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Abstract Fiber-reinforced soil (FRS) has been used as a

promising alternative material for civil and construction

engineering. Shear strength of FRS is influenced com-

plexly by many factors including fiber properties, soil

properties, and stress conditions. This inherent complexity

limits the ability of designers to assess shear strength

parameters and has made it difficult to establish a math-

ematical model for accurately predicting the FRS shear

strength. Accurately estimating the shear strength of FRS

is vital for civil engineers in designing geotechnical

structures and management. Thus, this work proposed a

novel computational method, namely a swarm intelligence

optimized regression (SIOR) system to estimate the peak

shear strength of randomly distributed FRS. The SIOR

system integrates a machine learning technique with an

enhanced swarm intelligence algorithm to obtain reliable

and good performance in prediction process. The real-

world FRS dataset collected over the past 30 years was

used to validate the proposed system. To demonstrate the

capability of the proposed system, the SIOR modeling

results were compared with those obtained using numeric

predictive models. The analytical results confirm that the

SIOR system is superior to a baseline machine learning

model and empirical methods via cross-fold validation

and hypothesis test with accuracy improvement from 44.7

to 99.7% in mean absolute percentage error. Therefore,

the SIOR system can significantly improve the prediction

accuracy and facilitate civil engineers in estimating the

shear strength of the FRS.

Keywords Artificial intelligence � Swarm intelligence

optimization � Machine learning � Fiber-reinforced soil �
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1 Introduction

Fiber-reinforced soil (FRS) has been applied in civil

engineering ecosystems for many years. The FRS is a

promising alternative material for localized repair of slopes

and reinforcement of thin soil veneers where planar rein-

forcement is difficult to implement due to geometric con-

straints [1]. However, estimating the FRS behaviors has

confirmed a difficult task because shear strength of FRS is

influenced complexly by many factors including fiber

characteristics, soil properties, and stress conditions.

Accurately estimating the shear strength of FRS is vital for

civil engineers in designing geotechnical structures and

management.

Some researchers have proposed methods to estimate

the peak shear strength of FRS. Particularly, a statistical

technique [2], a discrete formulation [3], and energy dis-

sipation formulations [4] have been developed for pre-

dicting FRS shear strength. Although these conventional

methods are convenient, their accuracy is limited because

simplified models do not adequately consider complex

mechanisms of soil–fiber interaction [5]. Relationship

among shear strength of FRS and fiber characteristics, soil
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properties, and stress conditions is inherently nonlinear.

This inherent complexity limits the ability of designers to

assess shear strength parameters and has made it difficult to

establish a mathematical model for accurately predicting

the FRS shear strength.

Because of the importance of improving the prediction

performance, machine learning (ML)-based methods have

been developed to enhance prediction accuracy and effi-

ciency [6, 7]. ML-based approaches have confirmed the

potential solutions for solving real-world engineering

problems [8–11]. Literature shows that no study has used

ML-based method to estimate shear strength of FRS in

geotechnical systems. Therefore, the ML-based approaches

are potential techniques for shear strength prediction of

FRS.

Among the ML techniques, the least squares support

vector regression (LSSVR) method proposed by Suykens

et al. [12] is one of the prevailing AI methods. The LSSVR

greatly reduces computation complexity and increases

efficiency compared to standard SVR. It has been widely

used in civil engineering field [13–15]. Most studies agree

that the predictive accuracy of a SVR-based model is

superior to that of other ML-based models [16–18]. The

performance of the LSSVR model depends highly on its

hyperparameters, namely the regularization parameter

(C) and radial basis function kernel parameter (r). For

improving the prediction ability, appropriately selecting

the LSSVR hyperparameters is a challenging optimization

problem.

Swarm intelligence (SI) has attracted great interest and

attention [19, 20]. Examples of SI-based algorithms

include artificial bee colony, particle swarm optimization,

cuckoo search, and firefly algorithm (FA). The FA is a

particularly efficient SI-based algorithm because it has two

major advantages over the others: automatic subdivision

and the ability to handle multimodality [21]. SI-based

algorithms have been successful in solving a wide range of

problems in various domains [22]. As a part of this work,

an enhanced nature-inspired metaheuristic algorithm was

used to dynamically optimize the LSSVR hyperparameters.

In this regard, this study proposes a new computational

method, namely a swarm intelligence optimized regression

(SIOR) system to estimate the peak shear strength of ran-

domly distributed fiber-reinforced soil. The system inte-

grates an LSSVR and an enhanced SI optimization

algorithm, namely smart firefly algorithm (SFA), in which

the SFA is used to fine-tune the LSSVR hyperparameters.

As the original scientific contribution, the proposed

SIOR system provides a new method of estimating the FRS

shear strength in the geotechnical system which is efficient

and reliable. In addition, the new SFA algorithm is inte-

grated into the SIOR system, which can efficiently opti-

mize the LSSVR hyperparameters; consequently, the

prediction accuracy of the SIOR system is significantly

improved. In particular, a user-friendly interface of the

SIOR system provides convenience to the users. Finally, a

comparison analysis of the prediction performance

between the proposed SIOR system, the baseline LSSVR,

and empirical methods has been done via cross-fold vali-

dation and hypothesis test.

The proposed SIOR system was developed in

MATLAB�. To demonstrate its efficacy, FRS dataset

collected from 20 studies published during 1983–2015 was

used to validate the system. Prediction performance was

evaluated in terms of linear correlation coefficient (R),

root-mean-square error (RMSE), mean absolute error

(MAE), and mean absolute percentage error (MAPE).

The remainder of this paper is organized as follows.

Section 2 reviews the relevant literature and empirical

methods for calculating shear strength of FRS. The pro-

posed system and evaluation theory are presented in

Sect. 3. Section 4 discusses the data collection process, the

system evaluation, and analytical results. The last section

presents the concluding remarks.

