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Abstract In applications of algorithms, feature selection

has got much attention of researchers, due to its ability to

overcome the curse of dimensionality, reduce computa-

tional costs, increase the performance of the subsequent

classification algorithm and output the results with better

interpretability. To remove the redundant and noisy fea-

tures from original feature set, we define local density and

discriminant distance for each feature vector, wherein local

density is used for measuring the representative ability of

each feature vector, and discriminant distance is used for

measuring the redundancy and similarity between features.

Based on the above two quantities, the decision graph score

is proposed as the evaluation criterion of unsupervised

feature selection. The method is intuitive and simple, and

its performances are evaluated in the data classification

experiments. From statistical tests on the averaged classi-

fication accuracies over 16 real-life dataset, it is observed

that the proposed method obtains better or comparable

ability of discriminant feature selection in 98% of the

cases, compared with the state-of-the-art methods.

Keywords Feature selection � Decision graph � Local
density � Discriminant distance

1 Introduction

Feature learning is an important step in machine learning

and data mining, which has been widely applied in many

big data analysis domains, such as gene microarray data,

text data and image sequences in video processing. There

are two ways to generate features from data samples: fea-

ture transformation and feature selection. New features

generated from feature transformation are some combina-

tions of original features, while new features from feature

selection are just a subset of original features. As a

dimensionality reduction method, feature selection can

effectively remove redundant features which are irrelevant

to data classification task and retain a small number of key

features, which not only reduce computational complexity

of data classification or clustering, but also improve

accuracy of machine learning algorithms. Compared with

feature transformation, the selected features have better

explanations, since they are the subset of original high-

dimensional features, which have specific physical mean-

ings. Therefore, it has obtained many attentions from

researchers.

From the point of view of combinational optimization,

feature selection is a NP-hard problem [1]. Essentially,

feature selection aims to rank features with their impor-

tance and then select the most important features for sub-

sequent data analysis. Therefore, feature selection methods

are derived from different feature importance evaluation

criteria. According to independence between the feature

generation process and follow-up training process of

learning model, feature selection methods can be divided
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into two categories: packaging and filtering. According to

whether labels of samples are used in feature selection

process, it can be divided into supervised and unsupervised

methods. Generally, packaging methods are commonly

used in supervised feature selection algorithm design, and

filtering methods are commonly used in unsupervised

feature selection algorithm design.

Supervised methods usually select features based on

correlations between features and labels. For example,

according to correlations, Relief proposed by Kira et al. [2]

firstly puts different weight for each feature and then

deletes irrelevant features with a preset threshold. The

original Relief algorithm only applies to binary classifica-

tion problem; in order to deal with multi-classification

problems, Kononeill et al. proposed an improved method

named Relief-F [3]. FOCUS-SF [4] finds the minimum

subset of features that is consistent with labels by searching

all feature subsets exhaustively. Due to the high compu-

tational complexity, FOCUS-SF is not suitable for high-

dimensional feature selection. Correlation-based feature

selection (CFS) [5] takes the correlation between feature

and feature or feature and class as evaluation index of

feature importance, and then, the optimal feature subset can

be found under a specific search strategy. Fast correlation-

based filter (FCBF) [6] introduces concept of dominant

correlation to evaluate feature importance. Since feature

selection can be seen as a special kind of subspace learn-

ing, Nie et al. [7] formulate the feature selection process as

trace ratio criterion-based graph embedding optimization

problem, in which each column of projection matrix from

high-dimensional data to low-dimensional representations

is constrained as one-hot code.

In many applications, there are a large number of

unlabeled data, since it is time-consuming to obtain sample

labels, so unsupervised feature selection methods have

wider range of applications. For example, Wei et al. [8]

propose maximum overall dependence-based forward

orthogonal search algorithm (FOS-MOD) for feature

selection, which takes the representative ability of one

feature to others as feature importance evaluation index.

The similarity between two features can be measure by

squared correlation coefficient in FOS-MOD, and then, the

optimal features can be obtained by selecting features with

largest squared correlation coefficient step by step. Li et al.

[9] take sample margin and hypothesis margin of each

feature as feature importance evaluation index, respec-

tively, and then select features based on sequential back-

ward method, which can be classified by support vector

machine (SVM). Recently, hybrid feature selection algo-

rithms have gained great importance in terms of timeliness.

