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Abstract Present analysis is performed for non-aligned

stagnation-point flow of upper-convected Maxwell fluid

over a continuously deforming surface. Aspects of non-

linear radiation flux and heat source/sink are invoked in the

thermal analysis. Self-similar differential system is for-

mulated by means of similarity transformations. Numerical

computations for velocity and temperature profiles are

made through standard shooting approach with fifth-order

Runge–Kutta method. A collocation method-based

MATLAB package bvp4c is also implemented for finding

solutions. The results show that velocity and temperature

profiles are appreciably affected when the viscoelastic fluid

parameter is varied. The inclusion of radiation flux term

yields an additional parameter (hw) that is helpful for

analysis of even large wall and ambient temperature dif-

ferences. It is found that the concavity of the temperature

function changes in its domain when sufficiently large

wall-to-ambient temperature ratio is imposed. A compar-

ative study about linear and nonlinear radiative heat fluxes

is also presented. The results agree very well with the

results of an existing article in a special situation.

Keywords Non-aligned stagnation point � Maxwell fluid �
Numerical method � Viscoelastic fluid � Hear transfer

1 Introduction

Many liquids of engineering importance have nonlinear

relationship between stress and shear rate, and hence, their

flow behavior cannot be predicted through the usual New-

ton’s law of viscosity. Some examples of these fluids are

molten plastics, gelatin, polymers, dyes, paints, bloods,

multi-grade oils, shampoos, fruit juices and honey. An

important characteristic of these fluids is the retention of a

fading memory of their flow history, which is termed as

elasticity. Apart from viscosity, the viscoelastic fluids

exhibit normal stress effects attributed to the fluid elasticity.

These fluids have certain amount of energy stored in the

form of strain energy which is responsible for the partial

elastic recovery upon the removal of stress. One of the

popular models of viscoelastic fluids is the upper-convected

Maxwell (UCM) fluid model which explains the influence of

fluid memory in view of the fluid relaxation time. In the past,

the boundary layer flows of UCM fluid have been given

special attention by the research community. For instance,

Sadeghy et al. [1] investigated the two-dimensional flow of

Maxwell fluid over a flat plate in a calm fluid. They dis-

cussed a comparative study of different numerical and

analytical approaches for solving the developed nonlinear

problem. Later, Kumari and Nath [2] analyzed buoyancy

effects on Maxwell fluid flow in the region of stagnation

point. They developed numerical approximations by finite

difference method and observed that fluid velocity near the
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plate has inverse relation with the viscoelastic fluid param-

eter. Abel et al. [3] examined the Maxwell fluid flow adja-

cent to a stretchable surface utilizing a numerical technique.

Hayat et al. [4] analyzed melting effects in Maxwell fluid

flow near a stagnation point on a deforming surface. Shateyi

[5] introduced a numerical method for tackling the Maxwell

fluid flow with mass transfer. Recently, several interesting

contributions regarding the flow analysis of Maxwell fluid

are made [6–14].

Radiative heat transfer has special significance in engi-

neering processes such as solar power technology, nuclear

power plant, satellites and space vehicles; in combustion

applications such as fires, furnaces, IC engines; and in solar

radiation buildings. The concept of nonlinear radiation flux

for laminar flow was first introduced by Rahman and El-

tayeb [15]. They considered the nanofluid flow due to non-

linearly deforming surface using nonlinear Rosseland heat

flux. Pantokratoras and Fang [16] examined heat transfer

mechanism for laminar flow past a constantly moving

radiative plate utilizing nonlinear radiative flux term. In

another paper, Pantokratoras and Fang [17] analyzed the

well-known Blasius flow subject to nonlinear radiation flux.

Stagnation-point flow of Maxwell fluid subject to nonlinear

thermal radiation was investigated by Mushtaq et al. [18].

Cortell [19] analyzed onset of the nonlinear radiation flux

effects flow developed by quadratic deforming surface.

Recently, various researchers discussed the nonlinear radi-

ation flux aspect under different situations [20–25].

Here, our main objective is to discuss the non-aligned

stagnation-point flow of an electrically conducting Max-

well fluid past a stretchable boundary considering nonlin-

ear thermal radiation and heat source effects. The present

study is an extension of the work reported by Abel et al.

[3]. The present attempt is important to determine the onset

of viscoelasticity and magnetic field on the heat transfer

rate which is of fundamental interest in many extrusion

processes. In recent past, some interesting numerical/ana-

lytical approaches for tackling MHD boundary layer

equations have been proposed [26–40]. In the next section,

we present the problem formulation. Section 3 deals with

the description of numerical method and results. In Sect. 4,

the conclusions of the present work are reported.

