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Abstract Stream-flow forecasting is a crucial task for

hydrological science. Throughout the literature, traditional

and artificial intelligence models have been applied to this

task. An attempt to explore and develop better expert

models is an ongoing endeavor for this hydrological

application. In addition, the accuracy of modeling, confi-

dence and practicality of the model are the other significant

problems that need to be considered. Accordingly, this

study investigates modern non-tuned machine learning

data-driven approach, namely extreme learning machine

(ELM). This data-driven approach is containing single

layer feedforward neural network that selects the input

variables randomly and determine the output weights sys-

tematically. To demonstrate the reliability and the effec-

tiveness, one-step-ahead stream-flow forecasting based on

three time-scale pattern (daily, mean weekly and mean

monthly) for Johor river, Malaysia, were implemented.

Artificial neural network (ANN) model is used for com-

parison and evaluation. The results indicated ELM

approach superior the ANN model level accuracies and

time consuming in addition to precision forecasting in

tropical zone. In measureable terms, the dominance of

ELM model over ANN model was indicated in accordance

with coefficient determination (R2) root-mean-square error

(RMSE) and mean absolute error (MAE). The results were

obtained for example the daily time scale R2 = 0.94 and

0.90, RMSE = 2.78 and 11.63, and MAE = 0.10 and 0.43,

for ELM and ANN models respectively.

Keywords Extreme learning machine � Artificial neural
network � Stream-flow forecasting � Tropical environment �
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1 Introduction

It is scientifically proved that stream-flow is characterized

by high nonlinearity distribution and dynamic pattern

[1–6]. Over the past several decades, stream-flow fore-

casting has been an important and challenging issue [7–9].

In practical management, stream-flow forecast is tremen-

dously significant for water resources planning and oper-

ation. Real-time forecasting that can be addressed as short-

term stream-flow can yield an important and reliable

operation for flood control and mitigation protection,

whereas long-term forecasting is essential for several water

resources applications involving river sediment operation,

reservoir and water demand sustainability, hydro power

production, and several others uses [10, 11].

Since the early of 1970, the classical approaches based

on mathematical and statistical models had been under-

taken to solve this issue; for instance, multiple linear

regression (MLR) model and autoregressive integrated

moving average (ARIMA) [12–16]. The main drawback of

the classical models is that they are limited with linear

regression solution that is not really applicable in capturing

the highly stochasticity of stream-flow pattern. Recently, a

noticeable use of artificial intelligence (AI) techniques to
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model and forecast river flow time series, such as classifiers

and machine learning approaches [2, 17–28], fuzzy logic

system [4, 29–33], evolutionary computation [34–38],

wavelet complementary models [39–44]. Despite the flex-

ibility and utility of AI techniques in modeling stream-

flow, they still have some drawbacks and limitations (e.g.,

over-fitting, slow learning speed, local minima, and diffi-

culty to capture the high complexity, non-stationary,

dynamism and nonlinearity of time series). Those mathe-

matical models are much advanced over the physical

models that are usually needed much efforts and informa-

tion in order to module the hydrological variables of a

specific watershed area [45–47].

In the last decade, a non-tuned machine learning entitled

extreme learning machine algorithm is gained a noticeable

efficiency in modeling the regression problem [48–52].

This approach is firstly proposed by [53] and has been

broadly utilized in many applications due to its capabilities

(i.e., randomization of the internal network weights and

less time consuming during the learning processes), for

example, evapotranspiration prediction [54], fast object

recognition and image classification [55, 56], landslide

displacement prediction [57], sales prediction of fashion

retailing [58], melting points prediction of organic com-

pounds [59], big data classification [60], and use of priori

knowledge [48]. Relatedly with the investigated applica-

tion, monthly stream-flow prediction model conducted by

integrating ELM model with wavelet decomposition

approach for a case study in southwestern China region

[61]. In 2016, Deo and Sahin [62] implemented ELM

model for stream-flow forecasting in Queensland to vali-

date its superiority over artificial neural network (ANN)

models. Another version of ELM model which is based on

online sequential methodology was investigated for short-

term river flow forecasting for Canadian region [63]. In

semi-arid region, the application of ELM model showed an

optimistic satisfactory for modeling long-term stream-flow

forecasting [64]. Generally, the ELM model as non-tuned

approach showed an outstanding level of accuracies vis-à-

vis state-of-the-art AI models.

