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Abstract In present work, micro-deep holes on AISI 304

stainless steel were drilled via electrical discharge

machining (EDM) method. In the first phase of this work,

the effect of test parameters on the drilling performance

and the profile of drilled holes were investigated experi-

mentally. Test parameters including discharge current,

dielectric spray pressure and electrode tool rotational speed

were taken and then the machining rate (MR), electrode

wear rate (EWR), average over-cut (AOC) and taper angle

(TA) were measured in order to assess the drillability of

EDM. After experimental study, an analysis of variance

was performed to identify the effect of the importance of

test parameters on experiment outputs. In the second phase

of this study, optimum process parameters were determined

using signal-to-noise analysis and response surface

methodology (RSM) for mono-optimization and multi-re-

sponse optimization, respectively. In the last phase,

regression analysis and artificial neural network (ANN)

models for predicting the MRR, EWR, AOC and TA. As a

result of experimental analysis, discharge current was the

most important parameter for micro-drilling with EDM. It

was found out that this parameter influenced positively

MR, while it has negatively an effect on EWR, AOC and

TA. Mathematical model based on ANNs exhibited a

successful performance for predication of outputs. Opti-

mum process parameters which were discharge current of

10.18 Å, dielectric liquid pressure of 58.78 bar and

electrode tool rotational speed of 100 rpm for multi-ob-

jective optimization were determined through RSM with

desirability function analysis in micro-deep hole EDM

drilling of AISI 304 stainless steel.

Keywords Micro-hole drilling � Electrical discharge
machining � Artificial neural networks � Optimization �
Response surface methodology

1 Introduction

In order to obtain a better corrosion resistance, low thermal

conductivity and high strength in the high-temperature

working conditions, AISI 304 stainless steel has been

developed. Due to its superior characteristics, this steel has

been widely employed for many fields such as medical,

defense, chemical, construction and aerospace industry.

However, the machining of stainless steel with traditional

methods is very difficult compared to carbon steel. In the

machining operations, the drilling of workpiece has an

important position because more than 40% metal cutting

operations are the drilling of workpiece [1, 2]. In many

fields, with shrinking the size of mechanical system, hole

diameters are reduced and so demand for micro-holes has

further increased. However, recently holes in micro-diam-

eter and high length have been extremely difficult to obtain

by using traditional cutting processes and even obtaining

the smaller holes than 1 mm has become almost impossi-

ble. Apart from traditional cutting processes, alternative

production methods including laser machining, focused ion

beam machining, electro-chemical machining and electri-

cal discharge machining (EDM) or electrical discharge

drilling (EDD) are employed for micro-part manufacturing

[3]. In these methods, recently drilling with electrical
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discharge drilling method has been used as an alternative

machining option in order to easily drill the smaller

diameter holes. Through this method without mechanical

contact with the workpiece, forming can be made to

achieve a product with help of the electrical conductivity of

workpiece material [4]. In electrical discharge drilling,

there is not any effect of mechanical properties of the

materials that are very important for traditional cutting

processes on the machinability of workpiece. In crucial

fields such as aerospace, automotive, medicine, manufac-

turing and defense industry so as to drill the holes desired

micro-diameter and length, this method has become an

important option. Fundamental expectation in drilling

operations with EDM is to obtain economical and accurate

hole geometry and size. In some studies, the drillability of

workpiece with electrical discharge machining method was

investigated by researchers. For example, Volkan et al. [4]

investigated deep-micro-hole drilling for Hadfield steel by

electro-discharge machining. It was found that the most

effective variable affecting the MRR, EWR and RW was

the discharge current. Kuppan et al. [5] examined the effect

of input values for deep hole drilling of Inconel 718. It was

seen that while the machining rate was affected by peak

current, duty factor and electrode rotation, the surface

roughness was affected by peak current and pulse on-time.

Ay et al. [6] optimized test input parameters for micro-

drilling of Inconel 718 with EDM. Asokan et al. [7] ana-

lyzed the influence of test parameters on performance

characteristics in EDM-deep-hole drilling of titanium alloy.

Mohan et al. [8, 9] investigated the machinability for

electrical discharge machining of Al–SiC metal matrix

composite. Puertas et al. [10] investigated the effect of

experiment parameters on surface quality, MRR and EW of

WC–Co in EDM operation. Lee et al. [11] made electrode

wear estimation model for EDM drilling. Plaza et al. [12]

carried out an experimental study for micro-EDM drilling

of Ti–6Al–4V with help of helical electrode. Jahan et al.

[13] studied the drillability of deep-micro-holes for two

difficult-to-machine materials such as cemented carbide

and austenitic stainless steel via micro-EDM method.

Pradhan et al. [14] presented a research in order to optimize

micro-EDM test parameters in machining of Ti–6Al–4V

superalloy. Wang et al. [15] explored the micro-hole dril-

ling process for PCDs with micro-electrical discharge

machining. From the literature survey, it is detected that

although a lot of studies have been performed for drilling

process with EDM, there is not any study for micro-deep-

hole drilling of AISI 304 stainless steel with electrical

discharge machining method.