For example, Brahim et al. [29] proposed a feature selec-

tion method to design an intelligent assistance sleep scor-

ing system. Based on instance learning, Sen et al. [30]

proposed a filter wrapper method for feature selection by

cooperative subset search.

Information theory is a powerful mathematical tool for

description of the interaction between variables. Based on

some concepts of information theory, such as mutual

information and entropy, it has generated a lot of unsu-

pervised feature selection algorithms. For example, Dash

et al. [10] proposed a consistency measure of feature subset

for any search strategy, which assumes that the categories

of samples with same feature subset should be the same. In

addition, the concept of entropy is used to measure whether

the dataset has obvious clusters, which can also be used as

the feature importance measure [11]. Mitra et al. [12]

proposed an unsupervised feature selection method based

on maximum information compression coefficient, which

is defined as the minimum eigenvalue of covariance matrix

between two random variables. Since the projection

direction corresponding to minimum eigenvalue is

orthogonal to directions corresponding to the principal

components, it can be used to measure dissimilarity

between the two features vectors, and then, redundant

features can be eliminated. Peng et al. [13] proposed a

mutual information-based maximum statistical dependence

criterion for incremental feature selection. For computa-

tional efficiency, maximum statistical dependence can be

transformed into minimum redundancy maximum correla-

tion (mRMR) model. The mRMR model has been suc-

cessfully used for handwritten digital images feature

selection [14]. Based on mutual information, Xu et al. [15]

use minimum redundancy and maximum correlation to

evaluate feature importance, where the correlation is the

degree of dependence between a feature vector and its

potential class, and redundancy is the degree of dependence

between two features. Both of them can be measured by

mutual information. Bandyopadhyay et al. [16] proposed

an unsupervised feature selection method based on dense

subgraph discovery, in which each feature vector can be

viewed as a vertex of the graph, and the mutual information

between feature vectors can be viewed as the weight of

edge on the graph. After finding the dense subgraph,

optimal features can be selected by clustering.

Since manifold can model the low-dimensional structure

of datasets, it has been used in unsupervised feature

selection. Because the intra-class samples are also locally

nearby, Laplacian Score [17] uses the locality preserving

ability of a feature to describe its importance. Based on

spectral graph theory, Zhao and Liu [18] unify supervised

and unsupervised feature selection into a framework. After

the similarity between two samples is defined, the structure

of dataset can be described as a graph, and then, the nor-

malized graph cut can be used as the feature importance

measure. In order to fully exploit the discriminant structure

of datasets, Cai et al. [19] proposed a multi-cluster feature
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selection method (MCFS) [19], in which the original high-

dimensional dataset is firstly projected into low-dimen-

sional space by spectral embedding; then, the linear

dependence relationship between high-dimensional sample

and its low-dimensional representation can be obtained by

L1 norm regularized regression problem, and the features

corresponding to largest sparse representation coefficients

are optimal features. Yang et al. [20] propose an unsu-

pervised discriminant feature selection method (UDFS), in

which samples are assumed to be linearly separable; then,

according to linear relationship between a sample and its

local label, the optimal discriminant feature subset can be

obtained by maximizing the local interclass scatters and

minimizing the local intra-class scatters, simultaneously

minimizing L2,1 norm of linear classification coefficient

matrix. In addition, the label information of samples can be

obtained through clustering, and then, the label information

can guide the discriminant feature extraction, so Li et al.

[21] proposed a nonnegative discriminant feature selection

method (NDFS), which unified spectral clustering and

feature selection into an optimization objective, the indi-

cator matrix of cluster is constrained to be nonnegative.

Similarly, Du et al. [22] proposed a local and global dis-

crimination learning-based feature selection method

(LGDFS), in which the weighted L2 norm regularized

regression models are optimized simultaneously locally

and globally, and then, the optimal feature subset can be

obtained from feature indicator matrix. Many manifold

learning-based feature selection methods can be unified

into a similarity preserving feature selection (SPFS)

framework [23], which is equivalent to multivariate multi-

output regression problem essentially. Different con-

straints, regularization conditions and optimization strate-

gies result in different feature selection methods.