2 Literature review

The FRS was used to strengthen the shear-resistant

capacity of the geotechnical systems [23], reduce potential

slope failure [24], improve soil rigidity and brittleness

[25], repair slope veneer, and patch uneven surfaces, and

serve as a more durable alternative to geogrid and geo-

textile [5]. Many prior researches confirmed the effec-

tiveness of fiber reinforcement [26, 27]. The FRS has

shown the effectiveness for repairing failed slopes where

the irregular shape of soil patches limits the use of textile

reinforcements and stabilizing subgrade in road con-

struction [28].

Accurately predicting the peak friction angle of ran-

domly distributed FRS is essential for efficient engi-

neering design. In the past three decades, studies of FRS

behavior [1, 3, 4, 26, 29–31] have included Zornberg,

who introduced a discrete model for designing FRS

slopes. Fibers are treated as discrete elements that con-

tribute to stability by mobilizing tensile stresses along

shear planes. Zornberg [3] applied the bilinear shear

strength envelope, in which the fiber-induced distributed

tension acting along a failure surface is added to the soil

shear strength.

Michalowski and Čermák [4] further proposed an

energy dissipation model for estimating the ultimate shear

strength of randomly distributed FRS in the ‘‘fiber slip’’

confinement ranges. Similarly, Sadek et al. [32] proposed a

mathematical model for predicting shear strength of fiber-

reinforced sands. Sivakumar Babu et al. [27] examined
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soil–fiber interaction in FRS by using numerical analysis to

capture the overall stress–strain response. Recent studies

indicate that peak friction angle of FRS is influenced by

several factors, including soil properties, fiber characteris-

tics, and stress conditions.

Instead of numerical modeling, Maher and Gray [30]

performed triaxial compression tests to study the effects

of soil properties, fiber characteristics, and other variables

on sand reinforced with randomly distributed fibers.

Ranjan et al. [2] performed triaxial compression tests on

soil reinforced with randomly distributed fibers to identify

the relationship between the shear strength of reinforced

soil and fiber parameters, soil properties, and confining

stress. In particular, Ahmad et al. [26] performed a series

of triaxial tests to study the effect of oil palm empty fruit

bunch (OPEFB) fiber on the shear strength of soil under

drained and undrained triaxial test conditions. According

to their experimental results, addition of OPEFB fiber

significantly increases the peak shear strength of silty

sand soil.

Li and Zornberg [1] performed triaxial compression

tests and fiber pullout tests to evaluate how fiber tension is

mobilized at varying shear strain levels. The experimental

results confirmed that (1) full mobilization of fiber-in-

duced tension requires comparatively high strain levels;

(2) the initial density of the soil does not significantly

affect the shear strength of FRS prepared with compara-

tively high fiber contents; (3) for FRS prepared with

comparatively low fiber content and for conditions where

the unreinforced soil stress–strain response shows a post-

peak shear strength loss, the discrete framework should be

applied when using the peak shear strength of the unre-

inforced soil to predict the equivalent shear strength of

FRS.

Commonly used synthetic fibers include polypropylene

(PP), polyethylene terephthalate, polyvinyl alcohol, glass,

nylon, and steel. The advantages of these fibers include

their high strength, high durability, easily controllable

quality and yield, chemical resistance, and climate resis-

tance. However, their disadvantage is their high environ-

mental impact. Since synthetic fibers are resistant to bio-

decomposition and chemical corrosion, they prevent soil

shrinkage and are resistant to weather and chemical chan-

ges. The most common of the above fibers is PP fiber [24].

Al-Refeai [33] indicated that PP fiber was superior to glass

fiber and that the optimal length for fiber reinforcement

was approximately 76 mm.

Several researchers have proposed empirical formulas

for calculating the engineering strength of FRS. For

example, Michalowski and Zhao [34] presented a mathe-

matical formula as shown in Eq. (1) to estimate the shear-

resistant strength of FRS.

/f ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xf gfM tan/w þ 6Kp

6� Xf gfM tan/w

s

� p
2

ð1Þ

where M ¼ Kp sin h0, Kp ¼ tan2ð45þ h=2Þ, h0 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffi

Kp=2
p

, gf is fiber aspect ratio, / is friction angle of soil,

/w is interfacing friction angle between the sand and fiber,

and Xf is fiber content (volume percentage).

Alternatively, Zornberg [3] developed a discrete model

for predicting shear strength of FRS. Equation (2) is the

mathematical formula of the discrete model.

/f ¼ tan�1ðð1þ a � gf � Xf � ci;/Þ � tan/Þ ð2Þ

where a is empirical coefficient, a B 1, / is friction angle

of soil, gf is fiber aspect ratio, Xf is fiber content (volume

percentage), ci,/ is interface friction coefficient of soil

(tan/w=tan/), /w is interfacing friction angle between

sand and fiber.

Although these empirical methods are convenient for

designers, the accuracy of the estimated values is low

because these empiricalmethods explore a limited number of

factors and because the relationship between FRS strength

parameter and predictive factors is highly nonlinear.

Therefore, this study developed the novel computational

method for improving accuracy in predicting the shear

strength property of FRS. Particularly, this study enhances

the optimization algorithm and LSSVR to provide high

accuracy in facilitating FRS shear strength design.

3 Methodology

3.1 Least squares support vector regression

The LSSVR proposed by Suykens et al. [12] is a well-de-

veloped ML technique with many advanced features that

enable good generalization capacity and fast computation.