By comparing with AI techniques, ELM method offers a

highly modeling capabilities such as randomly assigned

internal weights, much fast learning processes and very

simple architecture of neural network. Moreover, it over-

comes the shortcomings of the traditional popular gradient-

based learning algorithms.

Since there are numerous neural networks architecture,

researchers are still facing questions such as which neural

network is precisely best fit or should be utilized for

specific problem. Unfortunately, there is no general neural

network satisfactory answering these questions because we

are still in the stage of exploring methods that are capable

for modeling hydrological processes. However, in this

research, an investigation of the proficiency of ELM

method in forecasting one step ahead of hydrological data

representing in time series fashion with acceptable level of

accuracy overcome the highlighted drawbacks of the

existing AI techniques (e.g., time consuming of the learn-

ing processes and trivial human intervention). Daily,

average weekly and average monthly river stream-flow

data are employed to examine the proposed ELM method

as alternative model for stream-flow forecasting in tropical

environment, Johor River, Malaysia. Johor River is one of

the essential rivers in Peninsular Malaysia that provides

Johor state with water supply in addition to various

domestic and agriculture usages. Studying the flow pattern

of this river flow is extremely significant for its sustain-

ability. In order to examine the proposed ELM method, a

comparative analysis between the performance of the

classical ANN method and the proposed ELM has been

carried out. The following sections of the manuscript are

established in the following manner. Description of the

ANN method and its algorithm expressions have been

presented. Comprehensive details for the proposed ELM

method and approach are reported in Sect. 3. The case

study and the data preparation with the model structure are

presented in Sect. 4. Section 5 addresses the results

achieved by the ELM method and introduced a details

discussion on the comparison analysis with the classical

ANN method. Finally, the conclusion of the current

research has been highlighted in Sect. 6.

2 Artificial neural network (ANN) approach

ANN is an advance mathematical model that deals with

problem similar to the human brain attitudes. Theoretically,

ANN development based on several components was

reported by Task and Neural (2000), which are: (i) the

ANN structure has a single elements called nodes, the

information processing occurs in each nodes, (ii) these

connection links to transfer signals between the each of

nodes, (iii) for each connection link has an associated

weight that represents its connection strength, and (iv) the

activation function is founded in each node to determine its

output signal. In general, ANN architecture is designed in

three main elements: input layer has one or more number of

input nodes based on the number of parameters for the

model; single hidden layer including the activation func-

tion; and output layer nodes.

Several algorithms have been used in the learning pro-

cesses of ANN in the field of hydrological applications.

However, according to the existing literature, radial basis

function neural network (RBFNN) method superior to the

other training methods. This is because RBFNN works

with higher reliability, faster convergence and smaller
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extrapolation [65–67]. RBFNN model was proposed by

Lowe and Broomhead [52]. Mainly, the RBFNN is struc-

tured with three different layers, input, hidden and output

layers as demonstrated in Fig. 1. Each layer has its own

function in order to implement the proposed assignment,

and in this research, it is forecasting stream-flow. The first

layer is designed to transfer the input variables into the

RBFNN process. The second layer is introduced to adapt

the nonlinear transformation function connections between

the input variables and neurons (radial basis function nodes

in the hidden layer). Finally, the linear transformation has

been implemented in order to transfer the hidden layer

space information to the output layer which is considered

as the desired variable.

