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Abstract Desired rock fragmentation is the main goal of

the blasting operation in surface mines, civil and tunneling

works. Therefore, precise prediction of rock fragmentation

is very important to achieve an economically successful

outcome. The primary objective of this article is to propose

a new model for forecasting the rock fragmentation using

adaptive neuro-fuzzy inference system (ANFIS) in com-

bination with particle swarm optimization (PSO). The

proposed PSO–ANFIS model has been compared with

support vector machines (SVM), ANFIS and nonlinear

multiple regression (MR) models. To construct the pre-

dictive models, 72 blasting events were investigated, and

the values of rock fragmentation as well as five effective

parameters on rock fragmentation, i.e., specific charge,

stemming, spacing, burden and maximum charge used per

delay were measured. Based on several statistical functions

[e.g., coefficient of correlation (R2) and root-mean-square

error (RMSE)], it was found that the PSO–ANFIS (with

R2 = 0.89 and RMSE = 1.31) performs better than the

SVM (with R2 = 0.83 and RMSE = 1.66), ANFIS (with

R2 = 0.81 and RMSE = 1.78) and nonlinear MR (with

R2 = 0.57 and RMSE = 3.93) models. Finally, the sensi-

tivity analysis shows that the burden and maximum charge

used per delay have the least and the most effects on the

rock fragmentation, respectively.

Keywords Blasting operation � Rock fragmentation �
PSO–ANFIS � SVM

1 Introduction

Blasting is the predominant rock fragmentation technique

in surface mines and civil works. Only 20–30% of the

produced energy is actually used for the desired rock

fragmentation and the rest of it goes waste in untoward

generation of air blast, flyrock, noise, ground vibration and

back-break [1–10]. Aside from these unwanted effects,

poor fragmentation is one of the most undesirable conse-

quences of an unsuitable blast design. The optimum rock

fragmentation is the primary objective of blasting opera-

tion. Fragment size distribution is very important in the

overall mining and processing plant economics. As per

suggested in many studies [11–16], the influential factors

on the rock fragmentation can be grouped into two main

categories: (1) properties of rock masses and (2) blast

design factors. The properties of rock masses or uncon-

trollable factors cannot be changed by the explosive engi-

neers, whereas the blast design or controllable factors can

be changed by the explosive engineers. The total charge,

maximum charge used per delay (MC), stemming (ST),

spacing (S), burden (B), sub-drilling, type of explosive

material, blast hole depth, blast hole diameter and specific

charge (SC) are all controllable factors. A wide range of
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empirical models have been developed to predict rock