The LSSVR training process uses a least squares cost func-

tion to obtain a linear set of equations in the dual space so as

to minimize computational cost. Accordingly, iterative

methods, such as conjugate gradient efficiently solving a set

of linear equations, are used to derive a solution. To reduce

the computational burden of the LSSVR for function esti-

mation, the regression model in this study used a quadratic

loss function [35]. In a function estimation of the LSSVR,

given a training dataset xk; ykf gNk¼1, the classic linear LSSVR

model related inputsX’swith the outputY byminimizing the

objective function which is formulated as Eq. (3).

min
x;b;e

Jðx; eÞ ¼ 1

2
xk k2þ 1

2
C
X

N

k¼1

e2k ;

subject to yk ¼ x;uðxkÞh i þ bþ ek; k ¼ 1; . . .;N

ð3Þ
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where J(x, e) is the optimization function; x is the

parameter of the linear approximator; ek 2 R is error

variables; C� 0 is a regularization constant that specifies

the constant representing the trade-off between the empir-

ical error and the flatness of the function; xk is input pat-

terns; yk is prediction labels; and N is the sample size.

Since this is a typical optimization problem of a dif-

ferentiable function with constraints, it can be solved by

using Lagrange multipliers (ak). The resulting LSSVR

model for function estimation can be expressed as Eq. (4).

f ðxÞ ¼
X

N

k¼1

akKðx; xkÞ þ b ð4Þ

where ak; b are Lagrange multipliers and the bias term,

respectively, and K(x, xk) is kernel function. In the feature

space, the kernel function can be described as Eq. (5):

Kðx; xkÞ ¼
X

m

k¼1

gkðxÞgkðxkÞ ð5Þ

In this study, the radial basis function (RBF) kernel was

used not only because it has lower mathematical com-

plexity compared to the polynomial kernel, but also

because it effectively solves highly nonlinear problems.

Equation (6) is the mathematical expression of the RBF

kernel.

Kðx; xkÞ ¼ expð� x� xkk k2=2r2Þ ð6Þ

where r is the RBF width.

However, the prediction accuracy of the LSSVR is

highly dependent on the determination of its hyperparam-

eters. Therefore, as a part of this study, the enhanced SI

algorithm was developed to optimize LSSVR hyperpa-

rameters, i.e., the regularization parameter ðCÞ and the

sigma of the RBF kernel ðrÞ.

3.2 Enhanced swarm intelligence optimization

algorithm

An enhanced SI optimization algorithm, i.e., SFA, is

developed by combining the conventional FA and meta-

heuristic components, which are used to fine-tuning the

conventional FA parameters.

3.2.1 Swarm intelligence-based algorithm

The computational intelligence has received great interest

and attention in the literature. In the communities of opti-

mization, computational intelligence, and computer sci-

ence, bio-inspired algorithms, especially those SI-based

algorithms are now become very popular [19, 36, 37]. The

FA developed by Yang [38] is a stochastic, SI algorithm

that efficiently finds the global optima of an optimization

problem. The FA applies three idealized rules: (1) Each

firefly is attracted to other fireflies regardless of gender

because all fireflies are unisex; (2) the attractiveness of a

firefly is proportional to its brightness and decreases as

distance increases; additionally, a firefly moves randomly if

no other firefly is brighter; and (3) the brightness of a firefly

is affected or determined by the search space of the

objective function.

For a maximization problem, the brightness value is

simply set to be proportional to the value of the objective

function. As the attractiveness of a firefly is proportional to

the intensity of light that is visible to adjacent fireflies, the

attractiveness b of a firefly satisfies Eq. (7).

b ¼ b0e
�cr2 ð7Þ

where b is the attractiveness of the firefly; b0 is the

attractiveness of the firefly at r = 0; r is the distance

between the firefly of interest and any other, e is a constant

coefficient, and c is the absorption coefficient.

The distance between any two fireflies i and j at xi and xj,

respectively, is the Cartesian distance, given by Eq. (8).

rij ¼ xi � xj
�

�

�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd

k¼1
ðxi;k � xj;kÞ2

r

ð8Þ

where rij is the distance between any two fireflies i and j at

xi and xj, respectively; xi,k is the kth component of spatial

coordinate xi of the ith firefly; xj,k is the kth component of

spatial coordinate xj of the jth firefly, and d is the number of

dimensions of the search space.

Equation (9) specifies the movement of the ith firefly

when attracted to the more attractive (brighter) jth firefly.

xtþ1
i ¼ xti þ b0e

�cr2ij xtj � xti

� �

þ atðrand� 0:5Þ ð9Þ

where xtþ1
i is the coordinate of the ith firefly in the

(t ? 1)th iteration; xti is the coordinate of the ith firefly in

the tth iteration; xtj is the coordinate of the jth firefly in the

tth iteration; c is the absorption coefficient and was set to

explore global optima. The best result obtained in the

sensitivity analysis of c is c = 1; b0 = bmin is the attrac-

tiveness at rij = 0; at is a randomization parameter; rand is

a random-number generator uniformly distributed within

[0, 1].

The FA procedure can be summarized as follows. First,

the initial firefly positions are randomly generated. Second,

a given fitness function is used to evaluate each firefly.

Third, fireflies move by using Eq. (9) in which fireflies with

worse fitness values move toward fireflies with better fit-

ness values. For the firefly with the best fitness value, the

second part of Eq. (9) becomes zero. Therefore, its

movement is randomly proportional to the coefficient at.
The above procedure continues until a given number of

iterations are reached.
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Although FA is highly efficient in many applications, it

often becomes trapped in a local optimum [39]. Moreover,

setting tuning parameters that improve the convergence of

the FA is challenging. The FA control parameters should

be optimized for effectively balancing exploitation and

exploration. Specifically, the balance between the explo-

ration and exploitation capability of the conventional FA

can be improved by enhancing the diversity of initial

population of the FA, tuning attractiveness, adjusting ran-

domization, and controlling movement of the FA.