The RBF functions u1, u2,… uN are known as basic

hidden transfer functions, while fuiðxÞg i ¼ 1N is termed

as the intermediate hidden domain. There is one constraint

of such architecture that the number of RBF functions that

forward the input variables from the input layer the hidden

layer (N) is less than the number of the available data

records that presenting the input–output pattern. The most

popular RBF functions that usually used in such pattern

recognition application is the Gaussian function; the fol-

lowing formula shows the Gaussian representation as one-

dimensional domain:

uðx; lÞ ¼ e
x�lk k2

2d2 ð1Þ

where l indicates the center of the Gaussian function

which presents the mean value of x and d indicates the

distance from the center of u(x, l).
There are two different key parameters, namely the

center and spread d. These two parameters are initiated at

the commencement of the model process and then

adjusted during training process. Generally, the hidden

unit is more sensitive to data points near the center and

this is according to the Gaussian radial function. Such

sensitivity could be controlled and adjusted by changing

the initial values of the spread d. An example of the

Gaussian radial basis is demonstrated in Fig. 2. It is

obvious from Fig. 2 that the radial basis function is less

sensitive to the input data pattern when the spread value

is relatively large.

3 Non-tuned machine learning: ELM Approach

Extreme learning machine (ELM) was first proposed by

[53]. The first proposed was with single hidden layer

feedforward neural networks. After that, it was developed

to the generalized SLFNs, the hidden layer after developed

became need not be neuron alike [68, 69]. The main feature

of the extreme learning machine method has strong

potential as applicable alternative methods due that the

hidden layer does not need to be tuned. In addition, it

considers the minimum norm of the output layer weights

and requires fewer parameter sittings, the training pro-

cesses are extremely fast compared with the gradient des-

cent learning algorithms, and it indicates a good

generalization performance [52].

This article investigates the capability of the ELM to

forecast stream-flow using different time interval time

series (daily, average weekly and average monthly).

Different input combinations are supplied to the SLFNs-

ELM, involving the antecedent records to forecast one

step ahead. Mathematically, the random generation of the

input weights consisting different lags time including

(Q(t-1), Q(t-1) Q(t-2), and Q(t-1) Q(t-2) Q(-n)) is

mapped to L-dimension ELM random feature space,

whereas the network output (forecasted Qt) can be

expressed as:t

Fig. 1 Radial basis function

algorithm structure in the

artificial neural network
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fL xð Þ ¼
XL

i¼1

hibi ¼ h xð Þb ð2Þ

where b ¼ ½b1; b2; . . .; bl�T represents the weight sand-

wiched between the hidden layer and output layer, whereas

hðxÞ ¼ ½giðxÞ; . . .; glðxÞ� is the hidden weight output in which

randomly generalization features for the input vectors. L is

the number of the hidden neurons. gi(x) is the output of the

ith hidden nodes. In this research, the development of the

modeling conducted via sigmoid activation function, as

best can be expressed:

gi xð Þ ¼ SigAct x; ai; bið Þ ¼ 1þ exp � aixþ bið Þð Þð Þ ð3Þ

where ai and bi are the random input weights and bias

between input nodes and ith hidden nodes.

ELM model has the capability to resolve the learning

problem Hb ¼ T . Here, T = [T1, …, TN] is the target

output matrix and H = [hT(X1), hT(X2), hT(X3),…., hT(-

XN)]
T. The b presents the output weight which is deter-

mined using b ¼ HyT where H� is the Moore–Penrose

generalized inverse of matrix H.

While developing a stream-flow forecasting model, it is

of importance to consider the implementation efficiency.

The main point of the ELM approach is its potential to

reduce the computational time for the training procedure

noticeably because of its strong mathematical process

capable to lessen the iterative and descent steps. Further-

more, the time needed for the calculation of the weights for

the input variables and the desired output variable and their

adjustment utilizing the least squares solution (linear sys-

tem) which is computationally time consumption proce-

dure. On the top of that, the approach of the ELM method

employs the singular value decomposition (SVD) as

adaptable and stabilization numerical technique for com-

puting the Moore–Penrose generalization inverse. Finally,

30 nodes for the hidden layer are considered by utilizing

the trials-and-error process in order to achieve a balance in

the statistical evaluation metrics in both model phases

(training and testing).