The integration of clustering and unsupervised feature

selection can improve the discriminant ability of selected

feature subset. Liu et al. [24] proposed a K-means-based

feature selection method (KFS) for text clustering. After

selecting different K and initialization samples to get dif-

ferent clustering results, the feature importance can be

computed by v2 statistics on these clustering results, and

then, the optimal feature subset can be obtained by ranking

the sum of different feature importance computations.

Similar to principal component analysis, principal feature

analysis (PFA) [25] projects each feature vector into the

subspace with maximum variance, in which all features are

clustered by K-means, and then, the optimal feature subset

can be obtained by the distance between the feature vector

and its corresponding cluster center. Song et al. [26] pro-

posed a clustering-based fast feature selection algorithm

(FAST), which divides feature set into different clusters by

minimum spanning tree-based clustering method, and then,

the most representative features related to classification are

selected from each cluster. Yan and Yang [27] proposed a

sparse discriminant feature selection method (SDFS) by

minimizing intra-class reconstruction residuals and maxi-

mizing interclass reconstruction residuals, in which the L2,1
norm minimization can remove the redundant features

effectively.

However, manifold learning methods rely heavily on

data graph construction, and they are very sensitive to

noises or corruptions. On the other hand, the features

related to classification or clustering tasks are also corre-

lated, so the most feature selection methods cannot reduce

the redundancy of selected feature subset effectively. This

paper proposed a decision graph-based feature selection

(DGFS). Decision graph is a powerful tool for discovering

clustering structure of feature set. The feature centered on

each cluster is most representative and has minimum

redundancy to others. Compared with other methods,

DGFS has an intuitive principle and simple computation.

The classification experiments on face datasets and UCI

datasets show that DGFS can reduce the redundancy

information contained in feature set effectively, and the

selected features have a better ability of discriminant.

2 Decision graph-based feature selection

2.1 Problem formulation

For concise description, the observed samples are repre-

sented as a data matrix, i.e., n m-dimensional samples can

be denoted as X ¼ ðx1; x2; . . .; xnÞ 2 Rm�n, where each

column of X is an observed sample, and each row of X is a

feature vector or attributes of observed samples. If the ith

feature vector of dataset X is denoted as fi, then the data

matrix can also be rewritten as X ¼ ðf1; f2; . . .; fmÞ. Feature
selection aims to select r features from m features,

according to a specific feature importance evaluation cri-

terion, such that the redundancy or correlation between

these r features is small, and meanwhile, they can preserve

most information contained in the original dataset.

2.2 Decision graph

In order to recognize most discriminant features in original

high-dimensional data samples, the concept of decision

graph [28] is introduced as follows.

Definition 1 Local density qi on feature vector fi is

defined as

qi ¼
Xm

j¼1

h dc � dij
� �

ð1Þ
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where dij is the Euclidean distance between feature vectors

fi and fj, and dc [ 0 is a preset threshold or truncated

distance, and h �ð Þ is an indicator function which can be

defined as:

h tð Þ ¼ 1 t� 0

0 t\0

�

According to Definition 1, local density on each feature

vector is the number of features contained in a neighbor-

hood ball which is centered in the feature vector with a

positive radius. Large qi indicates dense feature distribu-

tion in the neighborhood of feature vector fi. Therefore, it is

reasonable to use qi as descriptor for distribution of feature

set. In applications, any other similar definitions of local

density can be used, such as

qi ¼
Xn

j¼1

e
dij
dc

� �2

ð2Þ

Definition 2 Discriminant distance di on feature vector fi
is defined as:

di ¼
min

j:qj [ qi
dij
� �

qi 6¼ max
j

qj
� �

max
j

dij
� �

qi ¼ max
j

qj
� �

8
<

: ð3Þ

According to Definition 2, discriminant distance on each

feature vector is its distance from nearest feature vector

with higher local density. Specially, discriminant distance

on the feature vector with maximum local density is the

maximum distance between it and other feature vectors.

For the feature vectors with large local density, they may

be in the same cluster or may be in the different clusters. If

their discriminant distance is large, the probability that they

are in different clusters is great too. For this reason,

discriminant distance on each feature vector characterizes

the separability of different clusters in the dataset.

Definition 3 The decision graph of feature set X is a

scatter plot with qi; dið Þ, in which qi is the horizontal

ordinate that represents local density of feature vector fi,

and di is the vertical ordinate that represents discriminant

distance of feature vector fi.