3.2.2 Metaheuristic components in fine-tuning of swarm

intelligence algorithm

The conventional FA uses three standard elements to per-

form an automatic search that proceeds toward global

optimality: initial population, the attractiveness parameter,

and the movement. These three terms are adjusted by the

following metaheuristic components: chaotic maps, adap-

tive inertia weight (AIW), and Lévy flight. First, the

logistic chaotic map and the Gauss/mouse chaotic map

provide a highly diverse initial population and tune an

attractiveness parameter in the FA implementation,

respectively. Second, AIW is dynamically adjusted in the

optimization process to control the local exploitation and

the global exploration capabilities of the FA. Third, Lévy

flight speeds up the local search by generating new optimal

neighborhoods around the obtained best solution.

3.2.2.1 Logistic chaotic map for enhancing initial solu-

tion The FA uses a typical random approach to generate

an initial solution. The two major disadvantages of this

approach are its slow convergence and its tendency to

become trapped in local optima because of reduced popu-

lation diversity. For improving initial solution diversity and

the quality of the initial population, logistic chaotic map is

used to generate a highly diverse of fireflies in the initial

stage. Equation (10) is the logistic map formula.

Xnþ1 ¼ gXnð1� XnÞ ð10Þ

where n denotes the number label of the individual firefly

and Xn is the chaotic value for the nth firefly.

Since Eq. (10) is clearly deterministic, it exhibits

chaotic dynamics when g = 4.0 and X0 62 {0.0, 0.25, 0.5,

0.75, 1.0}. It exhibits strong dependence on initial con-

ditions and describes travel with ergodicity, irregularity

and pseudorandomness. A minute difference in the initial

values of populations can cause a considerable differ-

ence in its long-term behavior [40]. Thus, in all experi-

ments in this work, initial firefly positions are generated

using the logistic map equation, and parameter g was set

to 4.0.

3.2.2.2 Gauss/mouse chaotic map for tuning attractive-

ness The Gauss/mouse map is the best way to tune the

attractiveness parameter (b) of the FA [41]. Equation (11)

describes the Gauss/mouse map used in this study instead

of random parameters used in the conventional FA.

The Gauss=mouse map:

btþ1
chaos ¼

0 btchaos ¼ 0

1=btchaos mod ð1Þ otherwise

(

ð11Þ

Eq. (7) is then updated to

b ¼ ðbtchaos � b0Þe�cr2ij þ b0 ð12Þ

3.2.2.3 Adaptive inertia weight for adjusting randomiza-

tion The swarm-based algorithm can be improved by

reducing the randomness of its parameters as the iteration

proceeds. In the early stages of the search process, a high

inertia weight can boost global exploration (in searches of

new areas). However, in the late stages, the adaptive inertia

weight, which is reduced in each stage, can improve the

local exploitation of the optimal solution (finely tuning the

current search area). Inertia weight accelerates conver-

gence to the optimal solution and reduces the execution

time of the simulation. The adaptive inertial weight con-

trols the local exploitation and global exploration capa-

bilities of the swarm algorithm.

The above issue is addressed by using a monotonically

decreasing function of the inertia weight to change the

randomization parameter a in the conventional FA. Since

the adaptive inertia weight was used to adjust the ran-

domization parameter a, the distances between fireflies are

reduced to maintain the a within a reasonable range

[Eq. (13)].

at ¼ a0h
t ð13Þ

where a0 is the initial randomization parameter; at is the

randomization parameter at tth iteration; h is the random-

ness reduction constant (0\ h\ 1); and t is the number of

iterations. The selected value of h is 0.9 in this imple-

mentation based on several trials and experiments, and t [
[0, tmax], where tmax is the maximum number of iterations.

3.2.2.4 Lévy flights for controlling movement Random

walk theory plays a critical role in modern swarm intelli-

gence and evolutionary optimization algorithms. Lévy

flights are a random walk in which the step length is a Lévy

distribution. The step lengths have no characteristic scale,

i.e., the second moment or even the first moment may

diverge, and the distribution exhibits self-affine properties.

The steps form a random walk process with a power-law

step-length distribution with a heavy tail.
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Lévy flights are defined such that each jump, regardless

of size, takes one unit of time [42]. Lévy flights are used to

generate random numbers in two steps: random selection of

a direction and generation of steps that obey the selected

Lévy distribution. In this work, directions were generated

with uniform distributions. The Mantegna algorithm, which

is the most efficient, is used to generate steps from a

symmetric Lévy stable distribution. The step length s in the

Mantegna algorithm is calculated using Eq. (14).

L�evy � s ¼ u

vj j1=s
ð14Þ

where u and v are drawn from normal distributions, as

follows:

u � N 0; r2u
� �

; v � N 0; r2v
� �

ð15Þ

ru ¼
Cð1þ sÞ sinðps=2Þ
C½ð1þ sÞ=2�s2ðs�1Þ=2

� 	1=s

; rv ¼ 1 ð16Þ

where CðzÞ is the Gamma function

CðzÞ ¼
Z

1

0

tz�1e�tdt ð17Þ

A Lévy walk speeds up the local search by generating

new solutions around the best solution obtained so far. This

behavior is applicable for optimizing the search in opti-

mization problems, and preliminary results verify the

promise of so doing [43]. Therefore, Eq. (9) is revised to

Eq. (18).