4 Case study and data preparation

In the present research, daily, weekly and monthly data

stream-flow were used belonging to Johor River Basin,

Malaysia. Figure 3 illustrates the location of the case study.

The drainage area of the selected river is around 2640 km2

with total length 123 km. The observed inflow data are

20 years’ time period in which equal (7300 days),

(1040 weeks) and (240 months), for the observation period

(1989–2008). The historical data as shown in (Fig. 4) at

Rantau Panjang station were obtained from the Department

of Irrigation and Drainage (DID). The first month of the

year is January, and the last month of the year is December.

Data division for the training and testing phases was

assigned 90 and 10%, respectively. This division of data set

was assigned using trial-and-error procedure until the best

performance forecasting accuracies level obtained

[11, 67, 70, 71].

In modeling regression problem, for example, stream-

flow in the present study, the selection of the appropriate

lag times as an input variables is one of the essential pri-

orities [6]. Autocorrelation function (ACF) and partial

autocorrelation function (PACF) have been applied on the

selected time series data, for the purpose to determine the

most correlated lead time and to perform effective mod-

eling. Figure 5 indicates the ACF and the PACF for all the

interval of stream-flow (daily, average weekly and average

monthly) with various lags time. According to Fig. 5 based

on these two behaviors of the autocorrelation and partial

autocorrelation; three lags, four lags and two lags were

considered to forecast one step ahead for daily, weekly and

monthly, respectively. Hence, in the current study, we have

Fig. 2 RBFNN with different levels of spread. a Normal spread. b Small spread. c Large spread
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Fig. 3 Location of the case study (Johor River Basin, Peninsular Malaysia)

Fig. 4 Actual stream-flow records for Johor River Basin at Rantau Panjang station. a Daily. b Average weekly. c Average monthly

Neural Comput & Applic (2018) 30:1479–1491 1483

123



established varies models with various input combinations

based on the time scales and lead times of stream-flows.

The input combinations of all the time intervals are pre-

sented in Table 1. Another significant concern is the data

preprocessing, the data were normalized for the purpose of

regularity and balance data range. The data were normal-

ized between (0–1) using the following formula:

xnew ¼ x� xminð Þ= xmax � xminð Þ ð4Þ

here, x value defines the actual records of the application.

xmin represents the minimum value of the data set, and xmax

represents the maximum value of the data set.

5 Application and analysis

This section discussed the results of the application of

ELM model for training and testing phases comparatively

with ANN modeling. The modeling accuracy assessment is

presented in terms of the error variation between the

observed and the forecasted values. Throughout the study,

several performance measures were used for the evaluation

purposes [72, 73]. By referring to the established research

in evaluation hydrological models, Legates and Mccabe

(1999) stated in their research that ‘‘goodness-of-fit’’ which

exhibits the regression coefficient and absolute error

Fig. 5 Plots of ACF and PACF of the stream-flow time series with 95% confidence bounds (the red lines), (a, b) daily, (c, d) average weekly,

and (e, f) average monthly
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statistical measurements is advisable to inspect the degree

of the accuracies [74]. Thus, in this research, coefficient

determination (R2), root-mean-square error (RMSE), mean

absolute error (MAE) and relative error (RE) were used to

evaluate the performance criteria of the propose approach.

The formulas of the mentioned indicators can be expressed

as:

R2 ¼
Pn

t¼1 So � �Soð Þ Sp � �Sp
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 So � �Soð Þ2

Pn
t¼1 Sp � �Sp

� �2q ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

t¼1

So � Sp
� �2

s
ð6Þ

MAE ¼ 1

N

Xn

t¼1

So � Sp
�� �� ð7Þ

RE ¼ So � Sp

So

� 	
100 ð8Þ

The definition of the formulas (5)–(8) variables is So
(stream-flow observed records), Sp (stream-flow predicted

records). �So and �Sp are the mean values. N is the number of

the data set.