According to Definition 3, the feature points on the top-

right corner of decision graph have larger local densities

and discriminant distances, and they have higher proba-

bility to be clusters of features. Therefore, it is intuitive to

evaluate feature importance with decision graph. For

example, given two different means and covariance

matrices, 40 points are generated randomly in two-di-

mensional plane, which contains two clusters, each of

which has 20 points distributed normally and numbered

with different colors in Fig. 1. From Fig. 1, we can intu-

itively find that the points with small distances have large

similarities. The decision graph of points in Fig. 1 is shown

in Fig. 2, in which point 7 and point 26 are obviously

separated with others, and both of them may be cluster

centers. In fact, it is identical with real case. Compared

with Fig. 1, point 7 is the cluster center of first 20 points

marked with red color, and point 26 is the cluster center of

latter 20 points marked with blue color. Therefore, it is

reasonable to identify cluster centers from decision graph.

2.3 Feature importance criteria

Firstly, suppose that feature set has typical cluster struc-

ture, i.e., the feature vectors with same or similar abilities

of description should be clustered together. Then, each

feature vector located in cluster center can be viewed as the

most representative feature of the cluster. Since the dis-

tance between feature vectors with lower correlations or

different abilities of description should be large, if the

clusters of feature set are recognized, then the subset

constructed by cluster centers can characterize the dis-

criminant ability of original feature set sufficiently.

Based on the above idea, the feature importance evalu-

ation criterion which is called decision graph score is

presented as follows.

Definition 4 Decision graph score ci on feature vector fi
is defined as follows:

ci ¼ qi � di ð4Þ

According to Definition 4, the larger the local density

and discriminant of a feature vector are, the higher the

decision graph score is, which corresponding to top-right

Fig. 1 Sample points in two-dimensional plane
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area of decision graph and the features in such area are

more important. By computing decision graph score of

each feature vector, the features corresponding to first

r largest scores can be selected as optimal feature subset, in

which the correlation between features is smaller and can

Fig. 2 Examples for decision graph

Fig. 3 Examples for decision graph Score

Table 1 Face datasets description

Dataset Dimensionality Number of samples Number of classes

ORL 4096 400 40

YaleB 1024 2414 38

Altkom 2576 1200 80

PIE 1024 11,554 68

AR 1260 1400 100

MPEG7 2576 3175 635
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Table 3 Statistical test results on face datasets

Dataset Laplacian Score MCFS UDFS NDFS Relief-F mRMR

ORL ?(0.015733) =(1) =(0.30456) ?(2.7544e-05) ?(0.01423) ?(0.0002636)

YaleB ?(8.495e-07) =(0.18385) ?(0.0093948) ?(0.0047223) =(0.1772) ?(2.9372e-05)

Altkom ?(0.0052011) ?(4.6641e-06) ?(0.00035143) ?(8.029e-05) ?(0.016538) ?(7.7615e-05)

PIE ?(1.8048e-05) =(0.611521) -(0.033101) =(0.589661) =(0.66634) ?(2.657e-05)

AR ?(0.00013818) =(0.86053) =(0.27486) ?(0.0052046) ?(0.03158) ?(6.056e-05)

MPEG7 ?(1.8105e-05) ?(0.0031185) ?(0.0024205) ?(1.9617e-06) ?(0.00055643) ?(7.3787e-06)

?/=/- 6/0/0 2/4/0 3/2/1 5/1/0 4/2/0 6/0/0

Fig. 4 Feature selection on

ORL dataset

Fig. 5 Feature selection on YaleB dataset

Fig. 6 Feature selection on

Altkom dataset

Fig. 7 Feature selection on PIE dataset

Fig. 8 Feature selection on AR

dataset
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be selected as better representatives that contain informa-

tion of original feature subset. Figure 3 shows decision

graph scores of 40 sample points in Fig. 1 with descending

order, where the first two sample points with highest

decision graph scores are No. 37 and No. 4 that deviates

from real case, but very close to real cluster center.

Based on the above definition and analysis, the proce-

dure of DGFS algorithm is summarized as follows:

Fig. 9 Feature selection on

MPEG7 dataset
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Fig. 10 Average accuracy versus different numbers of selected features on face dataset
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Input: feature matrix X, number of selected features r;

Output: feature subset Y.