Today’s industry desires to manufacture the high-quality

products with low cost in a shorter time. In order to achieve

this goal of industry process, parameters have to be opti-

mized by taking into consideration all quality outputs [16].

In engineering applications, there are a lot of tools used by

researchers for optimization such as Taguchi method, gray

relational analysis (GRA), response surface methodology

(RSM) and genetic algorithm. Recently, RSM has been

applied by researchers [17–20] in order to optimize multi-

response problems for engineering processes because some

tools cannot determine simultaneously the best combina-

tion of input parameters for multiple response outputs.

Although in traditional cutting processes there are many

studies about optimization with RSM, there is not any

investigation focused on the optimization of multiple

response outputs in micro-deep electrical discharge drilling

with help of RSM.

Due to the complexity of the cutting process, researchers

have more focused on predictive modeling tools in order to

detect a result of quality indicator without an experiment

performed [21]. There are several predictive modeling

tools including regression analysis, artificial neural net-

works (ANNs) and fuzzy logic so as to establish a rela-

tionship between input parameters and output(s) parameter.

In the light of the above information, current study aims

to explore the deep-micro-hole drilling of AISI 304 stain-

less steel through micro-electrical discharge machining

method. For this aim, the discharge current, dielectric spray

pressure and electrode tool rotational speed which mea-

sured in this study were taken as process parameters in

order to evaluate their effects on machining rate, electrode

wear rate, average over-cut and taper angle during deep-

micro-hole drilling of AISI 304 material. After experi-

mental study in order to achieve simultaneously the desired

results in terms of all responses, the micro-EDM process

parameters were optimized by using RSM based on mul-

tiple performance outputs. Further, present study focused

on predictive models via artificial neural networks and

regression analysis so as to assign a relationship between

process parameters and performance characteristics.

Additionally, analysis of variance (ANOVA) was also

applied in order to identify the contribution rates of test

parameters on quality characteristics.

2 Experimental setup

2.1 Materials and machine tool

The workpiece material used in current study was AISI 304

austenitic stainless steel, and its size was X = 100 mm,

Y = 10 mm and Z = 20 mm block material. Brass elec-

trode which is usually used for drilling operations was

chosen as tool material because it is more economical

compared to copper and tungsten tools. In addition, brass

tools can also become resistant to high tensile compared

with copper tools [14]. The total length, outside diameter
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and inside diameter of electrode used in present study were

400 mm, 500 lm and 180 lm, respectively. Pure water

was utilized as dielectric fluid during drilling process.

Dielectric liquid was pumped to the machining region

passing through the interior section of the electrode. In

order to make the micro-drilling experiments the ‘‘Furkan’’

brand, ‘‘EEI M50A’’ type EDM machine was employed. A

power unit was also added to system so as to give desired

spindle speed to electrode tool in rotations per minute.

2.2 Experimental procedure

Before the experiments began, the top and bottom faces of

workpiece material were machined using CNC vertical

milling machine. In experiments, discharge current,

dielectric spray pressure and electrode tool rotational speed

were taken as process parameters by keeping other factors

constant. Detailed information about machining parameters

and their levels were given in Table 1. A photographic

image of the experimental setup designed for the tests is

seen in Fig. 1. The pressure head was combined with

moving part of the EDM machine along the Z-axis. A

rotational motion was provided through pressure head and

the pressurized dielectric liquid reached machining region

via electrode. The rotational motion of electrode was

achieved with a DC motor on the pressure head. The

dielectric liquid reached the pressure head with the help of

a pressure pump. The dielectric liquid pressure was con-

trolled with a manometer on the bypass mechanism at any

moment. The experiments were conducted on a separate

working tank mounted inside the original tank of the

machine. The materials inside the working tank were fas-

tened with a clamp. In order to prevent the electrode set

from turning eccentrically, it was placed near the test

samples through the ceramic guide.

2.3 Measurements

Micro-deep hole drilling performance was evaluated by

machining rate (MR), electrode wear rate (EWR), the

accuracy of the holes including average over-cut (AOC)

and taper angle (TA). MR and EWR were determined by

calculating the weight difference between of tool and

workpiece material before and after drilling per-unit

machining time in each experiment. In order to measure

the weight for electrode and workpiece material, a

sensitive balance having sensitivity of 0.005 g was used.

In order to determine the hole diameter and dimensions

and to examine the hole diameter, finished samples were

dried, cleansed and later scanned on a high-resolution

scanner. Later, these images were used to measure the

diameters of each hole using image analysis package

software. Figure 2 shows the schematic diagram of cal-

culating average over-cut and taper angle. In this figure,

AOC and TA of the machined micro-hole with electrical

discharge machining were calculated by Eqs. (1) and (2)

as follows:

AOC ¼
ðd1þd2þd3þd4þd5þd6þd7Þ

7
� tool diameter

2
ð1Þ

where AOC is average over-cut and d1, d2, d3, …, dn are

hole diameters measured at different points.

