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Abstract Higher-order spectra (HOS) is an efficient fea-

ture extraction method used in various biomedical appli-

cations such as stages of sleep, epilepsy detection, cardiac

abnormalities, and affective computing. The motive of this

work was to explore the application of HOS for an auto-

mated diagnosis of Parkinson’s disease (PD) using elec-

troencephalography (EEG) signals. Resting-state EEG

signals collected from 20 PD patients with medication and

20 age-matched normal subjects were used in this study.

HOS bispectrum features were extracted from the EEG

signals. The obtained features were ranked using t value,

and highly ranked features were used in order to develop

the PD Diagnosis Index (PDDI). The PDDI is a single

value, which can discriminate the two classes. Also, the

ranked features were fed one by one to the various clas-

sifiers, namely decision tree (DT), fuzzy K-nearest neigh-

bor (FKNN), K-nearest neighbor (KNN), naive bayes

(NB), probabilistic neural network (PNN), and support

vector machine (SVM), to choose the best classifier using

minimum number of features. We have obtained an opti-

mum mean classification accuracy of 99.62%, mean sen-

sitivity and specificity of 100.00 and 99.25%, respectively,

using the SVM classifier. The proposed PDDI can aid the

clinicians in their diagnosis and help to test the efficacy of

drugs.
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1 Overview

At birth, the brain contains as many nerve cells called

neurons; the number of neurons at birth is the most that will

ever be present in the brain. Unlike other cells of our body,

such as skin or bone, the nerve cells cannot self-repair.

Therefore, as we get older, the neurons die due to aging and

are irreplaceable. Parkinson’s disease (PD) is a slowly

advancing neurological condition that destroys the dopa-

mine neurons in the substantia nigra pars compacta, which

affects communication pathways of the brain. The PD

usually affects people aged 50 or older and has affected

approximately 7–10 million people worldwide to date,

according to the WHO statistics [1]. In the next 25 years,

the number of the PD is expected to increase due to the rise

in the proportion of elderly people [1]. The cardinal

symptoms of PD are tremor, muscle stiffness, bradykinesia

(slowness of movement), unstable posture, or diminished

balance and coordination and dysphonia (voice disorders).

In addition, the PD is also identified by with the occurrence

of non-motor symptoms including cognitive dysfunction.

However, the diagnosis of PD based on the clinical

symptoms remains complicated, when there are no signif-

icant motor or non-motor symptoms. On the other hand, the

detection of PD from the neuroscience viewpoint provides

us with another way to explore the neuronal mechanisms

and improve diagnostic findings [2].
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Researchers have proposed various noninvasive meth-

ods to detect PD using voice, gait, and wearable sensors

[3–5]. Chen et al. [59] used the feature reduction method to

exclude the redundant information in the original PD voice

signal, which was integrated with fuzzy classifier for PD

diagnosis. They have achieved a mean classification

accuracy of 96.07% [6]. Zuo et al. [7] presented a study

based on particle swarm optimization enhanced with fuzzy

for the PD detection and obtained the highest accuracy of

97.47%. Ma et al. [4] combined extreme learning machine

with subtractive clustering features algorithm to detect PD,

which resulted with the best mean accuracy of 99.49%.

Daliri [5] used gait information and employed feature

discriminant ratio based on short-time Fourier transform

and achieved maximum classification accuracy of 91.20%.

In recent years, detection of PD using electroencephalo-

gram (EEG) signals has drawn significant attention of

numerous researches as the PD is a complicated neurode-

generative disease and there could be lot of information

underlying neural mechanisms [1] compared to other

modalities. It has been extensively shown that the EEG

analysis, such as linear or nonlinear methods, could depict

more global indices of brain functions, which can reflect

the disturbed subcortico-cortical mechanisms in patients

with PD. Various researchers have revealed abnormalities

in the PD patient’s EEG signal by using conventional

spectral method (e.g., fast Fourier transform [FFT]), time–

frequency analysis (e.g., wavelet), or nonlinear time series

methods (e.g., correlation dimension) [1, 8–12]. Pezard

et al. (2001) found a significant decrease in EEG spectral

power between the PD patients and normal subjects [10].

