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Abstract In the present study, the level of nonlinear inter-

hemispheric synchronization has been estimated by using

wavelet correlation (WC) method for detection of emo-

tional dysfunctions. Due to non-stationary nature of EEG

series in addition to the assumption that the high-frequency

band is possibly associated with emotional activation, WC

has been applied to five distinct frequency band activities

(fba) (Delta: 0:5�4Hz, Theta: 4�8Hz, Alpha: 8�16Hz,

Beta: 16�32Hz, Gamma: 32�64Hz) embedded in non-

averaged single-trial EEG series mediated by convenient

affective pictures from International Affective Picture Sys-

tem. Experimental data were collected from both healthy

controls and patients, diagnosed with first-episode psy-

chosis, through a 16-channel EEG cap. WC estimations,

which are computed for eight electrode pairs (pre-frontal,

anterio-frontal, central, parietal, occipital, posterio-frontal,

anterio-temporal, posterio-temporal), in accordance with

each specified fba and emotional state (pleasant, un-

pleasant, neutral) have been classified by using Least

Squares Support Vector Machines with tenfold cross-vali-

dation to distinguish controls from patients. Results show

that the highest classification accuracies of 88.06, 86.39,

83.89% are obtained in Gamma with respect to neutral, un-

pleasant, and pleasant stimuli, respectively. In each group

(controls and patients), the largest WCs are observed at

anterio-frontal and central lobes; however, controls gen-

erate the high WC in response to pleasant stimuli, whereas

the patients generate the high WC in response to neutral

stimuli in Gamma. In conclusion, fronto-central lobes are

the most activated brain regions during emotional stimu-

lation by means of inter-hemispheric correlation. Gamma is

the most sensitive fba to visual affective pictures. Emo-

tional dysfunctions are found to be characterized by

decreased WC in pleasant state, increased WC in neutral

state in Gamma.

Keywords Emotion � Hemispheric asymmetry � Wavelet

correlation � Gamma

1 Introduction

Wavelet coherence is a time-frequency method which

estimates the phase lag between two non-stationary time

series in terms of wavelet transform (WT) [1, 2]. Due to

requirement of Fourier transform (FT) on stationary

assumption about EEG, this method has been used as better

alternative to conventional coherence function based on FT

to estimate the degree of cortical information flow between

two brain regions [3–7]. WT has also been used in several

algorithms for emotion recognition based on single-chan-

nel EEG analysis [8, 9]. Different from those studies,

Wavelet correlation (WC) has been applied to five fre-

quency band activities (fba) of EEG series, mediated by

affective pictures from IAPS [10], for classification of

controls and patients diagnosed with first-episode psy-

chosis (FEP) in the present study.

Schizophrenia has been considered as the most devas-

tating psychiatric disorder. Therefore, extraction of
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quantitative bio-markers for early detection of this impor-

tant disorder has become attractive field. As well, EEG

analysis could provide the appropriate and individual

treatment of beginning phase of schizophrenia so named

FEP. Instead of neuro-imaging modalities, EEG measure-

ment provides the more sensitive analysis to understand

cognitive brain functions during working memory acti-

vated by both auditory [11–15] and visual stimuli [16] as

well as mental task [17]. The affective pictures from

international database IAPS have been used for the first

time in order to detect beginning phase of schizophrenia in

the present study. Spectral power in Alpha has been fre-

quently obtained to differ discrete emotions to each other

[18–20]. Mostly, emotion recognition has been studied on

EEG analysis including event-related potential synchro-

nization in Gamma power [21–23].

Although, electro-myo-graphy (EMG) [29] and neuro-

imaging modalities [30] were used for emotion recognition,

EEG analysis was commonly found to be the most useful

nervous system parameters [24–28]. In fact, cognition and

emotion are commonly integrated by autonomic control

system for both generation and representation of visceral

changes in the human body. In detail, emotion is defined as

neurological inter-correlations between thalamus, cortex,

and limbic system [31–35]. In studies including inter-

hemispheric asymmetry estimation in fba, experimental

paradigm (memory working, attention, task-related, etc)

and stimulus type (auditory, visual, audio-visual, static vs

dynamic) are different from each other [25, 36, 37].

However, it was commonly stated that WT-based nonlinear

methods are convenient due to non-stationary nature of

EEG series. Therefore, WC has been applied to five fba of

single-trial non-averaged EEG series mediated by affective

pictures to obtain high-resolution phase coherence in both

time and frequency in the present study.