TA ðhÞ ¼ tan�1 did � dod

2� L

� �
ð2Þ

where TA is hole taper angle, did is hole entry diameter, dod
is hole exit diameter, and L is hole depth.

Table 1 EDM-drilling

parameters
Parameter Notation Unit Level 1 Level 2 Level 3

Discharge current I Ampere 6 12 24

Dielectric liquid pressure P Bar 20 40 80

Too rotational speed N rpm 100 200 400

Fig. 1 Experimental setup for micro-EDM drilling tests
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3 Results and discussion

Design of experiment and tests results are shown in

Table 2.

3.1 Machining rate

In EDM operations, machining rate (MR) is an important

process parameter for which higher valued results are

preferred. Figure 3 shows the values obtained for MR

corresponding to various machining parameters in this

study, where the focus is on micro-hole drilling in AISI 304

type stainless steel material. An analysis of Fig. 3 indicates

a distinct increase in MR values in response to increase in

discharge current. This result is due to the increase in

discharge energy as discharge current is increased. With

increased discharge energy, more material is melted and

vaporized in unit time from the surface of the workpiece

material. As sparking is more powerful due to the increased

discharge current, more material is melted and vaporized

per spark compared to that observed in case of lower dis-

charge current [22]. Accordingly, the value for MR, which

corresponds to weight of material removed per unit time, is

increased in parallel to increased discharge current values.

In this study, the average MR value increased by 273%

when discharge current value increased from 6 to 12 Å,

and the average MR value increased by 150% when dis-

charge current increased from 12 to 24 Å.

Further analysis of Fig. 3 indicates a distinct increase in

MR values in response to increase in electrode tool rpm

values. The average MR value increased by 8.7% when the

electrode tool rpm value increased from 100 to 200 rev/

min, and the average MR value increased by 5.7% when

the electrode tool rpm value increased from 200 to 400 rev/

min.

A similar outcome holds true for the full range of tests

involving dielectric spray pressure. MR values have

increased in response to increased dielectric spray pressure,

albeit at different percentages. Figure 3 illustrates this

outcome, indicating a clear increase in MR values in

relation to dielectric spray pressure. The average MR value

increased by 33% when the dielectric spray pressure

increased from 20 to 40 bars, and the average MR value

increased by 7.7% when the dielectric spray pressure

increased from 40 to 80 bars.

The increase in MR values resulting from a combination

of increases in electrode tool rpm and dielectric spray

pressure is due to the rapid circulation of the dielectric fluid

in the machining region, leading to sustained spark dis-

charge in the same region. Sustained spark discharge has

enabled uninterrupted machining, making sustained spark

discharge the most effective cause for the observed

increase in MR values.

Using through the tool delivery of the dielectric fluid

spray enabled its faster removal from the lateral gaps

between the electrode tool and the workpiece, resulting in

more effective flushing, also described in the literature

[23, 24].

In the study, increases in both electrode rotation rpm as

well as dielectric spray pressure were found to increase MR

values when machining AISI-304 type stainless steel

material. The resulting increase has been significant in

terms of machining performance and savings, allowing the

drilling of micro-holes to be completed in shorter

durations.

3.2 Electrode wear rate

Electrode wear rate (EWR) values are significant perfor-

mance indicators in EDM operations. The EWR value

Fig. 2 EDM drilling procedure. a General form, b over-cut and c taper angle
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Fig. 3 Surface plot of MR (mg/

min) versus I (Å), P (bar) and N

(rpm)

Table 2 Design of experiment

and test results
Test number Control factors Test results

I (Å) P (bar) N (rpm) MR (mg/min) EWR (mg/min) AOC (lm) TA (�)

1 6 20 100 2.601 0.389 30 0.075057

2 6 20 200 3.548 0.423 44 0.080214

3 6 20 400 3.982 0.442 49 0.081360

4 6 40 100 5.500 0.376 36 0.069385

5 6 40 200 6.579 0.406 47 0.080787

6 6 40 400 6.849 0.431 52 0.083079

7 6 80 100 8.462 0.304 40 0.079641

8 6 80 200 9.524 0.359 56 0.085371

9 6 80 400 9.934 0.393 59 0.075917

10 12 20 100 18.214 5.357 78 0.177616

11 12 20 200 20.182 5.545 86 0.183403

12 12 20 400 21.143 6.286 92 0.189075

13 12 40 100 21.333 5.000 80 0.177960

14 12 40 200 23.750 5.188 87 0.188502

15 12 40 400 27.750 5.870 94 0.194805

16 12 80 100 23.667 4.270 85 0.183518

17 12 80 200 26.667 5.167 87 0.185867

18 12 80 400 28.742 5.839 93 0.188044

19 24 20 100 45.455 20.455 152 0.343771

20 24 20 200 47.500 22.500 168 0.379006

21 24 20 400 48.837 25.930 175 0.392470

22 24 40 100 59.375 20.125 155 0.395335

23 24 40 200 64.305 21.600 170 0.396767

24 24 40 400 66.285 22.500 185 0.398199

25 24 80 100 61.538 18.615 158 0.394762

26 24 80 200 65.455 20.455 187 0.393902

27 24 80 400 69.231 21.915 190 0.402210
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indicates the weight of electrode melted and vaporized per

unit time, and a lower EWR value is an important indicator

for higher efficiency and practical applicability of the

machining process.