Muller et al. [13] revealed a significant difference in the

resting-state EEG signals in PD patients compared to the

normal subjects using correlation dimension. Han et al. [1]

found that the PD patient’s EEG signals are characterized

by higher entropy in the frequency domain. Thus, the

understanding of the neural basis in PD is essential, both

from a prognostic perspective and for the development of

targeted therapeutic strategies. However, it is still unclear

which measures can be more useful to reveal more

important information regarding brain dysfunctions. Fur-

thermore, the EEG has been increasingly used to recognize

the cortical integrative functions and their subcortical

driving structures. It has also been proved that computing

EEG signals can provide a vital biomarker for many neu-

rological disorders such as epilepsy, schizophrenia, Alz-

heimer’s disease [14–17].

Over the years, several linear methods have been used to

analyze the EEG signals and compute the central nervous

system activity in PD patients [1, 10, 13]. However, such

methods are not effective to identify the subtle variations in

EEG signals due to their complex, nonlinear, and chaotic

nature. Even though frequency-domain methods are used,

the accuracy of spectral information decreases signal-to-

noise ratio [18]. Despite that, nonlinear algorithms are

widely used to unearth the hidden signatures from EEG

signals [19]. Moreover, it has been shown that the devel-

opment of PD is associated with slowing of EEG, reduction

of its complexity, and the presence of the perturbations in

EEG synchrony. This essential and hidden information can

be evaluated by understanding the nonlinear components

present in the EEG signals since it captures the momentary

variations related to the properties such as similarity, pre-

dictability, reliability, and sensitivity of the signal. In

recent years, subtle changes in biosignals have been

extracted via the widely used higher-order spectra (HOS)

method [20–23]. The HOS-based bispectrum methods have

been used for various biomedical applications such as

epilepsy diagnosis [20], sleep stages [21], cardiac abnor-

malities [22], effective computing [23]. However, such

studies have not yet been performed on PD patient’s EEG

signals. This work, therefore, aims to extract the hidden

changes in the EEG signals to help the automated classi-

fication of PD.

A description of materials (i.e., participants and EEG

recording) used in this study is given in Sect. 2. In Sect. 3,

the detailed description of methodology (includes prepro-

cessing, HOS features, ranking, and classification) is pre-

sented, followed by experimental results in Sect. 4. We

have also proposed ‘‘PD diagnosis index,’’ to find whether

the recorded EEG signal belongs to normal or PD patient

using a single numeric value. The interpretation of the

results and conclusion of this study are given under

Sects. 5 and 6, respectively.

2 Materials

2.1 Participants

After the approval from Hospital University Kebangsaan

Malaysia’s (HUKM) Ethics Committee, the EEG signals

of 20 idiopathic PD patients (10 women and 10 men,

average age 59.05 ± 5.64 years, range 45–65 years)

were acquired. The mean duration of PD was

5.75 ± 3.52 years (range between 1 and 12 years). The

Hoehn and Yahr (H-Y) severity stage was I–III: Two PD

patients were in stage I, eleven were in stage II, and

seven were in stage III. The Mini-Mental State Exami-

nation (MMSE) scores were within the normal limits

(26.90 ± 1.51 [range 25–30]). Exclusion criteria included

the presence of other neurological disorders (e.g., epi-

lepsy) or psychiatric conditions (e.g., depression) and any

other severe mental illness. All the PD patients took

levodopa (L-dopa) drugs in order to reduce the hetero-

geneity in the medication.
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Twenty age-matched normal subjects (11 women and 9

men, average age 58.10 ± 2.95 years) with no history or

symptoms of neurological or mental illness served are

recruited. The scores of the MMSE for normal subjects

were 27.15 ± 1.63. Both PD patients and normal partici-

pants were self-reported as right-handed, confirmed by the

Edinburgh Handedness Inventory (EHI), and without

impairments of hearing. Approval for this study was sought

from all participants by explaining the potential risk

involved.