2 Basic equations

Consider a Maxwell fluid flow past a stretchable surface

residing along the x-axis. Let the flow far from the sheet be

characterized by u ¼ bx; v ¼ �by, where b denotes the

intensity of the stagnation flow. The velocity components

at the surface are u ¼ aðxþ cÞ; v ¼ 0, where a[ 0

denotes the rate of stretching and c indicates the point of

stretching origin. It means that the axis of stretching and

the free stream are not aligned in general. Magnetic field

with uniform strength B0 acts normal to the stretching

boundary, and induced magnetic field is ignored by

assuming low magnetic Reynolds number. Let Tw be the

constant temperature of the stretching boundary which is

assumed to be larger than ambient temperature T1. Rele-

vant equations which govern the laminar flow and radiative

heat transfer of UCM fluid are expressed below [5, 25]:
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where the coordinate x extends along the surface and y is

normal to it. u and v denote the fluid velocities in x- and y-

directions, respectively, k1 is the fluid relaxation time, m
stands for kinematic viscosity, q represents the fluid density,

r denotes the fluid electrical conductivity, Cp is the specific

heat capacity, r� and k� denote the Stefan–Boltzmann

constant and the mean absorption coefficient, respectively,

and Q is heat source/sink parameter. The boundary condi-

tions for problem under consideration are [40]:

u ¼ UwðxÞ ¼ aðxþ cÞ; v ¼ 0; T ¼ Tw at y ¼ 0;

u ¼ U1ðxÞ ¼ bx; v ¼ �by; T ! T1 as y ! 1:
ð4Þ

Consider the following transformations:

g ¼ y

ffiffiffi
a

m

r
; u ¼ axf 0ðgÞ þ bchðgÞ; v ¼ �

ffiffiffiffiffi
ma

p
f ðgÞ: ð5Þ

Equation (1) is satisfied identically in view of (5).

Making use of variables (5) in Eq. (2) and then equating

like powers of x and x0, we arrive at the following coupled

ordinary differential equations:

f 000 � f 02 þ ff 00 þ De 2ff 0f 00 � f 2f 000
� �

þM c� f 0 þ Deff 00ð Þ
þ c2 ¼ 0; ð6Þ

h00 þ fh0 � hf 0 þ De 2hff 00 � f 2h00
� �

þM Defh0 � hð Þ ¼ 0:

ð7Þ

In order to find similar form of Eq. (3), we define a non-

dimensional temperature as hðgÞ ¼ ðT � T1Þ=ðTw � T1Þ.
Thus, we have T ¼ T1ð1þ ðhw � 1ÞhÞ, where

hw ¼ Tw=T1. So first term on the right-hand side of Eq. (3)

can be written as a o
oy

1þ Rd 1þ hw � 1ð Þhð Þ3oT
oy

h i
in which

Rd ¼ 16r�T3
1=3kk� denotes the radiation parameter. This

expression can be further reduced to aðTw�T1Þ
Pr

1þ Rd 1þð½
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hw � 1ð ÞhÞ3h0�0 where Pr ¼ m=a denotes the Prandtl num-

ber. Equation (8) in non-dimensional form is given below:

1

Pr
1þ Rd 1þ hw � 1ð Þhð Þ3

� �
h0

h i0
þfh0 þ Sh ¼ 0: ð8Þ

In Eqs. (6)–(8), De ¼ k1a is the viscoelastic fluid

parameter (also referred to as Deborah number), c ¼ b=a

the stretching rates ratio, S ¼ Q=a the heat source/sink

parameter, and M ¼ rB2
0=qa the magnetic field parameter.

The transformed conditions are:

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1; hð0Þ ¼ 1;

f 0ð1Þ ! c; hð1Þ ! 0; hð1Þ ! 0:
ð9Þ

Quantity of practical interest here is the local Nusselt

number Nux defined as follows:

Nux ¼
xqw

k Tw � T1ð Þ ; ð10Þ

where qw ¼ �k oT=oyð Þy¼0þ qrð Þy¼0 is the wall heat flux.

Now using dimensionless quantities from Eq. (5) in

Eq. (10), one obtains

Re�1=2
x Nux ¼ � 1þ Rdh3w

	 

h0ð0Þ; ð11Þ

where Rex ¼ Uwx=m is the local Reynolds number.