Figure 4 shows graphical depictions of EWR values

obtained during the micro-hole drilling of AISI-304 type

stainless steel material using brass cylindrical electrodes

with outer diameter of 0.5 mm and inner diameter of

0.18 mm. Analysis of Fig. 4 indicates that EWR values

increase in parallel to increased values of discharge cur-

rent. In relation to the discharge current applied, each spark

causes increased material to be melted and vaporized from

the material being machined, and in parallel, a propor-

tionally larger region was melted and vaporized from the

electrode tool itself. As a result, EWR values are increased

as discharge current is increased.

In this study, the average EWR value increased by

1282% when discharge current value increased from 6 to

12 Å, and the average EWR value increased by 300%

when discharge current increased from 12 to 24 Å.

The average EWR value increased by 9% when the

electrode tool rpm value (a process input parameter)

increased from 100 to 200 rev/min, and the average EWR

value increased by 9.7% when the electrode tool rpm value

increased from 200 to 400 rev/min. The increased elec-

trode tool rpm has led to a faster circulation of the

dielectric fluid in the machining region, enabling increased

sparking per unit time, which in turn has led to increased

EWR values [22, 23].

In this study, decreased EWR values have been observed

in relation to increases in dielectric spray pressure. The

average EWR value decreased by 6.7% when the dielectric

spray pressure increased from 20 to 40 bars, and the

average EWR value decreased by 5.1% when the dielectric

spray pressure increased from 40 to 80 bars. This decrease

in EWR values observed in relation to increased dielectric

spray pressure is interpreted to be due to the more effective

means of washing and cooling that were enabled. Thanks to

the spraying realized through the electrode tool, the elec-

trode has been cooled more rapidly and the machining

region has been flushed much more effectively, thereby

preventing the occurrence of random sparking [24, 25].

Accordingly, EWR values have decreased in response to

the higher dielectric spray pressures that have been

utilized.

3.3 Average over-cut and taper angle

In EDM micro-hole drilling operations, average over-cut

(AOC) is expressed as the variance between the diameter

of the resulting hole and the diameter of the electrode tool,

and indicates the gap between the electrode and the walls

of the hole. A low AOC value is preferred (and ideally

would approach zero), such that the hole diameter is equal

to the electrode tool diameter.

In this study for micro-hole drilling in AISI-304 type

stainless steel material, effects of machining parameters on

AOC values have been investigated and the most effective

Fig. 4 Surface plot of EWR

(mg/min) versus I (Å), P (bar)

and N (rpm)
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machining parameters for yielding low AOC values have

been determined.

Figure 5 shows graphical depictions of the change in

AOC values calculated using the measurements of the

diameters of micro-holes drilled as part of the tests con-

ducted, in response to the machining parameters used.

Analysis of Fig. 5 shows that, without exception, AOC

values increase rapidly as discharge current is increased,

indicating hole diameters larger than electrode tool diam-

eters. This is as expected per the fundamental principles of

EDM, as increased discharge current leads to more pow-

erful sparking between the electrode tool and the work-

piece, which in turn enables a larger hole diameter [5]. It

has been determined that to obtain micro-holes using EDM

which conform to electrode tool diameters, discharge cur-

rent values should be kept lower.

The effects on AOC, of the rpm values used for elec-

trode rotation, as well as the dielectric fluid pressure val-

ues, were investigated, and the results, as can be observed

in Fig. 5, indicate that increases in electrode tool rpm and

dielectric fluid pressure cause an increase in AOC values.

Increased electrode tool rotation rpm and dielectric fluid

pressure have allowed an increased flow of clean dielectric

fluid to the machining region and also enabled residual

particles to be better flushed away, and consequently have

resulted in more effective sparking. This has resulted in

sustained sparking, leading to increased erosion and

thereby, increased AOC values.

Taper angle (TA) is another indicator for evaluating hole

profile accuracy in EDM micro-hole drilling. The TA value

is obtained by taking the difference of entrance and exit

hole diameters and dividing by the length of the hole.

Figure 6 shows graphical depictions of the change in TA

values calculated using the measurements of the diameters

of micro-holes drilled as part of the tests conducted, in

response to the machining parameters used. Analysis of

Fig. 6 shows that the TA value increases as discharge

current, rpm and dielectric fluid pressure values increase. It

is considered that the same factors acting to increase AOC

values (described earlier) also lead to an increase in TA

values.

A review of the results obtained for AOC and TA values

indicates that increases in discharge current, dielectric fluid

pressure and electrode tool rpm values cause a sustained

increase in AOC and TA values. This is an undesirable

outcome in EDM micro-hole drilling operations and is

among the outstanding problems awaiting solution.