2.2 EEG recordings

The participants were seated comfortably in a quiet room

with eyes-closed state to attain a state of relaxed wake-

fulness and were instructed prior to the study to avoid any

body movements such as eye movement/blinking during

the experiment. The EEG signals were recorded for 5 min

in eyes-closed resting state on 14-channel (AF3, AF4, F3,

F4, F5, F6, F7, F8, T7, T8, P7, P8, O1, and O2) wireless

(2.4 GHz band) Emotiv EPOC neuroheadset at 128 Hz

sampling rate.

3 Analysis of the EEG data

Figure 1 displays the block diagram of the proposed

methodology. It consists of signal preprocessing, HOS

features, ranking, integrated Parkinson’s Disease Diagnosis

Index (PDDI), and classification steps.

3.1 Preprocessing

The artifacts due to eye blinking were eliminated by

thresholding technique during the preprocessing of EEG

signals, by discarding the amplitudes of more than 80 lV.
Then, the data were filtered using sixth-order Butterworth

bandpass filter with lower and higher cutoff frequencies of

1 and 49 Hz in order to reduce the artifact components.

The filtering is performed in forward and reverse, twice, to

cancel the phase nonlinearity of the butterworth filter. In

each channel, the artifact free signals were separated into

EEG epochs of 2 s for further processing [24].

3.2 Feature extraction—higher-order spectra

(HOS)

The HOS is a powerful tool used to study the nonlinear

characteristics of the EEG signal [25]. It is a spectral

representation of higher-order statistics. HOS has the

ability to preserve the information due to deviations from

Gaussianity and degrees of nonlinearities in the time series.

As it is expected that the EEG signals have nonlinearities in

the generating mechanism, the HOS analysis of PD

patient’s EEG might reveal additional non-Gaussian and

nonlinear information due to its certain advantage [25]. In

this work, the third-order spectra of the signal called the

‘‘bispectrum’’ were implemented. It is defined as:

Bðf1; f2Þ ¼ E½Xðf1ÞXðf2ÞX�ðf1 þ f2Þ�, where Bðf1; f2Þ is the

bispectrum in the bifrequency ðf1; f2Þ, Xðf Þ is the discrete-

time Fourier transform of the given signal, * denotes

complex conjugate, and E[] denotes the statistical expec-

tation operation over an ensemble of possible realizations

of the signal [25]. The bispectrum is the most accessible of

the HOS as it is the simplest to compute (computational

complexity increases with increasing order) and its prop-

erties have been well explored [20, 25, 26]. The bispectrum

display symmetry is evaluated in the principal domain

region (X) as given in [25]. Bicoherence is the squared-

magnitude of the normalized bispectrum [25]. A total of

thirteen bispectrum features are extracted, namely bispec-

trum mean magnitude (BiMag) [27], bispectral entropies

(BiEnt1 and BiEnt2) [20], bispectrum phase entropy

(BiPhEnt) [20], bispectrum moments [26] (sum of loga-

rithmic amplitudes of bispectrum (H1), sum of logarithmic

amplitudes of diagonal elements in the bispectrum (H2),

first-order spectral moment of amplitudes of diagonal ele-

ments of the bispectrum (H3), second-order spectral

moment of amplitudes of diagonal elements of the bis-

pectrum (H4), first-order spectral moment of amplitudes of

the principal domain region in the bispectrum (H5),

weighted center of bispectrum (WCBix and WCBiy) [28]

and absolute weighted center of bispectrum (WCBix and

WCBiy) [20]. These bispectrum features can capture the

minute changes in the EEG signals to discriminate PD and

healthy brain dynamics and can be used for automated

diagnosis. To calculate these bispectrum features, epochs

of 256 samples (2 s) with 50% overlap Hanning window

and record of 256 NFFT points at 128 Hz sampling rate

were used. The mathematical equation of thirteen extracted

bispectrum features is subsequently given:

BiMag ¼
1

N

X
X Biðf1; f 2Þj j ð1Þ

BiEnt1 ¼ �
X

x

qx logðqxÞ; where qx ¼
Biðf1; f2Þj jP
X Biðf1; f2Þj j

ð2Þ

BiEnt2 ¼ �
X

x

Sx logðSxÞ; where Sx ¼
Biðf1; f2Þj j2

P
X Biðf1; f2Þj j2

ð3Þ

BiPhEnt ¼
X

x

phðaxÞ log phðaxÞ; where

phðaxÞ ¼
1

N

X
X
lðuðBiðf1; f2ÞÞ 2 axÞ

ð4Þ
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ax ¼ /j�pþ 2px=M�/\�pþ 2pðxþ 1Þf
=M; x ¼ 0; 1; 2; . . .;M � 1g

H1 ¼
X

X
log Biðf1; f2Þj jð Þ ð5Þ

H2 ¼
X

X
log BiðfD; fDÞj jð Þ ð6Þ

H3 ¼
XN

m¼1

m log BiðfD; fDÞj jð Þ ð7Þ

H4 ¼
XN

m¼1

ðm� H3Þ2 log BiðfD; fDÞj jð Þ ð8Þ

H5 ¼
X

X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2

p
log Biðfi; fjÞ

�� ��� �
ð9Þ

WCBix ¼
P

XiBiði; jÞP
XBiði; jÞ

and WCBiy ¼
P

XjBiði; jÞP
XBiði; jÞ

ð10Þ

aWCBix ¼
P

Xi Biði; jÞj jP
X Biði; jÞj j and

aWCBiy ¼
P

Xj Biði; jÞj jP
X Biði; jÞj j

ð11Þ

where N = total number of points within X region,

/ ¼ phase angle of the bispectrm, 1ð:Þ ¼ function whose

value will be 1 when the phase angle falls inside bin ax, and
i and j are bispectrum frequency bin index in the principal

domain region, X.

Fig. 1 System for automated identification of PD patients
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3.3 Feature ranking/selection

The feature extraction step usually results in a more

number of feature vectors, and many of these vectors may

not contribute to differentiating the two classes. Hence, the

most common idea is to apply ranking/selection algorithms

on the extracted feature vectors to rank these feature vec-

tors based on their discriminating ability. This as well

reduces the complexity of classifiers without disturbing its

performance. In this study, Student’s t test is used for this

purpose [29, 30]. For each feature vector, the t test yields 2

parameters: (i) the p value—it is used to determine the

significance of the extracted features, a low p value indi-

cates a high significance—and (ii) t value—it is used to

rank the feature vectors, a high t value indicates better rank

and feature. To evaluate the performance, the ranked fea-

tures are added one by one to a particular classifier until the

highest classification accuracy is reached.

3.4 Parkinson’s Disease Diagnosis Index (PDDI)

It is time-consuming to develop an automated system as it

involves extracting features, feature ranking, training, and

testing. So, it is more convenient for the clinicians to use a

single number that clearly separates the two classes. The

concept of integrated index is first conceived by Ghista

[31, 32] and further applied for the diagnosis of depression

[33], epilepsy [34], sudden cardiac death [35], carotid

plaque [36], thyroid [37], diabetes [38], and glaucoma [39].

Accordingly, we have proposed and formulated an inte-

grated index called the Parkinson’s Disease Diagnosis

Index (PDDI), by combining most distinguishing feature

vectors in such a way that the integrated index value is

distinctly different for normal and PD patients.