2 Methods

2.1 Data acquisition

2.1.1 Participants

In the present study, surface EEG series were collected

from 10 healthy male volunteers (aged from 19 to 24 with

mean age of 20:90� 2:6 years) and 10 young male vol-

unteers who had been diagnosed with first-episode psy-

chosis (aged from 19 to 23 with mean age of

20:77� 2:31 years). In controls, the inclusion criteria are

non-smoking, right-hand use, lacking a history of epilepsy

and stroke, and not to use medication. Experimental data

were collected by volunteers in Department of Biophysics

at Gülhane Research and Education Hospital (GREH) at

University of Health Sciences, Ankara, Turkey. Committee

of GREH approved the research protocol of this study on

November 4, 2014. In patients, the inclusion criteria are

stated by an expert physician with respect to international

clinical tests [Positive and Negative Syndrome Scale

(PANSS) and Brief Psychiatric Rating Scale (BPRS)]

which were presented by American Psychiatric Association

in references [38–40]. The quantitative test results of

patients are listed in Table 1. In this table, PANSS scores

are given in terms of negative (-n), positive (-p), and

psycho-pathology sub-index (-si).

2.1.2 Emotional stimuli and experimental protocol

Emotional stimuli were 56 static and colored affective

pictures (18 were pleasant, 18 were un-pleasant, and 20

were neutral) from a database so called IAPS which is

described in [10]. The categorization of pictures was done

by a rating policy such that a 9-point scale refers the level

of arousal (1 and 9 refer calm and excited, respectively)

and another 9-point scale refers the level of valence (1, 5,

and 9 refer unpleasant, neutral, and, pleasant, respectively).

The IAPS database includes 956 images with a wide range

of subjects such as happy human faces, happy couples, cute

babies, animals, household objects, car accidents, and war.

Each image was rated with two parameters (valence and

arousal) by a large group of participants. The request form

of images can be found on this link http://csea.phhp.ufl.

edu. The scoring policy on the pictures was verified by the

other physiological parameters such as skin conductance,

startle reflex, and heart rate in references [41, 42].

The average arousal and valence scores of selected 18

pleasant pictures were 7.5 and higher scores. The average

arousal and valence scores of selected 18 un-pleasant pic-

tures were 3.5 and lower scores. The average arousal and

valence scores of selected 20 neutral pictures were between

4.5 and 5.5. The number of those pictures is listed in

‘‘Appendix’’.

Table 1 Clinical test scores of patients (dm: duration in month)

Subject dm -n -p -si BPRS

1 4 35 21 51 48

2 1 25 19 42 36

3 0.5 16 28 46 45

4 4 14 11 33 29

5 2 17 19 44 40

6 1 17 13 34 30

7 1 32 15 59 58

8 5 34 24 47 55

9 1 21 18 36 34

10 2 21 18 36 34

1086 Neural Comput & Applic (2018) 30:1085–1094

123

http://csea.phhp.ufl.edu
http://csea.phhp.ufl.edu


In each individual experimental session, emotional

visual stimuli were presented on 17-inch computer screen

with a refresh rate of 60Hz. During data collection, vol-

unteers were placed in a recording room (band cut filter of

0:5500MHz, attenuation of 40 dB, temperature of 22 �C) in
a sitting position on a comfortable chair across the screen

with distance of 1:5m. The experiments did not include

either working memory or oddball task. At he beginning of

each experiment, two different neutral pictures were pre-

sented for 6 s followed by a 6-s inter-trial interval. Just

after showing these adaptation stimuli, the other pictures

were also displayed on that screen of 6 s with a visual

angle of 16� horizontally and 12� vertically in the fol-

lowing order: 6 pleasant, 6 neutral, 6 unpleasant, 6 neutral,

6 unpleasant, 6 pleasant, 6 unpleasant, 6 neutral, 6 pleasant.

Each picture was shown once in a single experimental

session. Following each affective picture, white blank

screen was shown of 6- to 12-s inter-trial interval. The

volunteers viewed the same 56 pictures in the same order in

individual session. They were not familiar with the affec-

tive pictures selected.