To provide a solution to the problem, certain studies

have used electrodes with insulation [26]; however, due to

high temperatures experienced during machining, chemical

structure of the insulating material broke down, failing to

prevent increases in AOC and TA values.

Accordingly, to obtain reasonable AOC and TA values

in EDM micro-hole drilling operations, careful specifica-

tion of machining parameters is required.

3.4 ANOVA

In order to obtain detailed information about the effect of

input parameters including discharge current, dielectric

Fig. 5 Surface plot of AOC

(lm) versus I (Å), P (bar) and N

(rpm)
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liquid pressure and electrode tool rotational speed on

experimental results such as machining rate, electrode

wear rate, average over-cut and taper angle, analysis of

variance was carried out. It also determined significant

parameters and insignificant parameters in responses by

using F values of each independent parameter [27]. The

influence of input parameters on output characteristics is

seen in the last column of the ANOVA table. In present

study, ANOVA was carried out by 95% confidence level

and 5% significance level and it was tabulated as seen in

Table 3. According to Table 3, discharge current, dielec-

tric liquid pressure and electrode tool rotational speed

influenced machining rate by 94 3.8 and 0.6%, respec-

tively, and error can be given as 1.7%. From Table 3,

discharge current, dielectric liquid pressure and electrode

tool rotational speed influenced electrode wear rate by

98.4, 0.3 and 0.5%. Further, these process parameters

affected the average over-cut by 96.6, 0.5, and 2.3% and

they affected taper angle by 99.3, 0.1 and 0.1%. There-

fore, discharge current was the most important parameter

affecting the machining rate, electrode wear rate, average

over-cut and taper angle. According to Table 3, it was

demonstrated that discharge current and tool rotational

speed had statistical and physical significance on electrode

wear rate and taper angle at the reliability level by 95% as

their P value results are lower than 0.05. Further, while all

process parameters had statistical and physical signifi-

cance on average over-cut, discharge current and dielectric

liquid pressure had statistical and physical significance on

machining rate.

3.5 Predictive modeling with RA and ANNs

After experimental analysis in order to write predictive

models, test results in micro-deep EDM drilling of AISI 304

stainless steel were utilized using regression analysis via

Minitab 17.0 software. Nowadays, regression analysis is

commonly used by researchers to determine the relationship

between the process parameters and output(s) [28]. In the

current study, regression analysis based on linearmodel (first

order model) was used for predictivemodels. Control factors

or independent parameters used in this study were discharge

current (I), dielectric liquid pressure (P) and electrode tool

rotational speed (N) and responses or dependent parameters

were machining rate (MR), electrode wear rate (EWR),

average over-cut (AOC) and taper angle (TA). According to

linear regression analysis, estimated model for machining

rate, electrode wear rate, average over-cut and taper angle

can be expressed by the following Eqs. (3–6):

MR ðmg/minÞ ¼ �21:4431þ 2:91077 � I ðÅÞ þ 0:154177

� P ðbar)þ 0:0128313� N ðrpmÞ
ð3Þ

EWR ðmg/minÞ ¼ �8:11454þ 1:20087� I ðÅÞ
� 0:0175472

� P ðbarÞ þ 0:00530341� N ðrpmÞ
ð4Þ

AOC ðlmÞ ¼ �17:1481þ 6:96561� I ðÅÞ þ 0:148016

� P ðbarÞ þ 0:0600794� N ðrpmÞ ð5Þ

Fig. 6 Surface plot of TA (�)
versus I (Å), P (bar) and N

(rpm)
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TA ðhÞ ¼ tan�1ð�0:00065787þ 0:000299438� I ðÅÞ
þ 2:44802e�006� P ðbar)
þ 6:4246e�007� N ðrpm)Þ

ð6Þ

In addition, artificial neural network (ANN) method is also

widely employed in the variety of fields [29–33]. There are

some algorithms such as Levenberg–Marquardt (LM),

Bayesian regularization (BR) and scaled conjugate gradient

(SCG) algorithms for neural network training. These

algorithms have different advantages according to each

other [34]. Because LM algorithm operates quicker once it

trains a medium-sized feed forward neural network [34], in

this study fermi transfer function based on the back-prop-

agation learning with LM in ANNs model was used in

order to obtain predictive models. There were three input

parameters that were discharge current (I), dielectric liquid

pressure (P) and electrode tool rotational speed (N) for

each output, and desired outputs were MR, EWR, AOC and

TA. ANNs were established in two phases including

‘‘training phase’’ and ‘‘propagation phase’’. For training

phase while I, P and N were considered as input variables

for each output, MR, EWR, AOC and TA were considered

as output parameters. For propagation phase, ANNs were

created according to four layers 3-6-5-1, 3-5-6-1, 3-4-5-1

and 3-6-5-1 containing input layer, two hidden layers and

output for MR, EWR, AOC and TA, respectively, as shown

in Fig. 7. ANNs were trained through obtained 21 test

outputs and then it was verified and tested through six test

outputs. Since normalization is necessary so that selected

inputs are at a comparable range, input and output values

were normalized at range between 0 and 1 by following

Eq. (7):

Nv ¼
Ni � Nmin

Nmax � Nmin

� �
ð7Þ

In Eq. (7), Nv is normalization value, Ni is input value,

Nmin is minimum value, and Nmax is maximum value.