The PDDI is developed using highly ranked three fea-

tures (H1, Ent1, and H2) from Table 1. We have developed

a mathematical Eq. (12) by trial-and-error method in such

a way that it clearly discriminates the two classes using a

single number (PDDI). The mathematical formulation of

this PD index is given by

PDDI ¼ 3:5 � ENT1ð Þ þ 0:5 � H1=H2ð Þ½ �f g
10

ð12Þ

3.5 Classification

In decision tree (DT) classifier, the input feature vectors

were used to construct a tree [40]. This tree provides the

rules to classify the two classes, and these rules were used

to determine the test data class. The performance of this

classifier depends on how well the tree was designed. The

Gini index was used to measure the impurity at each node

[41]. Fuzzy K-nearest neighbor (FKNN) classifier

designates a class based on the major class among the

KNN. Here, Euclidean distance was used in FKNN to

allocate the fuzzy class membership before taking deci-

sions. To determine how heavily the distance was weighted

when calculating each neighbor’s contribution to the

membership value, fuzzy strength parameter (m) was used.

In this study, the highest classification performance was

obtained using m = 1.24 and k = 3. K-nearest neighbor

(KNN) classifier calculates the minimum distance between

testing and training data in terms of K-nearest neighbors

[40]. The Euclidean distance and k = 2 were used for

evaluating the separation. Naive Bayes (NB) classifier is a

probabilistic classifier that works on Bayes theorem and on

the assumption that the features are independent random

variables [42]. Probabilistic neural network (PNN) is a

multilayered feed forward network that uses the exponen-

tial activation function. In this study, the best performance

was achieved using the smoothing parameter (r) value

0.284. Support vector machine (SVM) classifier separates

the training data into two classes in the feature space, by

constructing a separating hyperplane [43]. The nonlinear

signals which are not easily separable are converted to a

higher-dimensional feature space using kernel functions.

Polynomial kernel functions of order 2 and 3, radial basis

function (RBF), and linear kernels were used in this work.

3.6 Performance measures

The tenfold cross-validation was used to evaluate the per-

formance of the developed system, and the performance is

evaluated using five different measures: sensitivity—true-

positive value that quantifies the percentage of correctly

classified PD patients among all PD feature vectors;

specificity—true-negative value that quantifies the per-

centage of correctly classified normal subjects in all the

healthy feature vectors; accuracy—% of correctly classi-

fied samples (both PD patients and normal subjects) in the

total feature vectors; precision—% of correctly classified

PD samples in all feature vectors recognized as PD; and F-

score—harmonic mean of the precision and sensitivity.

Herein, 20 participants per group with 150 EEG segments

of 2 s per electrode which resulted in a total feature vectors

of 3000 9 14 (electrodes) were analyzed.

4 Results

Figure 2a, b displays the magnitude bispectrum plots of

normal and PD EEG signals. It can be observed from these

figures that the magnitude in the bifrequency plane is

unique for each class. It is also clear that the bispectrum

has most of its magnitude within -0.2 to ?0.2 (the bifre-

quency range) in the normalized scale (i.e.,
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Fig. 2 Bispectrum plots of (a) PD patient EEG (b) normal subject EEG

