance of a

classifier, the CCR and MS. Using these measures together

with a MOEA produce restrictions, obtaining fronts with

low diversity, low performance, and with a low number of

individuals. The proposed framework is based on the col-

lection of Pareto fronts obtained from several runs, build-

ing a new Pareto front (ensemble) that improves the

closeness to the optimum solutions and the diversity of the

set. For verifying this idea, the performance of the Pareto

fronts obtained with habitual weighting methods, such as

MV, SA and WTA have been compared with those

obtained without using the ensemble methodology. The

obtained results show that there are statistically significant

differences between the proposed procedure and the usual

procedure, and that those differences point favorably to the

proposed method, with improvements in CCR and MS. In

addition to these measures, the HA, LAUMANNS and M3

trade-off measures have been used to measure performance

of the new Pareto fronts obtained, improving the area under

the individuals within the Pareto front and, therefore, its

performance. The proposed framework has been tested

with 11 UCI datasets and 3 interesting problems. Currently,

we are working to apply this methodology in future works

addressing ordinal classification.
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64. Igel C, Hüsken M (2003) Empirical evaluation of the improved

Rprop learning algorithms. Neurocomputing 50(6):105–123

65. Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary

algorithm that constructs recurren neural networks. IEEE Trans

Neural Netw 5:54–65

66. Lichman M (2013) UCI Machine learning repository. University

of california, school of information and computer science, CA.

Available online at http://archive.ics.uci.edu/ml.Irvine

67. Fernandez-Navarro F, Hervás-Martı́nez C, Garcı́a-Alonso C,
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