Procedure:

Step 1: Compute local densities and discriminant dis-

tances of feature matrix X according to Eqs. (1) and (3).

Step 2: Compute decision graph score ci ¼ qi � di
according to Eq. (4).

Step 3: Sort decision graph scores with descending

order, and select features with first r largest scores as

optimal feature set Y.

3 Experimental results

3.1 Experimental setting

In order to verify the effectiveness of the proposed method,

in the experiments, we compare DGFS with other unsu-

pervised feature selection methods, such as Laplacian

score, multi-cluster feature selection (MCFS), unsuper-

vised discriminant feature selection (UDFS) and nonneg-

ative discriminant feature selection (NDFS). Before feature

selection, data deduplication is performed on the rows and

columns of data matrix, and then, all feature values are

normalized into vectors with unit norm. A good feature

selection method should make the selected feature subset

get a better classification result even by the simple classi-

fier, such as k nearest neighbor. In the experiments, fivefold

cross-validation is used to evaluate each method. Firstly,

the original high-dimensional dataset is divided into five

parts randomly, four parts of which as the training set and

one part of which as a test set in turn. Then, feature

selection methods are conducted on training set in each

partition, and the indices of selected features can also be

used in feature selection on testing set. Finally, the average

classification accuracy by nearest neighbor classifier on

selected features is reported. For the purpose of exploring

the statistical significance of the results, we performed

t test to statistically compare methods on multiple datasets.

In the experiments, parameters of each algorithm are

empirically set as follows: In DGFS, local density of each

sample is computed by Eq. (2), where the truncated dis-

tance dc is set as the distance at the position of two percent

of total distances between feature vectors with ascending

order. In Laplacian Score, neighborhood parameter k is set

to 5, and similarity between feature vectors is computed by

cosine metric. In MCFS, neighborhood parameter k is set to

5; in UDFS, regularization parameter is set to 0.01; and in

NDFS, parameter neighborhood is set to 5, and similarity

between feature vectors is computed by cosine metric, and

the number of maximum iterative steps is set to 30, and

regularization is set to 0.1.

3.2 Classification results on face datasets

Grayscale image dataset is typically high-dimensional after

stacking columns into a vector, which contains large

amount of redundant, irrelevant and noisy pixels, so it is

Table 4 Computational time

costs comparisons on face

datasets (s)

Dataset DGFS Laplacian Score MCFS UDFS NDFS Relief-F mRMR

ORL 3.20 0.08 1.05 467.61 78.71 0.59 2.86

YaleB 0.38 0.37 1.85 30.17 12.61 0.95 5.35

Altkom 1.63 0.27 2.58 121.56 32.56 1.26 3.92

PIE 1.82 6.40 12.30 483.05 170.79 4.73 18.39

AR 0.40 0.18 1.24 22.52 9.04 0.65 4.13

MPEG7 3.49 1.11 6.64 202.41 64.43 4.08 8.26

The comparison results with best performance are marked in bold

Table 5 UCI datasets

description
Dataset Dimensionality Number of samples Number of classes

Heart 13 296 2

Vote 16 435 2

Dermatology 34 366 6

Australian 14 690 2

Wine 13 178 3

Credit 15 690 2

Car 6 1728 4

E. coli 8 336 8

Seeds 7 210 3

WDBC 30 569 2
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necessary to select features before image analysis. The

classification results on six benchmark face image datasets,

such as ORL, YaleB, Altkom, PIE, AR and MPEG7, are

reported in the section.

Face datasets used in the experiments are given in

Table 1, wherein the ORL1 dataset is created by Bell Labs

of the University of Cambridge, which contains 400 ima-

ges, including 40 individual facial expressions (open eyes

or closed eyes, smiling or not), occlusion (wearing glasses

or not) and slight changes of pose; YaleB2 dataset is cre-

ated by computer vision and control center in Yale uni-

versity, which contains 38 individuals under strictly

controlled conditions of illumination and poses; Altkom3

dataset contains 80 individuals with 15 images for each

individual; PIE4 dataset is created by Carnegie Mellon

University, which contains 41,368 face images of 68

individuals under strictly controlled conditions of pose,

illumination and expression. The AR dataset5 contains

more than 4000 frontal images from 126 persons (70 men

and 56 women) with different facial expressions, lighting

conditions and occlusions. In the experiment, we choose a

subset which contains 50 males and 50 females. For each

person, 14 images with only illumination and expression

changes are selected. MPEG-7 content set of face images6

was provided by the Heinrich Hertz Institute of Germany,

which contains 3175 face images of 635 persons.