fragmentation induced by mine blasting [17–19]. In these

empirical models, the rock fragmentation is predicted by

using one or two effective parameters such as rock density,

compressive strength, blast hole diameter, drilling pattern

and explosive characteristics. Since many parameters affect

rock fragmentation, the performance predictions of the

empirical models are sometimes unreliable. In the recent

years, many researchers highlighted the efficiency of arti-

ficial intelligence (AI) methods in solving various engi-

neering areas, especially in the field of mining and

geotechnical applications [20–24]. In the field of rock

fragmentation prediction, these models have been exten-

sively used and developed. Monjezi et al. [25] developed

multiple regression (MR) model and artificial neural net-

works (ANN) to estimate rock fragmentation. In their

study, the blast hole diameter, ST, MC, delay between the

rows, B to S ratio (B/S) and point load index were selected

as the model inputs. The results indicated that the ANN

model performs better than the MR. Fuzzy inference sys-

tem (FIS) and MR for the prediction of rock fragmentation

caused by blasting in Gol-E-Gohar iron mine were devel-

oped by Monjezi et al. [11]. They used B, S, blast hole

depth, specific drilling, ST, MC, rock density and SC as

input parameters. Finally, it was found that FIS provided

more accurate predictions and had the capacity to gener-

alize. Shi et al. [26] employed support vector machines

(SVM), ANN, MR and Kuznetsov methods to estimate

rock fragmentation. In their study, the ratio of bench height

to B, modulus of elasticity, ratio of ST to B, ratio of B to

blast hole diameter, ratio of S to B, block size and SC were

utilized as the model inputs. Prediction results show that

accuracy of the SVM is higher than that of ANN, MR and

Kuznetsov methods. A comprehensive study for forecast-

ing of the rock fragmentation by using adaptive neuro-

fuzzy inference system (ANFIS), SVM and Kuz-Ram

empirical model was presented by Esmaeili et al. [14]. In

their study, S/B, Blastability index, ratio of total delays per

number of rows, blast hole depth, ST and SC were input

parameters. Several statistical functions, such as coefficient

of correlation (R2), were used to compare the predictive

models. The results showed that ANFIS can be introduced

as an acceptable model for forecasting of the rock frag-

mentation, and its results were more precise than SVM and

Kuz-Ram models. R2 of ANFIS model was obtained as

0.89, whereas the R2 of SVM and Kuz-Ram models were

obtained as 0.83 and 0.38, respectively. Shams et al. [15]

constructed FIS and MR models to estimate rock frag-

mentation in the Sarcheshmeh copper mine, using 185

dataset. They used B, S, ST, SC and Schmidt hammer

rebound number as model inputs. They concluded that the

predictions by FIS were better in comparison with MR. In

the other study of AI methods, Karami and Afiuni-Zadeh

[13] established MRA, radial basis function (RBF) and

ANFIS to estimate rock fragmentation. Based on their

results, it was observed that ANFIS shows a better pre-

diction capability than RBF and MRA models. In the other

study, dimensional analysis (DA) and Kuz–Ram models

were employed for forecasting of the rock fragmentation

by Bakhtavar et al. [27]. Finally, it was demonstrated that

the DA model is more suitable for rock fragmentation

estimation in comparison with the Kuz–Ram model. In the

recent years, many attempts have been done to highlight

evolutionary algorithms for the prediction aims in the field

of mining engineering (such as [28–31]). The results

revealed that such algorithms are useful to increase the

performance of ANN model itself. In the present article, a

novel hybrid of PSO and ANFIS were developed to esti-

mate the rock fragmentation. The proposed PSO–ANFIS

model has been compared with SVM, ANFIS and MR

models. The sensitivity analysis was also performed to

identify the most effective parameters on the rock frag-

mentation. The remnant of this paper is formed as follows:

The studied case is explained in Sect. 2. The proposed

PSO–ANFIS model is explained in Sect. 3. In Sect. 4, the

performance capacity of the PSO–ANFIS model has been

checked. Afterward, the sensitivity analysis has been per-

formed and explained in Sect. 5. Finally, the conclusion

has been presented in Sect. 6.

2 Case study

The case study was carried out in Shur river dam area

which is situated in the south of province Kerman, Iran,

between 30�104800 latitudes and 55�5104700 longitudes. The

Shur river dam is the tallest asphaltic concrete core dam in

Iran, located in the adjacency of Rafsanjan city and

Sarchemeh copper mine. In order to construct the Shur

river dam, two mines, i.e., main and second mines, were

extracted using drilling and blasting method. In this regard,

Wagon Drill Machine and ammonium nitrate fuel oil

(ANFO) were used in drilling and blasting processes,

respectively. Moreover, the blast holes were stemmed by

fine gravel. As suggested by many researchers [11, 13–15],

proper rock fragmentation has a vital role on the costs of

drilling and blasting. Therefore, precise prediction of rock

fragmentation is very crucial. By reviewing the previous

investigations [11, 13–16], B, S, ST, MC and SC were the

most influential parameters on rock fragmentation and

widely used as input parameters in many studies. Hence,

the mentioned parameters were selected and used for pre-

diction of rock fragmentation in the current research work.

In total, 72 blasting events were considered, and the values

of rock fragmentation (D80), S, B, ST, MC and SC were

measured. To determine the D80 values, image processing
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technique, due to its low cost and quickly utilized, was

considered. In this regard, digital images with the help of

Split Desktop software were used to analyze the size dis-

tributions of the fragmented rocks. Figure 1 shows a

sample size distribution curve obtained via the Split

Desktop software. In order to construct the PSO–ANFIS

and MLR methods, the available datasets were split into

two sets: training and testing sets. In this paper, 80 and

20% of the total datasets were used as training and testing

aims, as recommended by Swingler [32]. In the other

words, 58 datasets were used to construct the models, while

the remained 14 datasets were used to testify the predicting

performance of the models. Table 1 shows the range of

parameters used in this research. In addition, Fig. 2 illus-

trates the frequency distributions of the B, S, ST, SC, MC

and rock fragmentation.