3 Numerical method

A standard shooting approach using fifth-order Runge–Kutta

(RK5) method is implemented for finding approximations of

the differential Eqs. (6)–(8) subject to the conditions (9). RK

method is generally a preferred integration technique since it

uses derivative information at the midpoint of stepping

interval. It acquires advantages of faster convergence and

simple implementation of the methods for initial value

problems. Fifth-order refers to themagnitude of the error term

in RKmethod. The present fifth-order RKmethod also works

with adaptive step size which makes it computationally effi-

cient than the usual Eulermethod or finite difference schemes.

Substituting y1 ¼ f ; y2 ¼ f 0; y3 ¼ f 00; y4 ¼ h; y5 ¼ h0; y6 ¼
h; y7 ¼ h0, we obtain first-order system comprising of seven

ordinary differential equations given below:

y01¼ y2; y1ð0Þ¼0

y02¼ y3; y2ð0Þ¼1

y03¼
y22�y1y3�2 Deð Þy1y2y3�M c�y2þ Deð Þy1y3ð Þ�c2

1�Dey21
; y3ð0Þ¼ s1

y04¼ y5; y4ð0Þ¼0

y05¼
y4y2�y1y5�2 Deð Þy1y4y2þM y4� Deð Þy1y5ð Þ

1�Dey21
; y5ð0Þ¼ s2

y06¼ y7; y6ð0Þ¼1

y07¼
�Pry1y7�PrSy6�3 Rdð Þy27 hw�1ð Þ 1þ hw�1ð Þy6ð Þ2

1þRd 1þ hw�1ð Þy6ð Þ3
; y7ð0Þ¼ s3

ð12Þ

To solve the system (12), guesses for the initial slopes

½f 00ð0Þ ¼ s1; h
0ð0Þ ¼ s2; h

0ð0Þ ¼ s3� are made and then

integration is performed through RK5. The values of these

slopes are iteratively estimated through Newton’s method

until the far-field conditions f 0ð1Þ; hð1Þ and hð1Þ are

satisfied. The error tolerance was taken as 10�6, and inte-

grations at different gmax were performed in order to ensure

that solutions become independent of the domain size.

4 Results and discussion

To validate our findings, we made a comparison of present

computational results with those of Abel et al. [3] for a

limiting situation (see Table 1). This comparison is found

to be very good for all the considered Deborah numbers.

Moreover, the results obtained through shooting method

are also consistent with those obtained by bvp4c of

MATLAB.

Figure 1 includes a sample of streamlines at two dif-

ferent values of c. Fig. 2 shows the curves of f 0 for varying
Deborah number De. The results are computed at different

values of stretching rates ratio parameter c, which com-

pares the free stream velocity with the velocity of the

stretching surface. We observe that f 0 is a decreasing

function of De when c\1, i.e., when free stream moves

slower than the stretching surface. However, when free

stream velocity is larger than the stretching velocity

ðc[ 1Þ, the velocity field f 0 appears to increase upon

increasing De. Irrespective of the value of parameter c, the
profiles tend to the free stream at shorter distances from the

bounding surface, indicating that boundary layer thickness

decreases upon increasing the Deborah number De. Deb-

orah number compares the duration of fluid memory

(known as fluid relaxation time) to the time of observation.

Naturally, the material has a viscous-like response if

Deborah number is small, that is, if the relaxation time is

Table 1 Comparison of numerical values of f 00ð0Þ with Abel et al. [3]
for different values of De with M ¼ c ¼ 0

De Abel et al. [3] Present results

Shooting bvp4c

0.0 -0.999962 -1.000000 -1.000000

0.2 -1.051948 -1.051890 -1.051889

0.4 -1.101850 -1.101903 -1.101902

0.6 -1.150163 -1.150137 -1.150135

0.8 -1.196692 -1.196711 -1.196711

1.2 -1.285257 -1.285363 -1.285366

1.6 -1.368641 -1.368758 -1.368752

2.0 -1.447617 -1.447650 -1.447648
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small in comparison with the observation time scale.

However, when relaxation time is large (or large Deborah

number), the elastic effect is dominant compared to viscous

effect and the materials response is solid-like.

Figure 3 shows the effects of Hartman number M on the

velocity field f 0 at various values of stretching rates ratio

parameter c. For any value of c, the profiles are tilted

toward the boundary when M is incremented. It means that

momentum boundary layer thickness is reduced due to the

inclusion of magnetic force term. This opposition to the

momentum transport is brought by Lorentz force due to the

application of magnetic field.