Predictive models obtained from the ANNs model so

as to estimate the outputs including MR, EWR, AOC and

TA can be expressed, respectively, as following Eqs. (8–

11):

Table 3 Results of ANOVA analysis

Variation of source Degree of

freedom (DF)

Sum of

squares (SS)

Mean of

squares (MS)

F ratio P value Contribution

(%)

MR

Discharge current 2 12,811.0 6405.5 566.96 0.000 94

Dielectric liquid pressure 2 511.8 255.9 22.65 0.000 3.8

Rotational speed 2 75.1 37.6 3.33 0.057 0.6

Error 20 226.0 11.3 1.7

Total 26 13,623.9 100

EWR

Discharge current 2 2204.97 1102.48 1144.66 0.000 98.4

Dielectric liquid pressure 2 5.62 2.81 2.92 0.077 0.3

Rotational speed 2 12.06 6.03 6.26 0.008 0.5

Error 20 19.26 0.96 0.9

Total 26 2241.90 100

AOC

Discharge current 2 73,365 36,682 1665.42 0.000 96.6

Dielectric liquid pressure 2 370 185 8.40 0.002 0.5

Rotational speed 2 1770 885 40.19 0.000 2.3

Error 20 441 22 0.6

Total 26 75,946 100

TA

Discharge current 2 0.445096 0.222548 2507.20 0.000 99.3

Dielectric liquid pressure 2 0.000537 0.000268 3.02 0.071 0.1

Rotational speed 2 0.000688 0.000344 3.87 0.038 0.1

Error 20 0.001775 0.000089 0.4

Total 26 0.448095 100
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Fermi transfer function used in predictive equations was

written by following Eq. (12):

N ið Þ ¼
1

1þ e�4x Ei�0:5ð Þ : ð12Þ

In Eq. (12) in order to calculate Ei values for level 1

neurons, Eq. (13) can be written as following:

Ei ¼ w1ixI þ w2ixPþ w3ixN: ð13Þ

Ei values for level 2 neurons were calculated by Eq. (14).

In these equations mentioned above, i indicates neuron

number.

Ei ¼ w1ixN1 þ w2ixN2 þ w3ixN3 þ � � � � � � þ wiixNi: ð14Þ

In order to calculate the reliability of written models, the

determination coefficient expressed as R2 was used for

theoretical analysis of models. It is recommended that R2

should be between 0.8 and 1 [35]. In present work, the

value of the determination coefficient obtained from

regression equations for MR, EWR, AOC and TA was

R2 = 99.77, 98.14, 98.72 and 95.79%. R2 value obtained

from ANNs equations for MR, EWR, AOC and TA was

calculated as 99.88, 99.66, 99.43 and 99.41%, respec-

tively. A comparison between measured experiments

values and predicted values with help of ANNs and RA

was graphically conducted as shown in Fig. 8. According

to confirmation test result, it can be said that results

obtained from equations were normally distributed. Due

to high R2 value of model and confirmation test results,

written mathematical models through both ANNs and RA

can be used for prediction of the results in micro-drilling

with EDM of AISI 304 stainless steel. When an evalua-

tion was conducted for linear regression analysis and

artificial neural networks, it could be said that all ANN

models were suitable so as to obtain the estimated results

in terms of both theoretical analysis and graphical

analysis.

3.6 Mono-and multiple response optimization

3.6.1 Mono-optimization with S/N analysis

In order to find the optimum levels of EDM input param-

eters, signal-to-noise (S/N) analysis was performed using

Minitab software. The data ‘‘signal’’ exhibits the desired

influence, and data ‘‘noise’’ exhibits the undesired effect on

outputs. Hence, maximum S/N ratio is calculated in order

to obtain optimum points. S/N ratios can be calculated with

three different methods such as nominal-the-best, smaller-

the-better and larger-the-better. In current study, while S/N

ratios for MR were determined with larger-the-better cal-

culation method and ratios for EWR, AOC and TA were

calculated with smaller-the-better calculation method by

following Eqs. (15) and (16) [27]:

For EWR; AOC andTA; S/NSB ¼ �10 log
1

n

Xn
i¼1

r2i

 !
:

ð15Þ

ForMR; S/NLB ¼ �10 log
1

n

Xn
i¼1

1

r2i

 !
: ð16Þ

In Eqs. (15) and (16), ri is the measured value of output for

ith experiment and n is the test number made in this study.