3 Development of PSO–ANFIS to Predict Rock
Fragmentation

In this section, firstly, PSO and ANFIS models are shortly

described. Then, the development of PSO–ANFIS model

for the prediction of rock fragmentation is explained.

3.1 PSO

Kennedy and Eberhart [33] introduced PSO as an evolu-

tionary optimization algorithm. In the PSO model, an

amount of particles are put into the search area of the

N-dimensional moot point. Each swarm (or particle)

demonstrates a possible solution and appraises the objec-

tive function at its current location. In the PSO, the next

place of particles is specified by merging their current

locations with some accidental perturbations. Finally, the

swarms move close to the optimum fitness function

[34, 35]. The PSO has some advantages, namely [36–38]:

1. PSO is a fast and easy algorithm to understand and

implement.

2. PSO is an efficient optimization technique to maintain

the diversity of the swarm.

3. PSO has fewer parameters.

The PSO consists of a swarm of particles that search for

the best position, including the best global (gbest) and

personal (pbest) positions [39].

The velocity and position of a particle during its moving

process can be formulated as follows:

Vnew ¼ wV þ u1 Pbest � Xð Þ þ u2 Gbest � Xð Þ ð1Þ
Xnew ¼ X þ Vnew ð2Þ
u1 ¼ C1Rand1 ð3Þ
u2 ¼ C2Rand2 ð4Þ

• Rand1 and Rand2 represent the positive random num-

bers in (0,1)

• Pbest (personal best) and Gbest (global best) are the

personal best position of particle and the best particle

among all of the particles, respectively.

• C1 and C2 are learning factors.

• X and V represent current position and velocity of

particles, respectively.

• Xnew and Vnew represent new position and velocity of

particles, respectively.

• w represents the inertial weight coefficient.

The PSO can be found in many studies (e.g., [40, 41]).

The PSO has been most widely studied on and applied to

solve the real-world problems, so far [42–46]. In the field

of mining and geotechnical engineering, the results indi-

cate the reliability of the PSO for prediction aims. For

instance, Gordan et al. [47] applied PSO to design/optimize

the ANN for the prediction of seismic slope stability. Based

on their results, PSO was introduced as a powerful tool to

design the ANN, and the performance predictions of the

PSO–ANN were better than ANN. In the other study,

Fig. 1 Sample of a size distribution curve obtained using Split

Desktop software

Table 1 Range of parameters used in this study

Parameter Symbol Unit Min Max

Burden B m 2.7 4.1

Spacing S m 3.4 5.3

Stemming ST m 1.8 3.4

Specific charge PF g/cm3 152 214

Maximum charge used per delay MC kg 735 2110

Rock fragmentation (D80) – cm 13 42
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Hasanipanah et al. [48] developed PSO–ANN for the pre-

diction of maximum surface settlement induced by tun-

neling at Karaj subway, Iran. Finally, it was concluded that

PSO–ANN model simulates the surface settlement more

reliably than ANN model.

3.2 ANFIS

ANFIS is an AI method applied for solving complex and

highly nonlinear problems. The method was first introduced

by Jang [49]. Since ANFIS combines both ANN and FIS, it

is capable of handling complex and nonlinear problems in a

single framework. The ANFIS architecture with two inputs

and five layers is shown in Fig. 3. In this architecture, the

Takagi–Sugeno fuzzy type is used as FIS. To describe the

procedure of ANFIS, it is assumed that the FIS under con-

sideration consists of one output (O) and two inputs (k, j).

The fuzzy rules can be typically reported as follows: [50]:

Rule 1 : if k isZ1 and j isU1 thenO1 ¼ a1k þ s1jþ l1 ð5Þ
Rule 2 : if k is Z2 and j isU2 thenO2 ¼ a2k þ s2jþ l2 ð6Þ

where k and j can be considered as the inputs.

a1; s1; l1; a2; s2; l2 are the function parameters of output (O)

or the consequent parameters. Also, Z1; Z2;U1;U2 are the

Fig. 2 Frequency histograms of the measured parameters in this study

Fig. 3 An ANFIS architecture
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membership functions for inputs (k and j). As shown in

Fig. 3, an ANFIS with five layers, two inputs and one

output can be explained in the following lines [51, 52]:

Layer 1 (fuzzification layer): All nodes are considered as

an adaptive node.