It is even worth to brief the formation structure of the

modeling before proceeding with the discussion of the

results. Since neural networks topology affects the com-

plexity of the computational models and most importantly

the level of the accuracies. Remarkably, RBFNN algorithm

has been observed to be quite simple compared with the

others (i.e. FFNN or MLP). The most significant parame-

ters that should be obtained (as described in Sect. 2) are the

spread values and the number of radial basis function. The

spread values and the number of RBF are achieved by

using trail-and-error procedure until the desired accuracies

aim (MSE) is accomplished. This is for the reason that

there is no general methodology or guideline to obtain

them. The optimum spread values were established (0.35,

0.6, and 0.8) for daily, weekly, and monthly time scale,

respectively, whereas the number of the radial basis func-

tion structure was found to be 30 for all the intervals.

After establishing the forecasting models, the perfor-

mance statistics of the ANN and the ELM models was

compared over the training and testing phases. Table 2

indicates the performance indicators assessment of ANN

forecasting model including the three time horizons. The

best RMSE, MAE and R2 values were obtained for daily

time series forecasting with three lags time. The RMSE,

MAE and R2 values are 7.894 m3/s, 0.311 m3/s, and 0.914

(or 11.63 m3/s, 0.4305 m3/s, and 0.9076) for training (or

testing) phases, respectively, whereas Table 3 presents the

proposed ELM approach, which indicates the best statis-

tical evaluation measures for daily stream-flow forecasting

as well. The RMSE, MAE and R2 values are 2.372 m3/s,

0.084 m3/s, and 0.967 (or 2.7804 m3/s, 0.1029 m3/s, and

0.9422) for training (or testing) phases, respectively.

However, the results of the proposed approach showed a

noticeable enhancement for all the time horizons accuracy

and most specifically for daily flow forecasting. Besides,

the results indicate that the models training phase perfor-

mance is better than the testing phase performance.

Another remarkable observation, it was expected that

according to the statistical methods (i.e., ACF and PACF)

that employed to determine dimension of the input vectors

combinations. Tables 2 and 3 exhibited the best perfor-

mance criteria of the models with the domain that deter-

mined in advanced. In addition, the best evaluation

measures including RMSE, MAE and R2 were obtained

within three antecedents’ values for daily time series, two

antecedents’ values for both weekly and monthly time

scale. This observation indicated for both modeling ELM

and ANN approaches. Another important observation is the

time consuming for the testing period ‘‘validation phase’’.

It can be seen a noticeable speed execution in comparison

between ELM and ANN models. This remark was reported

by [53] that the elapsed time using ELM modeling mod-

erately fast in accordance with its tuning-free mechanism.

For better visualization of the performance accuracy, the

forecasted stream-flow by ANN and ELM models are

compared by presentable graph (see Fig. 6) with the

observed data records. Figure 6 indicates the testing period

(2007–2008), which presents the 10% of the whole time

series (as mentioned earlier in Sect. 4). Both ANN and

ELM forecasts show generally good agreement with the

observed stream-flow in this study area, despite for some

peak flow events, the two models did not perform very

well.

To present the reliability and the effectiveness of the

ELM model, we compute the relative error (formula 10)

for the extreme events of peak flow for all the intervals.