Figure 9 shows the graphic of mean of S/N ratios for

outputs. According to S/N graphic, it is understood that the

highest S/N ratio provides the optimum levels. As seen in

Fig. 9a, the optimum EDM drilling parameters, which were

the discharge current of 24 Å, the dielectric liquid pressure

of 80 bar and rotational tool speed of 400 rpm, were

obtained for maximum MR value. As seen in Fig. 9b, the

optimal parametric combination for EWR was determined

to be I1–P3–N1 which was as follows: discharge current of

6 Å, the dielectric liquid pressure of 80 bar and rotational

tool speed of 100 rpm. In order to obtain minimum AOC

and TA values, drilling parameter combination was I1–P1–

NMR ¼ 1þ e�4 �1:550154�N7þ1:345999�N8�1:428762�N9�1:303692�N10þ1:028064�N11�0:5ð Þ
� ��1

ð8Þ

NEWR ¼ 1þ e�4 �0:702248�N6�0:463843�N7�1:886919�N8�0:849448�N9þ0:399743�N10þ1:905267�N11�0:5ð Þ
� ��1

ð9Þ

NTOC ¼ 1þ e�4 �0:781303�N5þ1:972745�N6�1:158786�N7þ1:607220�N8�1:338764�N9�0:5ð Þ
� ��1

ð10Þ

NTA ¼ tan�1 1þ e�4 1:769993�N7�1:644160�N8�0:886305�N9�1:461106�N10þ0:248677�N11�0:5ð Þ
� ��1
� �

ð11Þ
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N1 as seen in Fig. 9c, d. In addition, these graphics also

demonstrated that discharge current was the most influen-

tial EDM drilling parameter for MR, EWR, AOC and TA

since the biggest difference between S/N ratios observed in

discharge current. As mentioned above, this result was

similar with ANOVA result.

Fig. 7 ANN designs in LM algorithm for a MR, b EWR, c AOC and d TA
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3.6.2 Multiple response optimization with RSM

In spite of high estimation accuracy by mono-optimization

with S/N analysis, the optimum parameter combination for

more than one output can be different [36]. Therefore,

multi-response optimization is required for more suit-

able combination of control parameter. In order to deter-

mine simultaneously optimal outputs, response surface

methodology (RSM) with desirability function analysis can

be useful method in engineering applications [37]. In the

desirability function analysis, the results are transformed

into a dimensionless desirability value which is written as

d [37]. This value is between d = 0 and d = 1. If d = 0 or

close to 0, then the output is highly undesirable. If d = 1 or

close to 1, then the response is wonderfully desirable. In

this approach, there are three types of desirability analysis

for different goals. These are: minimize the response, hit a

target value and maximize the response [37]. In present

study, the desirability function analysis for MR was per-

formed with maximize the response method so as to

achieve maximum MR value. Further, the desirability

function analysis for EWR, AOC and TA was made

according to minimize the response method since mini-

mum EWR, AOC and TA were desired in micro-drilling

with EDM of AISI 304 stainless steel. Optimization of

process parameters for multiple responses was simultane-

ously achieved using the desirability-based approach.

Figure 10 shows the graph of desirability analysis so as to

establish simultaneously maximum MR and minimum

EWR, AOC and TA values. According to Fig. 10, the best

results for MR, EWR, AOC and TA were found to be

20.98 mg/min (desirability value, d = 0.2759), 2.923 mg/

min (d = 0.8978), 66.6164 lm (d = 0.77115) and

0.15147� (d = 0.74361) in levels of control factors that are

current discharge of 10.1818 Å, dielectric liquid pressure

of 58.7879 bar and electrode tool rotational speed of

100 rpm in EDM micro-deep drilling of AISI 304 stainless

steel.

3.6.3 Confirmation experiments

In the last phase of the optimization made by S/N, con-

firmation tests have to be performed to check the reliability

of the optimization [38]. The confirmation tests were made

at the optimum points of the control factors assigned for

MR, EWR, AOC and TA which are I3–P3–N3, I1–P3–N1,

I1–P1–N1 and I1–P1–N1, respectively. In order to verify the

confirmation, test results were analyzed by taking into

account the confidence interval (CI) calculated using fol-

lowing Eqs. (17) and (18).

Fig. 8 Comparison between ANN and RA models. a MR, b EWR, c AOC and d TA
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CI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa;1;Ve � Vep �

1

neff
þ 1

R

� �s
ð17Þ

neff ¼
N

1þ Tdof
ð18Þ

In Eq. (17), Fa,1,Ve is the F ratio at 95% confidence

level, a is the significance level, Ve is the degrees of

freedom of error, Vep is error variance, neff is the

effective number of replications, R is the number of

replications for verification test. In Eq. (18), N is the

total number of tests, and Tdof is the total main factor

degrees of freedom.

According to F test table, Fa,1,20 is 4.35. Further, R is 3,

N is 27, Tdof is 6, and Vep is 11.30, 0.96, 22 and 0.000089

for MR, EWR, AOC and TA. Based on these values, neff
and CI were calculated for each output using Eqs. (17) and

(18). As seen in Table 4 it can be said clearly that the

difference between calculated values and experimental

values is less than the confidence interval of each output

parameter. Therefore, optimization was finalized success-

fully at a significance level of 0.05 in micro-electrical

discharge drilling of AISI 304 stainless steel.