The classification results of each algorithm on different

datasets are given in Table 2, in which the average clas-

sification accuracy (%), standard deviation (%) and the

corresponding number of features that achieved the highest

average classification accuracy on five cross-validation

experiments are reported. From Table 2, we can see that

the average classification accuracy of Laplacian Score is

much lower than the other three methods, while in most

cases, the proposed DGFS method achieves the higher

average classification accuracy. In order to identify the

pairwise different significance between the proposed

DGFS method and other compared methods, t test is used

to make decisions for the null hypothesis that the pairwise

difference of optimal average accuracies between two

methods has a mean equal to zero. The t test results at the

5% significance level on the six face datasets are reported

in Table 3, where symbol ‘?’ denotes the DGFS method

that outperforms the compared method significantly

according to t test, while ‘-’ denotes the compared method
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that outperforms the DGFS method, and ‘=’ denotes that

there is no statistically significant difference between the

results obtained by the DGFS method and the compared

method. The obtained p values in t test are reported in

parentheses. Table 3 shows that the proposed DGFS

method has achieved a statistically higher accuracy than all

other compared methods on all the six face datasets in most

cases. Compared with Laplacian Score and mRMR, DGFS

is always better, while there is only one case that MCFS,

UDFS and Relief-F perform better than DGFS.

In order to analyze physical meaning of the selected

feature by each method intuitively, the optimal selected

features marked with red stars on the six face datasets are

shown in Figs. 4, 5, 6, 7, 8 and 9, in which the selected

features by Laplacian Score locate in continuous local area

of face image, and the pixels concentrated in those loca-

tions have small changes and with typical manifold struc-

ture, but cannot distinguish between different faces. While

the selected pixel features by MCFS, UDFS and NDFS are

more dispersed, the selected pixels by DGFS are mostly

concentrated on the positions of eyes, nose and mouths,

which also show that these parts play a key role for dis-

tinguishing different facial images, which is also consistent

with knowledge of human cognitive experience.

In addition, Fig. 10 shows the changes of average

classification accuracy with the number of selected features

each face dataset changes. In the experiment, the maximum

number of features we set as 100. As shown in Fig. 10,

with the increasing number of features, the classification

accuracy is also increasing. Within the 20 features, the

classification accuracy increases fast; after that, with the

number of features increasing, the accuracy increases

slowly. When they achieve the best results, the accuracy of

the most methods begins to stay stable. From Table 2 and

Fig. 10, we can see that, in most cases, the proposed DGFS

method not only selects a much smaller numbers of

features, but results in better classification performance as

well.

Table 4 lists the CPU time in seconds obtained from the

different algorithms on the six datasets. The UDFS and

NDFS work the poorest in terms of CPU time, while the

computational time costs of other methods are comparable.

This is due to the fact that the iterative optimizing pro-

cesses in UDFS and NDFS models are time-consuming

when the number of dimensionality of samples is large.

3.3 Classification results on UCI datasets

To further compare the effect of each feature selection

algorithm, ten most commonly used UCI datasets7 that are

from real-world applications, such as health, political and

economic fields, are used in the experiments, which are

given in Table 5, where Heart dataset is the diagnosis data

of patients with heart disease, Vote dataset is the voting

data from Republican and Democratic Congress, Derma-

tology dataset is the clinical and histopathological data for

six kinds of skin diseases, Australia dataset is the Aus-

tralia’s credit approval data, Wine dataset is the result of a

chemical analysis of wines grown in the same region in

Italy but derived from three different cultivars, Credit

dataset concerns credit card applications, Car dataset is the

car evaluation database, E. coli dataset contains protein

localization sites information, Seeds dataset is the mea-

surement of geometrical properties of kernels belonging to

three different varieties of wheat, and WDBC dataset is the

diagnostic Wisconsin breast cancer database. In the pre-

processing step, the missing values in original datasets are

manually set to 0 and non-numeric category attributes are

represented as integers.