xtþ1
i ¼ xti þ bðxtj � xtiÞ þ atsign[rand� 0:5� � L�evy ð18Þ

where the second term is the attraction; the attractiveness

parameter (b) is updated by Eq. (12); the third term denotes

the randomization that is associated with the Lévy flights

[Eqs. (14)–(17)]; and at is the randomization parameter

[Eq. (13)]. The product operator � indicates entry-wise

Begin     
Perform objective function f(x), x = (x1, ..., xd)T

Set the search space and the number of generation
Generate initial population of fireflies xi (i = 1, 2, ..., n) using logistic chaotic map
Determine light intensity Ii at xi by f(xi) 
Define light absorption coefficient 
Generate initial population, k = 0
while (t ≤ MaxGeneration) do

(1) Update the generation number, k = k +1  
     (2) Tune randomization parameter α by using adaptive inertia weight ( 0 0.9α α= ⋅ t ) 

(3) Tune attractiveness parameter β by using Gauss/mouse chaotic map
          for i = 1: no. fireflies
                     for j = 1: no. fireflies

if (Ij > Ii)
Move firefly i toward j in d-dimension by Lévy flight; 

end if
Vary attractiveness with distance r via exp[-γ*r]   
Evaluate new solutions and update light intensity 

end for j
end for i 

           Rank the fireflies and find the current best 
end while
Obtain and visualize post-process results

End

Fig. 1 Pseudocode for the

enhanced swarm intelligence

optimization algorithm

Initialization

SFA operation:
Firefly algorithm

Chaotic maps
Adaptive inertia weight

Lévy flight

Yes

No
Evaluate objective 

function (fitness value)

Train LSSVR model 
with (C, σ)

Determine 
parameters (C, σ)

Smart firefly algorithm

Optimal parameters (C, 
σ) for kth fold

The optimized 
prediction model

Calculate performance 
measures 

Test data Dataset 
(k folds)

Least squares support 
vector regression

Stopping 
criteria reached?

Data for learning 
(100-P)% for validation

P% for training  

MATLAB GUIDE

Fig. 2 Flowchart of system building and evaluation process
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multiplication. The term sign[rand - 0.5] with rand [ [0,

1] denotes a random sign or direction when the random

step length is drawn from a Lévy distribution. Figure 1

presents the pseudocode of the enhanced swarm intelli-

gence optimization algorithm.

3.3 Swarm intelligence optimized regression system

This study developed the SIOR system that integrates

LSSVR with the enhanced swarm intelligence optimization

algorithm (i.e., SFA). The SIOR system is used to predict

the peak shear strength (peak friction angle) of composite

FRS, in which the SFA is used to fine-tune the LSSVR

hyperparameters (i.e., C and r). For ensuring the general-

ization capacity of the proposed regression system, 10-fold

cross-validation algorithm as recommended in the litera-

ture [44] was used in this study.

Specifically, the dataset was randomly divided into

mutually exclusive 10 folds. Of these, 9 were used for

model learning, and the tenth fold was used for model

testing. This procedure was repeated 10 times with a rotary

fold as test data. Each time, P% (0\P\ 100) of learning

data (training data) was used to train the SIOR system,

(100 - P)% of learning data (validation data) was used to

validate the optimal LSSVR hyperparameters. Notably, the

P value can be customized by trial experiments for a par-

ticular dataset and is usually set as 60–90 for most cases.

Test data were then used to evaluate the learning perfor-

mance of the LSSVR model after optimization. Figure 2 is

a flowchart of the process used to build and evaluate the

proposed SIOR system.

The objective function of the SFA is derived from the

RMSE value of validation data. Equation (19) describes

the fitness function of the SFA.

The objective function: f ðC; rÞ ¼ RMSE
Optimization
Validation�data

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nv

X

nv

i¼1

ðy0 � yÞ2
s

ð19Þ

Search space: Cmin �C�Cmax and rmin � r� rmax

Maximum iteration: tmax

where f(C, r) is the fitness functions of the SFA opti-

mization algorithm; RMSE
Optimization
Validation�data is the root-mean-

square error calculated according to the predicted (y0) and
actual (y) values based on the validation data; nv is the

sample size of validation data; Cmin, Cmax, rmin, rmax, and

tmax are user-defined constants based on a series of trial

experiments.

Figure 3 presents the pseudocodes for the SIOR model.

The firefly search parameters are initialized via a logistic

chaotic map operator [Eq. (10)]. The inside loop of the

firefly search process is performed as follows: (1) to ded-

icate the ‘‘AlphaNew’’ function, modify the initial value of

1. Initialization stage
Subdivide the data into k subsets as learning data (training data and validation data) and 
test data
Initialize search parameters via chaotic map operator (logistic map)
Set the initial population, the number of generations in each stage, and the boundary of 

optimized parameters. 
2. Perform k folds such that, for each fold, the following steps are performed
while (t < MaxIterations) do
2.1 Perform optimization procedure via SFA

(1) AlphaNew          \\ 0 *0.9tα α= (Adaptive inertia weight)
(2) BetaNew            \\ Vary β via chaotic map operator (Gauss/mouse map)
(3) Evaluate SFA     \\ Call f(m) from step 2.2 
(4) SortSFA             \\ Sort fitness values and go to step 2.3 
(5) MoveSFA           \\ Random component has altered by Lévy flight 

end while
2.2 SFA-LSSVR function validation 

Set the kernel (rbf) and loss-function (least-square) parameters
Train model with hyperparameters ( , )C σ
Evaluate the trained (optimized) LSSVR model using validation data
Determine the fitness function f(C,σ) and go to step 2.1 (4) 

2.3 Have the stopping criteria been met? 
         If the criteria have been met, go to step 3. 
         Otherwise, go to step 2.1 (5). 
3. Optimized LSSVR model 

Incorporate the identified kernel parameters into the model learning
Calculate the average accuracy over the k test folds

4. Plot stage 
Evaluate the post-process results and visualize the results
Confirm the best solution

Fig. 3 Pseudocode for the

swarm intelligence optimized

regression model
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parameter a by multiplying it by 0.9t (adaptive inertia

weight) [Eq. (13)]; (2) use the Gauss/mouse chaotic map to

compute the ‘‘BetaNew’’ function [Eq. (12)]; (3) use the

‘‘EvaluateSFA’’ algorithm to evaluate LSSVR solution

quality via the fitness function f(C, r) [Eq. (19)]; (4) use
the ‘‘SortSFA’’ function to select the individual with the

best fitness in the population; finally, (5) use ‘‘MoveSFA’’

to move the firefly toward more attractive individuals via

Lévy flight in the search space [Eq. (18)].