Fig. 9 Mean of S/N ratios for a MR, b EWR, c AOC and d TA

Fig. 10 Plot of multiple response optimization
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4 Conclusion

The results for current work can be listed as below:

• An important increase in MR values was observed in

response to increase in discharge current. With

increased discharge energy, more material was melted

and vaporized in unit time from the surface of the

workpiece material.

• An increase in both electrode rotation rpm and

dielectric spray pressure was found to increase MR

values when machining AISI-304 type stainless steel

material. The resulting increase has been significant in

terms of machining performance and savings, allowing

the drilling of micro-holes to be completed in shorter

durations.

• While EWR values were increased as discharge current

and tool rotational speed were increased, decreased

EWR values were observed in relation to increases in

dielectric spray pressure. This decrease in EWR values

observed in relation to increased dielectric spray

pressure is interpreted to be due to the more effective

means of washing and cooling that were enabled.

• AOC and TA values increase rapidly as discharge

current is increased, indicating hole diameters larger

than electrode tool diameters. This is as expected per

the fundamental principles of EDM. Increases in

electrode tool rpm and dielectric fluid pressure cause

an increase in AOC values.

• According to ANOVA result, discharge current was the

most important factor affecting the machining rate,

electrode wear rate, average over-cut and taper angle.

Discharge current and tool rotational speed had statis-

tical significance on electrode wear rate and taper

angle. Further, while all process parameters had

statistical significance on average over-cut, discharge

current and dielectric liquid pressure had statistical

significance on machining rate.

• Mathematical models obtained through both ANNs and

RA can be used for prediction of the results in micro-

drilling with EDM of AISI 304 stainless steel. When an

evaluation was conducted for linear regression analysis

and artificial neural networks, it could be said that all

ANN models were suitable so as to obtain the estimated

results in micro-deep hole EDM-drilling of AISI 304

stainless steel.

• Optimum process parameters for mono-output, the

discharge current of 24 Å, the dielectric liquid pressure

of 80 bar and rotational tool speed of 400 rpm, were

obtained for maximum MR value. Optimal parametric

combination for EWR was found to be I1–P3–N1 which

was as follows: discharge current of 6 Å, the dielectric

liquid pressure of 80 bar and rotational tool speed of

100 rpm. In order to obtain minimum AOC and TA

values, drilling parameter combination was I1–P1–N1.

Further, confirmation tests showed that optimization is

successful.

• Optimum process parameters, which were discharge of

10.1818 Å, dielectric liquid pressure of 58.7879 bar

and electrode tool rotational speed of 100 rpm, for

multiple responses were determined through RSM with

desirability function in EDM micro-deep drilling of

AISI 304 stainless steel.
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31. Karabulut Ş, Karakoç H (2015) Investigation of surface rough-

ness in the milling of Al7075 and open-cell SiC foam composite

and optimization of machining parameters. Neural Comput Appl.

doi:10.1007/s00521-015-2058-x

32. Mia M, Dhar NR (2016) Response surface and neural network

based predictive models of cutting temperature in hard turning.

J Adv Res 7(6):1035–1044

33. Mia M, Khan MA, Dhar NR (2016) Performance prediction of

high-pressure coolant assisted turning of Ti–6Al–4V. Int J Adv

Manuf Technol. doi:10.1007/s00170-016-9468-5

34. Mia M, Dhar NR (2016) Prediction of surface roughness in hard

turning under high pressure coolant using artificial neural net-

work. Measurement 92:464–474

35. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation

of vegetable based cutting fluids with extreme pressure and cut-

ting parameters in turning of AISI 304L by Taguchi method.

J Clean Prod 19:2049–2056

36. Mia M, Khan MA, Rahman SS, Dhar NR (2016) Mono-objective

and multi-objective optimization of performance parameters in

high pressure coolant assisted turning of Ti–6Al–4V. Int J Adv

Manuf Technol. doi:10.1007/s00170-016-9372-z

37. Ezilarasan C, Kumar VSS, Velayudham A (2013) An experi-

mental analysis and measurement of process performances in

machining of Nimonic C-263 super alloy. Measurement

46(1):185–199

38. Sarikaya M (2015) Optimization of the surface roughness by

applying the Taguchi technique for the turning of stainless steel

under cooling conditions. Mater Tehnol 49(6):941–948

Neural Comput & Applic (2018) 30:1503–1517 1517

123

http://dx.doi.org/10.1007/s00521-015-2058-x
http://dx.doi.org/10.1007/s00170-016-9468-5
http://dx.doi.org/10.1007/s00170-016-9372-z

	Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel
	Abstract
	Introduction
	Experimental setup
	Materials and machine tool
	Experimental procedure
	Measurements

	Results and discussion
	Machining rate
	Electrode wear rate
	Average over-cut and taper angle
	ANOVA
	Predictive modeling with RA and ANNs
	Mono-and multiple response optimization
	Mono-optimization with S/N analysis
	Multiple response optimization with RSM
	Confirmation experiments


	Conclusion
	References