O1;i ¼ lZi kð Þ for i ¼ 1; 2; . . .; n ð7Þ

O1;i ¼ lUi jð Þ for i ¼ 1; 2; . . .; n ð8Þ

In Eqs. 7 and 8:

– n is the number of fuzzy sets for each model input.

– k and j are set as input nodes.

– lUi jð Þ and lZi kð Þ are the membership functions.

– Z and U are the linguistic labels.

Layer 2 (product layer): Calculation of the firing strength.

O2;i ¼ xi ¼ lZi kð ÞlUi jð Þ with i ¼ 1; 2 ð9Þ

The output node xi represents the firing strength of a

rule.

Layer 3 (normalized layer): In this layer, the ratio of firing

strength of the i th rule to the sum of firing strengths of all

rules is calculated.

O3;i ¼ �wi ¼
wi

w1 þ w2

i ¼ 1; 2

Layer 4 (defuzzification layer): Each node is an

adjustable node with the following node function:

O4;i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ ð10Þ

In which wi is output of the third layer or normalized

firing strength. Also, {pi, qi, ri} are parameters sets of the

node i.

Layer 5 (output layer): System output is generated through

sum of the incoming signals.

O5;i ¼ overall output ¼
X

i

�wifi ¼
P

i wifiP
i wi

; i¼ 1;2 ð11Þ

The successful application of ANFIS model in the field

of mining and geotechnical engineering has addressed in

many studies [7, 14, 16]. For instance, Jahed Armaghani

et al. [53] employed ANFIS to estimate ground vibration.

Based on their result, ANFIS can be introduced as a reli-

able tool for the prediction aims in this field.

3.3 Hybrid PSO–ANFIS

In order to estimate rock fragmentation with high level of

accuracy, a combined model based on ANFIS and PSO is

developed in the presented study. In the other words, PSO

is used to train the ANFIS and select the optimal values of

the ANFIS parameters. In order to develop the PSO–

ANFIS, the optimum PSO parameters can be determined

based on several parametric studies. Maximum number of

iterations, maximum number of particles, cognitive accel-

eration (C1) and social acceleration (C2), initial inertia

weight (Wmin) and final inertia weight (Wmax) are the main

PSO parameters. In the first step of PSO–ANFIS modeling,

the effective factors on rock fragmentation, i.e., SC, ST, S,

B and MC, were set as input factors, and D80 was set as

output factor. Consequently, the form of a fuzzy if–then

rule for rule i may be stated as:

if B isAi and S isBi and ST isCi and SC isDi and MC isEi;

then Log D80ð Þ ¼ piBþ qiSþ riST þ siSC þ tiMC þ yi

(

ð12Þ

where Ai to Ei are fuzzy set labels for input parameters.

Also, pi, …, yi are linear consequent parameters of fuzzy

rule i. In the second step, the available data were split into

training and testing sets. In the current paper, 58 and 14

datasets were used to train and test PSO–ANFIS model,

respectively. Afterward, all datasets were normalized in the

range of (0,1) in order to simplify the design procedure as

follows:

Xn ¼
X � Xmin

Xmax � Xmin

ð13Þ

where Xn and X are the normalized and measured values,

respectively. Also, the minimum and maximum of mea-

sured dataset are Xmin and Xmax, respectively. In order to

construct the PSO–ANFIS model, a code was written in the

MATLAB environment. In the PSO–ANFIS model, the

PSO helps hybrid system to have closer relationships

between the inputs and the output of model. The proposed

hybrid model can predict more accurate results for the

nonlinear systems and consequently improve the forecast

accuracy. In the present study, root-mean-square error

(RMSE) and the Gaussian were used as fitness and mem-

bership functions, respectively, as recommended by many

studies (e.g., [48, 53]). Note that, a predictive model with

lower RMSE values is of advantage. In the modeling,

linguistic variables include low (L), medium (M) and high

(H) were used for the input parameters. As mentioned

above, the most important task in the modeling is the

proper selection of PSO parameters. In order to assess the

optimum values of the PSO parameters, trial-and-error

method was applied in the present paper. The obtained

results indicated that the values of 40, 500, 2, 2, 0.9 and 0.5

for the maximum number of particles, maximum number of

iterations, C1, C2, Wmin and Wmax, respectively, were the

best among other utilized values. Figure 4 shows the

scatter plots of rock fragmentation (D80) predicted by the

PSO–ANFIS for both training and testing datasets. Here, it

is observed that (from Fig. 4) the predicted values using the

PSO–ANFIS model are in excellent agreement with the
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measures data, which demonstrates the reliability of the