Table 7 Statistical test results on UCI datasets

Dataset Laplacian Score MCFS UDFS NDFS Relief-F mRMR

Heart ?(0.033019) ?(0.015613) ?(0.016983) ?(0.00418) ?(0.02825) ?(0.024059)

Vote =(0.43256) =(0.13041) ?(0.031872) ?(0.038345) =(0.2483) ?(0.01968)

Dermatology =(0.17782) =(0.58699) =(0.38322) =(0.6313) =(0.99355) =(0.98877)

Australian ?(0.031481) =(0.34256) ?(0.028825) ?(0.032562) ?(0.04916) ?(0.028825)

Wine ?(0.033018) ?(0.042956) ?(0.029358) ?(0.033018) ?(0.033018) ?(0.033018)

Credit ?(0.0034361) ?(0.011273) ?(0.005262) =(0.18827) ?(0.026645) ?(0.049611)

Car ?(0.00019646) =(0.3739) ?(0.00066934) ?(0.00025654) ?(0.00043762) ?(0.00025788)

E. coli =(0.24371) =(0.24371) =(0.24371) =(0.24371) =(0.24371) =(0.24371)

Seeds ?(0.04057) ?(0.04657) ?(0.04057) ?(0.04057) ?(0.04057) ?(0.04057)

WDBC ?(0.006312) ?(0.006312) ?(0.04909) ?(0.042295) ?(0.048797) ?(0.029083)

?/=/- 7/3/0 5/5/0 8/2/0 7/3/0 7/3/0 8/2/0

7 http://archive.ics.uci.edu/ml/datasets.html.
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The classification results of each algorithm on different

datasets are given in Table 6, in which the average clas-

sification accuracy (%), standard deviation (%) and the

corresponding number of selected features that achieved

the highest average classification accuracy on five cross-

validation experiments are reported. The significance of

average accuracy differences is identified by the t test, in

which the null hypothesis is that the pairwise difference of

optimal average accuracies between any two methods

comes from a normal distribution with mean equal to zero

and unknown variance at the 5% significance level. As

shown in Table 7, DGFS performs better than other

methods.

Figure 11 shows the average classification accuracies

with different number of selected features. As shown in

Fig. 11, in Heart and Wine datasets, DGFS performs

significantly better than other methods, and the high

accuracy rate has been achieved with less feature values.

While in Vote, Dermatology and Seeds datasets, with

the increase of the number of features, the accuracy

values of different methods are tend to be the same. In

Australian dataset, the impact of the number of features

on the results is quite unstable. For instance, upon

analyzing the results of DGFS, MCFS and Relief-F

methods, classification performances tend to decrease

despite the increasing feature values. For Credit dataset,

high accuracy rate has been achieved with DGFS

method. A value close to this rate of accuracy has been

obtained by using 7 features with NDFS method. In Car

dataset, DGFS and MCFS have comparable perfor-

mances and perform better than others. High accuracy

value has been achieved with the proposed method by

using only one feature in E. coli dataset. In WDBC

dataset, high accuracy rate has been obtained by using

20 features with DGFS method, while other methods

perform comparably with the increasing number of

features.

4 Discussion and conclusion

In this paper, based on the concept of decision graph, an

unsupervised feature selection method is proposed. Since

the process of feature selection can be viewed as feature

clustering, the features as cluster centers can not only be

representative features of other features in the same cluster,

but also can discriminate with features in other clusters.

Therefore, the selected features have less redundancy and

can preserve the inherent information contained in original

feature set. To identify cluster centers of feature set, we

introduced the definitions of local density and discriminant

distance, which can be used to construct decision graph for

identifying cluster centers. Then, for evaluating feature

importance, the index named decision graph score is pro-

posed. Feature selection can be achieved by decision graph

score ranking.

In the experiments, the performance of DGFS method is

evaluated on 16 publicly available real-life datasets,

including 6 face datasets and 10 UCI datasets. The number

of features for these datasets varies from 6 to 4096, and the

number of samples ranges from 178 to 11,554. From

Tables 3 and 7, we can see that, at the significance level of

0.05, the proposed DGFS is statistically superior than the

state-of-the-art feature selection methods for data classifi-

cation, regardless of dimensionality and distributional

shape of data samples.
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