In Fig. 4, we include the effects of Deborah numberDe and

Hartman number M on the non-alignment function h. We see

thatmagnitudeofh reduces upon increasing either the effects of

magnetic field strength or the viscoelasticity. Further, the

variation in function h with M and De is found to be qualita-

tively similar for any value of stretching rates ratio parameter c.
Figure 5 portrays the effects of heat source/sink

parameter S on temperature distribution. Naturally, the

larger the heat source S, the greater the temperature and the

thermal boundary layer thickness. For sufficiently large S,

fluid temperature becomes greater than that of the bound-

ing surface. As a result, we expect a reverse heat flow

between the fluid and the stretching sheet.

The effects of temperature ratio parameter hw on tempera-

ture h are depicted in Fig. 6. It is awell-known fact that thermal

penetration depth is dependent on the fluid thermal diffusivity.

In the current situation, thermal diffusivity has the form aþ
16r�T3=3qcpk� as depicted in Eq. (3). This expression gives

the sum of classical thermal diffusivity and temperature-de-

pendent term attributed to the radiation effect. Note that the

thermal diffusivity is temperature dependent which suggests

that thermal boundary layer thickness would vary inside the

boundary layer as the temperature changes. Thus, one antici-

pates that thermal boundary layer thickness will be smaller far

from the boundary because free stream temperature is smaller

than the wall temperature. As hw increases, the second term in

the expression of thermal diffusivity increases. This leads to the

thickening of thermal boundary layer and, hence, an obvious

reduction in wall temperature gradient. Consequently, wall

temperature gradient approaches zero value when wall-to-

ambient temperature ratio is sufficiently large. Fig. 7 shows that

temperature h increases for increasing values of radiation

Fig. 1 Streamlines for De ¼ c ¼ 0:5 with c ¼ 0 (left) and c ¼ �1 (right)

Fig. 2 Profiles of velocity field f 0 for various values of Deborah

number De
Fig. 3 Profiles of velocity field f 0 for different values of magnetic

field parameter M
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parameter Rd. Wall temperature gradient h0ð0Þ against the

temperature ratio parameter hw is shown in Fig. 8. We observe

that h0ð0Þ is inversely proportional to the wall-to-ambient

temperature ratio.

Computational results of local Nusselt number

Re�1=2
x Nux for various parametric values are included in

Table 2. It is evident that wall heat flux in viscous fluid is

large in comparison with the viscoelastic fluid. Both

stretching rates ratio parameter c and heat source/sink

parameter S accelerate the heat transfer from the stretching

wall. The value of Re�1=2
x Nux is negative when S ¼ 1. This

is because of the reverse heat flow near the wall as

explained earlier through Fig. 4. We also conclude that

heat transfer rate decreases upon increasing the magnetic

field intensity.

5 Concluding remarks

In this article, we discussed the non-aligned MHD stag-

nation-point flow of Maxwell fluid bounded by deformable

surface. Heat transfer with nonlinear radiation flux and heat

source/sink is explored. The key aspects of this research are

outlined below:

• Hydrodynamic boundary layer becomes thinner when

either magnetic field parameter M or Deborah number

De is increased.

Fig. 4 Effects of Hartman number M and Deborah number De on

non-alignment function h

Fig. 5 Temperature profiles for different values of S

Fig. 8 Effect of Deborah number De on temperature gradient h0ð0Þ

Fig. 6 Temperature profiles for different values of temperature ratio

parameter hw

Fig. 7 Temperature profiles for different values of radiation param-

eter Rd
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• Hydrodynamic boundary layer thickness is a decreasing

function of stretching rates ratio parameter c.
• Thermal boundary layer thickness and heat flux at the

surface increase upon increasing the temperature ratio

parameter hw.
• The effects of all the parameters on the non-alignment

function h are qualitatively similar.

• Temperature profiles correspond to the linear radiation

case when temperature ratio parameter is sufficiently

close to unity.

• Stretching rates ratio parameter c and heat source/sink

parameter S are useful in enhancing the cooling rate of

the stretching surface.

• Cooling rate of the sheet is inversely proportional to the

viscoelastic fluid parameter.

• To our knowledge, the present work is the first attempt

regarding the non-aligned stagnation-point flow of rate-

type fluids. In future, possible extension of the present

study for unsteady equations can be made. This would

be helpful to understand the transition from unsteady

flow to the steady-state flow.
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