Table 1 Mean ± SD of

bispectrum feature vectors

extracted from EEG signals for

PD and normal subjects

HOS features Normal subjects PD patients p value F value Ranking

Mean ± SD Mean ± SD

H1 4.88 E4 ± 3.06 E3 3.57 E4 ± 3.33 E3 2.00E-34 153.1306 1

Ent1 0.943 ± 0.047 0.701 ± 0.165 1.59E-33 148.8198 2

H2 1.18 E3 ± 1. E2 1.06 E2 ± 1.0 E2 2.63E-25 109.8145 3

H3 2.0 E5 ± 1.7 E4 1.9 E5 ± 1.4 E4 7.55E-24 102.9533 4

aWcobx 113.193 ± 26.281 103.050 ± 30.215 2.27E-23 100.7048 5

H4 6.6 E5 ± 2.1 E4 6.1 E5 ± 1.5 E4 1.68E-15 64.02431 6

Ent2 0.546 ± 0.139 0.510 ± 0.190 8.84E-10 37.7809 7

PEnt 3.571 ± 0.066 3.579 ± 0.014 9.21E-05 15.3292 8

Wcobx 86.254 ± 77.287 79.300 ± 81.235 0.019159 5.492283 9

aWcoby 113.193 ± 26.281 35.970 ± 10.625 0.147529 2.84423 10

H5 1.1 E6 ± 2.8 E5 1.0 E6 ± 1.8 E5 0.105925 2.615394 11

Wcoby 40.629 ± 45.177 38.096 ± 38.245 0.110908 2.542575 12

Mavg 2.6 E3 ± 1.9 E2 1.8 E3 ± 3.2 E2 0.122087 2.391545 13

Fig. 3 Bicoherence plots of (a) PD patient EEG (b) normal subject EEG
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�0:5� f1; f2 � þ 0:5). Figure 3a and b displays the bico-

herence plots of normal subjects and PD patient’s EEG

signals. These plots also indicate that the magnitudes are

randomly distributed at various frequencies throughout the

plot. In normal subject, the spread in the bifrequency plane

is more compared to PD patient. This may be due to the

fact that, as the person becomes diseased, the EEG signal

becomes less chaotic.

In this work, a total of thirteen bispectrum features from

EEG segments of 2 s were extracted. Table 1 presents the

mean ± standard deviation (SD) of various HOS feature

vectors. The feature vectors were rankedwith respect to their

t values. It can be noted from Table 1 that all the extracted

bispectrum features are decreased for PD class. This obser-

vation suggests that the EEG signal became less complex for

PD patients due to dysfunction in the neural circuits. The

p value and t value indicated that almost all the features were

clinically significant. Table 2 shows the results of classifi-

cation using different classifiers. It can be noted that the

SVM classifier using RBF kernel function (SVM-RBF)

achieved an optimum mean accuracy of 99.62 ± 0.57%,

sensitivity of 100.00 ± 0.00%, and specificity of

99.25 ± 0.53%. This performance was obtained using only

three ranked bispectrum features, namely H1, Ent1, and H2.

TheEEGsignals are nonlinear in nature; hence, the nonlinear

kernel functions, such as RBF, perform well. Figure 4

Table 2 Performance measures of various classifiers using PD patients and normal subjects EEG signals based on different combinations of

HOS features

Classifier No. of HOS features Performance measures (mean ± SD)

Sensitivity (%) Specificity (%) Precision (%) F-score Accuracy (%)

DT 6 94.17 ± 2.03 85.63 ± 1.05 94.17 ± 1.03 0.90 ± 0.06 90.65 ± 2.76

FKNN (m = 1.24, k = 3) 4 95.00 ± 1.83 90.21 ± 2.61 95.00 ± 1.83 0.93 ± 0.05 93.01 ± 2.89

KNN (k = 2) 5 96.67 ± 1.30 82.50 ± 2.72 96.67 ± 0.88 0.90 ± 0.05 90.83 ± 3.97

NB 7 94.17 ± 1.62 80.83 ± 3.82 94.17 ± 1.62 0.88 ± 0.06 88.72 ± 2.94

PNN (r = 0.284) 5 96.21 ± 0.83 90.61 ± 1.24 96.67 ± 1.83 0.94 ± 0.05 93.98 ± 1.39

SVM linear 4 95.48 ± 1.83 87.58 ± 3.82 95.00 ± 1.83 0.92 ± 0.05 91.98 ± 2.95

SVM poly 2 4 96.74 ± 1.83 95.36 ± 1.83 96.67 ± 1.83 0.96 ± 0.04 96.07 ± 1.22

SVM poly 3 4 95.83 ± 1.39 95.83 ± 1.39 95.83 ± 1.39 0.95 ± 0.04 95.12 ± 1.28

SVM-RBF 3 100.00 ± 0.00 99.25 ± 0.53 99.38 ± 0.47 0.98 ± 0.05 99.62 ± 0.57

Fig. 4 Plot of number of features versus average accuracy for the various classifiers used
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displays the plot of accuracy vs number of features for var-

ious classifiers used. It clearly shows that the classifiers

yielded better classification accuracy for the top three ranked

features, beyond which there is a decrease in accuracy level.