Table 4 shows the peak flow forecasting values for the all

time scale using both models (ANN and ELM). From this

Table 1 The input combinations for all the time horizons

Time scale Models Input sets combinations

Daily Model 1 [Q(t-1)]

Model 2 [Q(t-1), Q(t-2)]

Model 3 [Q(t-1), Q(t-2), Q(t-3)]

Model 4 [Q(t-1), Q(t-2), Q(t-3), Q(t-4)]

Weekly Model 5 [Q(t-1)]

Model 6 [Q(t-1), Q(t-2)]

Model 7 [Q(t-1), Q(t-2), Q(t-3), Q(t-4)]

Monthly Model 8 [Q(t-1)]

Model 9 [Q(t-1), Q(t-2)]
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table, the accuracy of the ELM seems to be better than

ANN. The maximum daily peak flow is 488.327 m3/s

instead of actual record 536.358 m3/s, with an underesti-

mation of 8.955%, while the ANN results is 460.643 m3/s,

with an underestimation 14.116%. The ELM forecasting of

the maximum average weekly flow, 286.7233 m3/s is

233.47 m3/s, with an underestimation error of 18.573%,

while the ANN model yields is 225.347 m3/s, with an

underestimation of 21.406%. Finally, the maximum aver-

age monthly flow was underestimated by 7.285 and

21.316% regarding ELM and ANN models, respectively.

Further observations from the obtained results, it can be

seen that ELM model seems to perform better than ANN

model for the all interval time series and accordingly dis-

playing a better performance relatively.

Figure 7 shows the results of the scatter diagrams for

one-step-ahead stream-flow forecasting using ANN and

ELM models for the testing phase. The figure presents the

three time horizons forecasted models.

Authors explored a deep and comprehensive detailed

analysis between ANN and ELM models, the relative

errors distribution (RE, Eq. 10) have been studied over the

testing data phase period. Figure 8 demonstrates the

accomplished results for the three time scales stream-flow

forecasting using ANN and ELM models. For daily basis,

as confirmed in Fig. 8b, the residual error was strongly

enhanced over the testing phase comparatively with ANN

modeling. The maximum value of RE was decreased up to

(30%). For weekly and monthly basis, Fig. 8d, f indicates

the distribution of the RE, if we carefully examine those

figures, it could be noticed that the pattern of the error

using ELM model is similar to the ANN model, but the

relative error value is relatively improved.

In the light of the above discussion, it could be remarked

in general, and the performance of the daily stream-flow

forecasting is outperforming the other time horizons

(weekly and monthly). This is due to the sufficiency of

historical time series records on the daily basis which

provides more information of the nature phenomena of the

flow. Thus, the modeling could capture most of the non-

linearity of the stream-flow patterns, which provide lower

forecasting error. In addition, long-term stream-flow was

influenced by several unsystematic hydrological variables

that cause an uncertainty in the time series modeling.

Furthermore, 123 km long river is short time traveling river

flow; hence, modeling weekly or monthly stream-flow is

Table 2 ANN approach

performances evaluation criteria

for different time scale ‘‘daily,

weekly and monthly’’

Time scale Models Training phase Testing phase

RMSE MAE R2 RMSE MAE R2 Time (s)

Daily Model 1 10.152 0.425 0.872 12.052 0.671 0.852 20.22

Model 2 8.472 0.344 0.864 11.811 0.5247 0.856 18.56

Model 3 7.894* 0.311* 0.914* 11.63* 0.4305* 0.9076* 21.36

Model 4 10.824 0.524 0.859 12.33 0.692 0.847 16.73

Weekly Model 5 24.821 2.347 0.864 26.521 2.891 0.847 15.96

Model 6 25.014* 2.221* 0.897* 25.242* 2.4752* 0.8756* 16.32

Model 7 27.411 2.642 0.845 27.874 2.974 0.824 14.25

Monthly Model 8 11.982 0.754 0.892 12.511 1.077 0.866 18.19

Model 9 11.621* 0.684* 0.917* 12.232* 0.9224* 0.8937* 18.99

* Indicates the best performance of accuracy

Table 3 ELM approach

performances evaluation criteria

for different time scale ‘‘daily,

weekly and monthly’’

Time scale Input sets

combination

Training phase Testing phase

RMSE MAE R2 RMSE MAE R2 Time (s)