The proposed SIOR system was implemented in

MATLAB environment, and MATLAB GUIDE was used

to design a user-friendly interface. Figure 4 illustrates the

operating procedure with the system interface built in the

MATLAB GUIDE environment. The SIOR system inter-

face has three main parts: (1) initial parameter settings for

the swarm intelligence optimized regression model; (2)

data preparation, selection of objective function, and option

of evaluation method; and (3) performance or prediction

results. The initial parameter settings can be set to default

values, or they can be customized by users. In the SIOR

system, each firefly represents a possible solution, and its

light intensity is inversely proportional to its objective

function value. After the stopping criteria are reached, the

best solution is defined as the firefly with the highest light

intensity.

3.4 Evaluation theory

3.4.1 Performance measures

The prediction accuracy of the proposed system was

evaluated in terms of R, RMSE, MAE, and MAPE. Table 1

Data preparation
Objective function 
Evaluation method

Performance or prediction  results

Data 
preprocess

Objective 
function
Learning 
data

Stopping 
criteria

Data source

Cross-
validation

Performance measures for 10 fold cross-
validation

Initial settings for swarm intelligence optimized regression model: initial population, maximum generation, FA 
parameters, parameters of metaheuristic components, and search space or range of C and sigma.

Average performance measures

Purpose

Fig. 4 SIOR system interface
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summarizes the calculation formulas for these indexes. The

R is a common measure of the fit of the curve to the actual

data. The RMSE is computed to find the square error of the

prediction compared to actual values and to find the square

root of the summation value. That is, the RMSE is the

average distance of a data point from the fitted line mea-

sured along a vertical line. This tool efficiently identifies

undesirably large differences. The MAE is a measure of the

difference between a forecasted value and the actual value.

It computes the average magnitude of errors between pre-

dicted and actual values, disregarding direction of errors.

The MAPE is a statistical measure of the performance of

predictive models. Because it gives relative values, it is

unaffected by the size or unit of actual and predicted values

for fairly comparing models.

3.4.2 Cross-fold validation method

Predictive performance is often validated by using a k-fold

cross-validation algorithm to minimize bias associated with

randomly sampled training and test data. Since cross val-

idation randomly assigns individual cases into distinct

folds, the folds themselves are often stratified. In stratified

k-fold cross validation, the proportions of predictor labels

(responses) in the folds approximate those in the original

dataset. Since 10 folds are considered optimal [44], 10-fold

cross validation was used to justify the predictive consis-

tency of the model. The performance of the proposed

model is measured in terms of average R, RMSE, MAE,

and MAPE.

4 System evaluation

4.1 Data collection and descriptive statistics

The experimental data for the 300 valid samples were

collected from 20 FRS-related studies published during

1983–2015 [1, 4, 25–27, 30, 32–34, 45–55]. The shear

strength of FRS is affected by many factors, including fiber

characteristics, soil properties, and stress conditions. These

factors have been conducted by various researchers in the

above 20 literatures. Since these factors have been vali-

dated in several studies, they were used to predict FRS

shear strength.

The complete dataset was divided into two parts, using

the cross-validation algorithm: a learning dataset contain-

ing 270 samples and a test dataset containing the remaining

data (30 samples). The 70% of learning dataset (189

samples) serving as training data was used to train the

SIOR system. The remainder of learning dataset (81 sam-

ples) serving as validation data was used to determine the

optimal LSSVR hyperparameters C and r. After optimal

hyperparameters were identified by the SFA, test data were

then used to evaluate the learning performance of the

LSSVR.

Table 2 describes the statistical attributes of the dataset.

The predictor variables are fiber type (X1), fiber length

(X2), fiber diameter (X3), fiber content—volume percentage

(X4), fiber content—weight percentage (X5), fiber gravity

(X6), soil type (X7), soil grade (X8), soil D50 (X9), soil

friction angle (X10), cohesion (X11), unit weight of dry soil

(X12), soil interface coefficient (X13), fiber–soil interface

friction angle (X14), confining pressure/normal stress (X15).

Fiber types (X1) in the dataset included nine types:

polypropylene or polyprop (PP), polyamide, steel, glass,

reed, coir, palm, polyester (PET), and unreinforced. Soil

types (X7) include fine sand, medium sand, medium dune,

medium mortar, and coarse sand. Soil grade (X8) consists

of SP (poorly graded sand) and SW (well-graded sand)

according the Unified Soil Classification System (USCS).

The response is FRS friction angle (Y).