PSO–ANFIS model.

4 Evaluation of the proposed PSO–ANFIS model

In the present research work, PSO–ANFIS model is pro-

posed to estimate D80 induced by blasting operations in

Shur river dam region, Iran. For comparison aims, SVM,

ANFIS and MR models were also developed. SVM is a

machine learning theory frame and general way, estab-

lished on a set of finite samples [54]. The performance of

SVM depends greatly on the combination of several

parameters. They are capacity parameter C, e of e-insen-

sitive loss function. In this study, trial-and-error method

was used, and based on obtained results, the values of 0.1

and 1 were selected as the optimum values for the e and C,

respectively. The SVM model can be found in many

studies (e.g., [55–57]). Apart from SVM, the ANFIS model

was also used for the prediction of D80. In this study,

various ANFIS models were designed using a trial-and-

error procedure in order to determine the fuzzy rules No. in

forecasting D80. In the ANFIS modeling, the linguistic

variables of low (L), medium (M) and high (H) were per-

formed for input parameters. Also, Gaussian was selected

as the membership function. In order to develop the SVM

and ANFIS models in the present study, the same training

and testing datasets considering in PSO–ANFIS model

were used. In this regard, 72 blasting operations were

considered, and the most influential factors on the rock

fragmentation including B, S, ST, SC and MC were mea-

sured. The mentioned parameters were used as model

inputs, while D80 was used as the output parameter. In the

PSO–ANFIS, ANFIS and SVM models, 58 datasets were

used as training models, and the remained 14 datasets were

used as testing the models. It should be mentioned that

MATLAB 2013b was used to construct PSO–ANFIS,

ANFIS and SVM models. Apart from the mentioned AI

models, MR was also utilized for D80 prediction. MR is a

widely used method for solving different engineering

problems, especially in prediction aims. MR can be applied

to obtain the best-fit equation when there is more than one

input variable. In the present study, nonlinear MR model

was used for the prediction of D80. To construct the non-

linear MR model, the same datasets performed in the

modeling of PSO–ANFIS, ANFIS and SVM models were

used. Considering the 58 datasets, Eq. (14) was constructed

by using SPSS v16 software [58]:

D80 ¼ 31:82 � 0:48 � Bð Þ3þ 0:41 � Sð Þ3� 0:001 � STð Þ3

� 0:0001 � SCð Þ3� 0:001 � MCð Þ3 ð14Þ

In the second step, the performance of the constructed

nonlinear MR model can be evaluated using testing data-

sets (14 datasets). For controlling and subsequently

checking the performance capacity of the utilized models,

several statistical criteria including RMSE, R2, variance

account for (VAF), median absolute error (MEDAE) and

nash and sutcliffe (NS) were computed:

R2 ¼
Pn

i¼1 xi � xmeanð Þ2
h i

�
Pn

i¼1 xi � xp
� �2

h i

Pn
i¼1 xi � xmeanð Þ2

h i ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

xi � xp
� �2
h is

ð16Þ

VAF ¼ 1 �
var xi � xp

� �

var xið Þ

� �
� 100 ð17Þ

MEDAE ¼ median xi � xp
� �

ð18Þ

NS ¼ 1 �
Pn

i¼1 xi � xp
� �2

Pn
i¼1 xi � �xð Þ2

ð19Þ

In which n, xp, xi are the number of datasets, the pre-

dicted and measured rock fragmentation values, respec-

tively. The values of 1, 0, 100%, 0 and 1 for the R2,

Fig. 4 Measured versus predicted values of rock fragmentation, PSO–ANFIS model
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RMSE, VAF, MEDAE and NS demonstrate that there is

perfect agreement between all the measured and predicted

values. Table 2 reports the results of these criteria in the

present study. Figures 5, 6 and 7 also depict the scatter

plots of rock fragmentation (D80) predicted by the ANFIS,

SVM and nonlinear MR models, respectively, for both

training and testing datasets. As shown in Table 2 and

Figs. 4, 5, 6 and 7, the PSO–ANFIS model can predict

D80 better than ANFIS, SVM and nonlinear MR models.