Figure 5 shows the plot of mean accuracy (%), sensitivity

(%), and specificity (%) vs number of folds (tenfold cross-

validation) using SVM-RBF classifier.

Table 3 shows the range of PDDI for normal and PD

patients. Figure 6 shows the plot of PDDI for two classes.

The table and figure enable to understand that there is a

clear separation between the two classes, and hence, we

can separate them using a single number.

5 Discussion

In this study, a nonlinear method for an automated

diagnosis of PD was proposed using HOS bispectrum

features extracted from EEG signals. The novelty of this

work is the formulation of PDDI and also proposed

unique HOS plots for normal and PD classes. Table 4

lists the classification accuracies of works conducted in

the diagnosis of PD. It can be understood from the

table that most of the studies have used dysphonia-based

features (group of vocal symptoms) to identify the PD.

However, it is well known that PD is predominantly a

motor disorder mainly caused due to the loss of dopa-

mine-producing neurons in the basal ganglia. Also, non-

motor impairment involving cognitive dysfunction in PD

patients has often been noted [44]. Cognitive status is

mainly associated with neurophysiological signals (e.g.,

EEGs). Subsequently, an understanding of the neuronal

activity is important to compare voice impairment

symptoms, for the advancement of both targeted thera-

peutic strategies and prognostic perspectives. It has been

revealed that the analysis of EEG signals can help to

show the disturbed subcortico-cortical mechanisms in PD

patients or dementia [9, 10, 12]. Thus, this study was

performed to develop an automated detection system

using EEG signals for PD patients. In addition, it can be

Fig. 5 Plot of average accuracy

(%), sensitivity (%), specificity

(%) vs number of folds (tenfold

cross-validation for SVM-RBF

classifier)

Table 3 Range of PDDI for normal and PD classes

Normal PD p value

PDDI 14.6035 ± 0.55922 10.60263 ± 0.681133 \0.0001

Fig. 6 Plot of PDDI for normal subjects and PD patients
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seen from the table that researchers have achieved

accuracy between 70 and 99.5% using various methods.

Table 4 shows that the HOS-based method, proposed by

the authors of this paper, has given the superior perfor-

mance compared to all available modalities. Moreover, the

best distinguishing features were selected and combined

into an integrated index as shown in Eq. (1), to optimally

separate the two classes.

The main salient features of proposed automated diag-

nosis system are as follows:

1. The method yielded an optimum mean accuracy:

99.62%, sensitivity: 100%, and specificity: 99.25%

using bispectrum features.

2. The method proposed PDDI using short segments (2 s)

of EEG signals. This can be used by the clinicians for

the diagnosis of the PD using one numeric value.

3. The method was implemented using MATLAB soft-

ware and can be installed in hospitals. This could help

to reduce the workload of neurologists and to help the

process of accurate diagnosis of the PD patients.

Table 4 Summary of studies conducted on automated detection of PD and normal classes

Authors Signal used Features Method Classifier Accuracy (%)

Little et al.
(2009) [45]

Voice (UCI machine
learning database)

HNR, RPDE, DFA,
and PPE

Preselection filter ? exhaustive
search

SVM 91.4 (bootstrap with 50
replicates)

Shahbaba and
Neal (2009)
[46]

Voice (UCI machine
learning database)

Raw dysphonia
features

Dirichlet process mixtures – 87.70 (fivefold CV)

Das (2010) [47] Voice (UCI machine
learning database)

Raw data samples ANN Back-propagation
learning
algorithm

92.9 (hold-out)

Sakar and
Kursun (2010)
[48]

Voice (UCI machine
learning database)

Mutual information Mutual information-based
feature selection

SVM 92.75 (bootstrap with 50
replicates)

Psorakis et al.
(2010) [49]

Voice (UCI machine
learning database)

mRVM Improved mRVMs SVM 89.47 (tenfold CV)

Guo et al. (2010)
[50]

Voice (UCI machine
learning database)