4.2 Analytical results and discussion

As discussed above, obtaining accurate solution for the

shear strength of FRS requires optimization of the LSSVR

hyperparameters, including the regularization parameter

Table 1 Mathematical

formulas for performance

measures

Measure Formula

Linear correlation coefficient (R)
R ¼ nd

P

y�y0�
P

yð Þ
P

y0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nd
P

y2ð Þ�
P

yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nd
P

y02ð Þ�
P

y0ð Þ2
q

Mean absolute percentage error (MAPE) MAPE ¼ 1
nd

Pnd
i¼1

y�y0

y



















Mean absolute error (MAE) MAE ¼ 1
nd

Pnd
i¼1 y� y0j j

Root-mean-square error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nd

Pnd
i¼1 ðy0 � yÞ2

q

y0 = predicted value; y = actual value; and nd = number of data samples
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(C) and sigma (r) of the RBF kernel. Consequently, this is

a two-dimensional optimization problem. In this study, the

SFA was served as a search engine to optimize the C and r.
Table 3 shows the setting for the SFA parameters during

the optimization process. Particularly, the values of C and

r are set to large ranges of [0.001, 1012] and [0.001, 103],

respectively. Population size of the SFA (i.e., the number

of LSSVR hyperparameter pairs, C and r) is set 50. The

optimal hyperparameters of the LSSVR are obtained when

the stopping criteria are reached, which is set as maximum

iteration of 25 or consecutive rates of change in the

objective function values less than 0.000001.

Table 4 presents the optimal values of LSSVR hyper-

parameters, including C and r for 10 folds of the dataset.

Table 2 Statistical parameters

for fiber-reinforced soil dataset
Attribute Symbol Type Unit Min Average Max

Fiber type X1 Category n/a – – –

Fiber length, Lf X2 Numeric mm 6.000 27.344 51.000

Fiber diameter, Df X3 Numeric mm 0.010 0.301 1.250

Fiber content–volume percentage, Xf X4 Numeric % 0.170 1.014 5.530

Fiber content–weight percentage, vm X5 Numeric % 0.100 1.095 6.549

Fiber gravity X6 Numeric – 0.580 1.610 7.850

Soil type X7 Category n/a – – –

Soil grade X8 Category n/a – – –

Soil D50 X9 Numeric mm 0.090 0.409 1.450

Soil friction angle, / X10 Numeric � 26.400 34.400 43.000

Cohesion (c0) X11 Numeric kPa 0.000 0.178 6.900

Unit weight of dry soil X12 Numeric kN/m3 12.998 15.621 18.394

Soil interface coefficient (ci,/) X13 Numeric – 0.370 0.765 1.326

Fiber–soil interface friction angle (/w) X14 Numeric � 16.000 24.019 40.000

Confining pressure or normal stress,

r30 or rn
X15 Numeric kPa 20.000 174.970 600.000

FRS friction angle /f Y Numeric � 31.700 40.409 67.400

Fiber types (X1) include polypropylene or polyprop (PP), polyamide, steel, glass, reed, coir, palm, polyester

(PET), and unreinforced. Soil types (X7) include fine sand, medium sand, medium dune, medium mortar,

and coarse sand. Soil types (X8) consist of SP (poorly graded sand) and SW (well-graded sand)

Table 3 Parameter settings for the enhanced swarm intelligence optimization algorithm

Parameter Purpose Setting

No. of fireflies Population size 50

Max generation Stopping criteria 25

Logistic chaotic map Generate initial population with high diversity Random generation based on Eq. (10), biotic

potential g is set to 4

bmin Minimum value of attractiveness parameter b 0.1

c Absorption coefficient 1

Gauss/mouse chaotic

map

Automatically tune b parameter Random generation based on Eq. (12)

a Randomness of firefly movement ao = 0.2

Adaptive inertia

weight

Control the swarm algorithm’s local and global exploration

capabilities

h = 0.9

Lévy flight Speed up the local search by generating new solutions around

the best solution

s = 1.5
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The results show that for predicting the peak shear strength

of FRS, SFA optimizes the ranges of C and r as [445.8886,

10e?6] and [4.1334, 10e?3], respectively, in the cross-

fold validation procedure.

Table 5 shows the performance measures obtained by

the proposed SIOR system during the learning and test

phases. The SIOR system had average R, RMSE, MAE,

and MAPE values of 0.958, 2.125�, 1.222�, and 2.86%,

respectively, for the FRS test data, which demonstrated the

effectiveness of the system. Notably, in the cross-fold

validation procedure, the best MAPE value obtained by the

proposed system was 2.01% at fold 8, and the best R value

was 0.986 at fold 6.

Figure 5 displays the observed (actual) and predicted

peak friction angles of FRS with their performance

measures in test data for 10 folds. The linear correlation

patterns demonstrated the good prediction perfor-

mance for the peak shear strength property of randomly

distributed FRS.

The performance of the proposed system is also com-

pared with that of the baseline LSSVR and widely used

empirical methods proposed by Zornberg [3] and Micha-

lowski and Zhao [34]. Moreover, Najjar et al. [5] suggested

that the empirical methods are unsuitable when confining

pressure is higher than 400 kPa or aspect ratio of fibers is

larger than 200 which is a very thin fiber. Thus, FRS

samples with the above properties were excluded from the

dataset when using empirical methods to calculate FRS

shear strength.

All inputs shown in Table 2 are used in comparison with

the proposed SIOR system and the baseline LSSVR

(namely group 1). To fairly compare performance between

the proposed system and the empirical method proposed by

Michalowski and Zhao [34], the considered inputs are fiber

aspect ratio gf (Lf=Df ), soil friction angle /, fiber–soil

interface friction angle /w, and fiber content–volume per-

centage Xf (namely group 2). Likewise, to compare per-

formance between the SIOR system and the empirical

method proposed by Zornberg [3], the inputs are soil

friction angle /, fiber aspect ratio gf, fiber content–volume

percentage Xf, soil interface coefficient ci,/, and fiber–soil

interface friction angle /w (namely group 3).

Table 4 Optimal values for least squares support vector regression

hyperparameters

Fold No. Regularization parameter (C) Sigma parameter (r)

1 2.114e?4 204.2528

2 1.796e?4 66.8431

3 1.027e?5 924.7595

4 1.059e?4 74.3376

5 9.811e?5 1000.0000

6 1.805e?4 4.1334

7 2.018e?4 213.2658

8 8.534e?4 1000.0000

9 10e?6 952.5887

10 455.8886 47.8604

Table 5 Performance measures

obtained by the SIOR system
Fold

No.