Furthermore, Fig. 8 illustrates a comparison of the pre-

dicted D80 values by all predictive models and the mea-

sured D80, using only testing datasets. The results

demonstrate that predictions through PSO–ANFIS model

are more acceptable in comparison with ANFIS, SVM and

nonlinear MR models.

5 Sensitivity analysis

In order to identify the most influential factors on the rock

fragmentation, a sensitivity analysis was performed in the

present paper. For this work, the cosine amplitude method

which was introduced by Yang and Zang [59] is used for

sensitivity analysis, using the following equation:

rij ¼
Pm

k¼1 xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

Pm
k¼1 x

2
ik

p ð20Þ

In which xj and xi the elements of data pairs, which

denote the output and input datasets, respectively. Figure 9

illustrates how sensitive is the result of rock fragmentation

to the input parameters. Rock fragmentation is sensitive to,

in descendent order, MC, SC, ST, S and B. Therefore, MC

Table 2 Results of statistical

criteria in this study
Model Statistical criteria

R2 RMSE VAF (%) MEDAE NS

Train Test Train Test Train Test Train Test Train Test

Nonlinear MR 0.64 0.57 4.19 3.93 66.63 46.11 3.04 3.36 0.32 0.38

SVM 0.9 0.83 2.16 1.66 90.38 81.7 1.9 1.5 0.9 0.83

ANFIS 0.88 0.81 2.44 1.78 87.7 79.7 2.45 1.2 0.87 0.8

PSO–ANFIS 0.938 0.89 1.76 1.31 93.7 88.9 1.6 1.2 0.93 0.87

Fig. 5 Measured versus predicted values of rock fragmentation, ANFIS model

Fig. 6 Measured versus predicted values of rock fragmentation, SVM model
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was the most effective parameter on the rock fragmentation

based on available datasets in the present research work.

6 Conclusion

Generally speaking, the primary objective of the blasting is

the desired rock fragmentation. Nevertheless, the poor

fragmentation is one of the most undesirable consequences

of an unsuitable blast design. The main goal of this work is

to estimate rock fragmentation produced by blasting at

Shur river dam region, Iran. For this aim, a new combi-

nation of ANFIS and PSO is proposed in this research. In

addition, the PSO–ANFIS model has been compared with

ANFIS, SVM and nonlinear MR models. In this regard, 72

blasting operations were considered, and the most influ-

ential factors on the rock fragmentation including B, S, ST,

SC and MC were measured. The mentioned parameters

were used as model inputs, while D80 was used as model

output. In the modeling, all datasets were classified to

training and testing datasets. In the current paper, 58 and 14

datasets were used for training and testing aims, respec-

tively. In order to examine the accuracy of rock fragmen-

tation predictions by PSO–ANFIS, ANFIS, SVM and

nonlinear MR models, five statistical indices including R2,

RMSE, VAF, MEDAE and NS have been used. Comparing

the values predicted by the models indicated that the per-

formance of the proposed PSO–ANFIS model was better

than the SVM, ANFIS and nonlinear MR models. Results

showed that R2 values in the PSO–ANFIS, SVM, ANFIS

and nonlinear MR models were 0.938, 0.9, 0.88 and 0.64,

respectively, at training stage and 0.89, 0.83, 0.81 and 0.57,

respectively, at test stage. As a conclusion, PSO–ANFIS

can be used as a reliable and acceptable model in the field

Fig. 7 Measured versus predicted values of rock fragmentation, nonlinear MR model

Fig. 8 A comparison of the

predicted D80 values by

predictive models and the

measured D80

Fig. 9 Effect of input parameters on the rock fragmentation
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of rock fragmentation prediction. Based on sensitivity

analysis, it was also found that the MC was the most

effective parameters on the rock fragmentation in this case

study.
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