Decision boundaries GP-EM – 93.10 (tenfold CV)

Ozcift and
Gulten (2011)
[51]

Voice (UCI machine
learning database)

Raw data samples CFS RF 87.1 (tenfold CV)

Li et al. (2011)
[52]

Voice (UCI machine
learning database)

Raw data samples Fuzzy-based nonlinear
transformation

SVM 93.47 (hold-out)

Luukka (2011)
[53]

Voice (UCI machine
learning database)

Raw data samples Fuzzy entropy measures Similarity classifier 85.03 (hold-out)

Spadoto et al.
(2011) [54]

Voice (UCI machine
learning database)

Raw data samples PSO ? OPF; Harmony
search ? OPF; gravitational
search

– 73.53 (hold-out); 84.01
(hold-out); 84.01 (hold-
out)

Astrom and
Koker (2011)
[55]

Voice (UCI machine
learning database)

Raw data samples Parallel NN – 91.20 (hold-out)

Ozcift (2012)
[56]

Voice (UCI machine
learning database)

HNR, RPDE, DFA,
and PPE

RF ensemble of IBk (a k-nearest
neighbor variant) algorithm

– 97.00

Polat (2012) [57] Voice (UCI machine
learning database)

Raw data weighting FCMFW KNN 97.93 (50–50% training–
testing)

Tsanas et al.
(2012) [58]

Voice (UCI machine
learning database)

Raw dysphonia
features

Feature selection: LASSO,
mRMR, RELIF, LLBFS

SVM Almost 90.00% (tenfold
CV)

Daliri [5] Gait (from
underneath of
subject’s feet)

Moment, mean and
variance frequency

STFT ? FDR SVM 91.20 (50–50% training–
testing)

Chen et al.
(2013) [59]

Voice (UCI machine
learning database)

Dataset
normalization (0,
1)

PCA FKNN 96.07 (average tenfold CV)

Zuo et al. [7] Voice (UCI machine
learning database)

Dataset
normalization (-1,
1)

PSO FKNN 97.47 (tenfold CV)

Ma et al. [4] Voice (UCI machine
learning database)

Cluster centers mean SCFW KELM 99.49 (tenfold CV)

This work EEG segments of 2 s Bispectrum features HOS ? feature ranking SVM 99.62 (average tenfold CV)
*PDDI

* Parkinson’s Disease Diagnosis Index
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4. The developed technique is fully automatic, noninva-

sive, and robust.

5. Extracted HOS-based bispectrum features are more

robust to noise, and the method can be extended to the

diagnosis of other neurological disorders such as

cerebral palsy etc.

The sensitivity of 100% and specificity of 99.25% using

only three highly ranked HOS features were obtained.

However, the proposed method needs to be tested with a

larger database of PD patients belonging to diverse ethnic

groups. This necessitates a large storage space to extract

the features and run the classification algorithms. The study

was conducted using Intel i7-2410 M processors

@2.30 GHZ with 8.0 GB RAM. The entire experiment

was carried out using MATLAB (version 8.1.0.604,

R2014a). The average time required to train and test the

system was 6.484 s.

The limitation of this study is that only 20 PD patients

were participated and the data were only obtained from

Malaysian race. In order to get a reliable index, huge

dataset with data from diverse ethnic groups is needed.

6 Conclusion

This study presented an application of HOS features

extracted from EEG signals for diagnosis of PD patients.

The findings demonstrate that the proposed technique is

able to discriminate PD from normal EEG signals using a

single number (PDDI) clearly and also with an average

sensitivity, specificity, and accuracy of 100, 99.25, and

99.62%, respectively, using SVM classifier. Thereby, our

developed EEG-based automated system can be used as a

promising alternative tool in the diagnosis of PD. The

proposed index provides a distinct non-overlapping ranges

for normal and PD classes. It can help the neurologists in

faster and more accurate diagnosis of PD during their

screening. The proposed technique can be extended in

order to classify the severity levels of PD.
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