Learning data Test data

R RMSE (�) MAE (�) MAPE (%) R RMSE (�) MAE (�) MAPE (%)

1 0.998 0.508 0.296 0.69 0.977 2.043 0.999 2.36

2 1.000 0.000 0.000 0.00 0.906 3.349 2.164 5.22

3 0.999 0.324 0.155 0.36 0.940 2.423 1.482 3.57

4 0.995 0.772 0.513 1.20 0.912 2.821 1.497 3.29

5 0.993 0.882 0.545 1.26 0.982 1.694 0.912 2.19

6 0.991 1.048 0.671 1.57 0.986 1.374 0.893 2.16

7 0.983 1.439 0.943 2.20 0.953 2.249 1.282 2.92

8 0.994 0.821 0.503 1.16 0.985 1.318 0.871 2.01

9 0.991 1.002 0.636 1.48 0.982 1.595 0.894 2.04

10 0.997 0.627 0.360 0.83 0.956 2.381 1.220 2.83

Min 0.983 0.000 0.000 0.00 0.906 1.318 0.871 2.01

Average 0.994 0.742 0.462 1.07 0.958 2.125 1.222 2.86

Max 1.000 1.439 0.943 2.20 0.986 3.349 2.164 5.22

SD 0.005 0.404 0.271 0.632 0.030 0.653 0.411 0.994
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Fig. 5 Observed and predicted peak friction angles of FRS in test data for 10 folds
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Table 6 Performance measures for the proposed system, the baseline model, and methods reported in the literature

Model/method Performance measure Improvement (%)

R RMSE

(�)
MAE

(�)
MAPE

(%)

R RMSE MAE MAPE

Group 1—considered 15 inputs

Baseline LSSVR 0.716 5.759 4.129 10.19

SIOR system (15 inputs) 0.958 2.125 1.222 2.86 33.8* 63.1* 70.4* 71.9*

Group 2—considered 5 inputs (X2, X3, X4, X10, X14)

Michalowski and Zhao

[34]

0.660 7.450 5.220 10.60

SIOR system (5 inputs) 0.888 3.539 1.630 3.62 34.5* 52.5* 68.8* 99.7*

Group 3—considered 5 inputs (X2, X3, X4, X10, X13)

Zornberg [3], a = 1 0.790 5.480 4.240 9.80

SIOR system (5 inputs) 0.852 4.440 1.507 5.42 7.8** 19.0** 64.5* 44.7*

Measurements of performance improvements and hypothesis testing results are calculated using average performance measures

*, ** Significant levels higher than 1 and 5%, respectively
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For the three above groups, Table 6 shows the perfor-

mance evaluation results obtained by the proposed system

and those obtained by other methods. Figure 6 depicts the

prediction accuracy of the methods. The comparison results

for group 1 confirmed that performance of the SIOR sys-

tem is better than that of the baseline LSSVR in terms of all

performance indexes. The accuracy of predictions of peak

shear strength of FRS obtained by the SIOR system is

significantly improved and reaches 33.8%, 63.1%, 70.4%,

and 71.9% in R, RMSE, MAE, and MAPE, respectively.

Similarly, compared with the empirical methods used in

group 2 and group 3, the numerical results indicate that the

proposed SIOR system outperformed the methods pro-

posed by previous studies [3, 34]. Particularly, the pro-

posed system improved R, RMSE, MAE, and MAPE by

34.5/7.8%, 52.5/19.0%, 68.8/64.5%, and 99.7/44.7%,

respectively, with the significant level higher than 1 or 5%

(Table 6). Therefore, the hypothesis tests confirmed that

the accurate and reliable prediction of shear strength of

FRS by the SIOR system was superior to those of other

predictive methods.

5 Conclusions

Fiber-reinforced soil is a promising alternative material for

civil engineering systems. Shear strength of FRS is influ-

enced complexly by many factors including fiber charac-

teristics, soil properties, and stress conditions. Accurately

estimating the shear strength of FRS is vital for civil
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engineers in designing geotechnical structures and man-

agement. Thus, this study developed a SIOR system in

MATLAB environment to predict the peak shear strength

friction angle of randomly distributed FRS.

This study makes three main contributions: Meta-

heuristic components are used to improve the efficacy of

the conventional swarm algorithm; the enhanced algorithm

effectively optimizes LSSVR hyperparameters. Thus,

accuracy in predicting FRS shear strength can be improved.

The proposed system was established by integrating the

LSSVR and the advanced swarm intelligence optimization

algorithm to assist civil engineers in designing optimally

FRS.

A cross-fold validation method was then used to justify

its generalization capability. In experiments performed

using FRS data collected from 20 studies published during

the 1983–2015, the results for the learning and test stages

suggested that the system is efficient for forecasting the

shear strength of randomly distributed FRS. The SIOR

system also simplifies analyses of how the shear strength of

FRS is affected by each mechanical and geometric char-

acteristic of soils and fibers.

Compared with the baseline LSSVR and previous

empirical methods, the proposed system yielded more

convincing results. Particularly, R, RMSE, MAE, and

MAPE improvements were 33.8%, 63.1%, 70.4%, and

71.9%, respectively, in comparison with the baseline

LSSVR. The system achieves MAPEs of 5.42% and

3.62%, and improves prediction accuracy by 44.7% and

99.7% compared to the conventional empirical meth-

ods [3, 34]. The SIOR system is a potentially superior

alternative for predicting FRS shear strength property.

Therefore, civil engineers can use the novel system to

achieve accurate and reliable prediction of shear strength in

randomly distributed FRS.
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