Daily Model 1 2.893 0.195 0.887 3.221 0.2414 0.864 8.59

Model 2 2.723 0.187 0.896 3.012 0.2342 0.881 9.74

Model 3 2.372* 0.084* 0.967* 2.7804* 0.1029* 0.9422* 7.62

Model 4 3.154 0.262 0.873 3.452 0.2841 0.857 7.91

Weekly Model 5 25.542 2.463 0.871 26.071 2.862 0.856 6.88

Model 6 24.826* 2.213* 0.913* 25.224* 2.4734* 0.8805* 8.10

Model 7 26.347 2.563 0.854 27.311 2.954 0.837 5.11

Monthly Model 8 11.247 0.523 0.912 11.872 0.662 0.889 7.26

Model 9 10.678* 0.344* 0.953* 11.524* 0.5443* 0.9304* 4.56

* Indicates the best performance of accuracy
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Fig. 6 Comparison between observed and forecasted stream-flow for one-step-ahead (testing phase) using ANN and ELM methods. a Daily.

b Average weekly. c Average monthly

Table 4 The comparison of

ANN and ELM relative error

indicator for the peak flows for

the testing phase Johor River,

Malaysia

Time scale Observed peak (m3/s) ANN ELM Relative error %

ANN ELM

Daily 544.76 317.337 401.325 -41.74 -26.329

518.19 390.435 414.55 -24.654 -19.99

365.11 305.74 330.47 -16.26 -9.48

368.68 293.86 320.45 -20.29 -13.08

514.325 408.741 429.421 -20.528 -16.507

536.358 460.643 488.327 -14.116* -8.955*

508.61 448.855 460.248 -11.748 -9.508

Weekly 243.26 155.427 188.668 -36.106 -22.441

108.19 85.68 92.72 -20.8 -14.29

106.49 82.52 89.83 -22.5 -15.64

286.7233 225.347 233.47 -21.406* -18.573*

Monthly 108.634 85.478 100.72 -21.316* -7.285*

* Indicates the best performance of accuracy
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not accurately performed with the non-existence exoge-

nous predictors (e.g., rainfall, humidity, wind speed, tem-

perature and etc.). Finally, the results of the application

exhibited very well harmony of goodness in comparison

with most recently researches conducted using non-tuned

machine learning approach (i.e., ELM) [61–64].

6 Conclusion and future research

In this study, the accuracy of ELM model has been

investigated for forecasting one-step-ahead short-term and

long-term stream-flow in tropical environment Johor River,

Malaysia. According to the statistical measures (R2,

RMSE, MAE, and RE) that have been carried out to

evaluate the forecasting model, authors conclude that the

proposed ELM approach is outperformed the ANN

approach. This is much agreeable with several researches

that have been conducted in the literature and that ELM

approach can yield a much better performance in

comparison with the existing predictive models in stream-

flow forecasting. In addition, this investigation establishes

modern methodology that offers a very optimistic and

positive alternative for the hydrological applications.

Future research efforts should be devoted:

1. Model development that involves the data preprocess-

ing utilizing wavelet transfer [75] or fast orthogonal

research [76] might be applied and examine on ELM

method for accuracy improvement purposes.

2. Seeking for new computational method as an alterna-

tive to compute the Moore–Penrose generalization

inverse could be a good step to further research in this

field. However, complete orthogonal decomposition

method (COD) that proposed by [77], which is

characterized by frivolous and reliable alternative to

SVD, might give a promising to improve the compu-

tation efficiency of ELM approach.

3. External variables that have a correlated or even causal

relationship with the stream-flow time series might have
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Fig. 7 The observed versus the

simulated stream-flow for the

testing phase using ANN and

ELM models, (a, b) daily, (c,
d) average weekly, and (e,
f) average monthly, respectively

1488 Neural Comput & Applic (2018) 30:1479–1491

123



an essential influence to improve the accuracy of the

modeling. For instant, climatological data (e.g., rainfall,

humidity, and weather temperature) need to be inves-

tigate as an inputs parameter to predict stream-flow.
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