2.1.3 EEG measurements

Each affective stimulus was shown once in every individ-

ual session. The recording systems were 16-channel

Glonner Neurosys system-2000 (Glonner, Munich, Ger-

many). Prefrontal (Fp1, Fp2), frontal (F3, F4, F7, F8),

central (C3, C4), parietal (P3, P4), temporal (T3, T4, T5,

T6), and occipital (O1, O2) scalp activities were recorded

by using Ag/AgCl surface electrodes with respect to

international 10–20 electrode placement system. The

electrical impedances of electrodes were kept less than

5 kX. Analog signals were sampled by sampling frequency

of 250 Hz and were converted to digital sequences by using

16-bit analog-to-digital converter. The temperature of the

light-controlled recording room was set during experi-

ments. Both band-pass filter (0:318�70Hz) and notch filter

(50Hz) were applied to raw data. Single-trial raw EEG

measurements were also passed through an artifact detec-

tion algorithm described in [43].

2.2 Extraction of EEG frequency band activities

Five well-known EEG fba can be mentioned as follows:

Delta (0:5�4Hz) observed during deep sleep with large

amplitudes about 75�200 lV , Theta (4�8Hz) observed in

drowsiness, Alpha (8�16Hz) observed eyes opened awake

states and attenuated by not only visual attention but also

mental effort, Beta (16�32Hz) observed during working

memory when alertness is increased, and, Gamma

(32�64Hz), observed during both processing and

recognition of sensory stimuli as well as voluntary move-

ments [44, 45].

Since waveform of Daubechies wavelet is highly similar

to the waveform of limited duration of EEG sequences

[46–48], db-8 was used in sixth-level wavelet decomposi-

tion for estimation of those FBAs from non-averaged EEG

series mediated by pictures. The final approximation (A6)

and last four details (D6, D5, D4, D3) were assumed to be

equivalent to individual sub-bands so called Delta

(0�4Hz), Theta (4�8Hz), Beta (8�16Hz), Alpha

(16�32Hz) and Gamma (32�64Hz), respectively, with

respect to resulting sixth-level decomposition for each

single trial of 6 s.

2.3 Estimation of inter-hemispheric correlation

In the present study, 16-channel emotional surface EEG

series were collected from volunteers mediated by 18� 3

times (18 pleasant pictures, 18 un-pleasant pictures, 18

neutral pictures). Assuming x refers a particular EEG sub-

band in non-averaged single-trial emotional EEG series,

recorded from right hemisphere, while y refers the same

frequency range of another non-averaged single-trial

emotional EEG series which is simultaneously recorded

from left hemisphere, WT representations of x and y are

defined by following equations,

WTxðs; sÞ ¼
1
ffiffi

s
p

Z þ1

�1
xðtÞW� t � s

s
ds ð1Þ

WTyðs; sÞ ¼
1
ffiffi

s
p

Z þ1

�1
yðtÞW� t � s

s
ds ð2Þ

where WðtÞ ¼ p�1=4ejwte�0:5t2 named as mother wavelet

function. Here, s, s and � denote the scale, translation, and

complex conjugation. The parameters of translation and

dilation ðs; sÞ correspond to time and temporal period,

respectively. Adjusting the scale provide to obtain different

frequency components of x and y. By using Eqs. 1 and 2,

WC is computed to quantify the level of similarity between

x and y by using the following equation,

WCx;yðs; sÞ ¼ WTxðs; sÞWTyðs; sÞ� ð3Þ

Here, WC is computed in units of normalized variance

[49]. WC was used to observe statistical differences

between controls and patients with autonomic failure in

estimating the possible the relationship between low-fre-

quency oscillations in near-infrared spectroscopy and mean

arterial blood pressure [50]. WC does not depend upon the

power of sub-bands [51]. The stronger synchronization

between two non-stationary time series produces the higher

WC [51]. The more detailed explanation of this method can

be found in reference [52].
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Although the WC method has been applied in diverse

fields from engineering to physiology [53, 54] and neuro-

science [55, 56], it has been adopted to analyze fba

embedded in non-averaged EEG series mediated by static

pictures for detection of emotional dysfunctions in the

present study.

2.4 Classification of emotional features

SVMs are supervised machine learning derived methods

based on statistical learning theory of Vapnik Chervo-

nenkis dimension theory [57]. Least squares (LS)-SVM is

modified version of SVM leading a cost function to obtain

a linear set of equations in dual space [58–61]. Therefore,

LS-SVMs have been frequently used to classify EEG fea-

tures in detecting various disorders [62–66]. In the present

study, two-class problem was solved to classify controls

(labeled by 0) and patients (labeled by 1).

Controls and patients were classified with respect to

eight emotional features for both pleasant and un-pleasant

as well as neutral states in each fba. The number of par-

ticipants was 10 in each group. Multi-channel emotional

surface EEG series were collected from participants 18

times to obtain electrophysiological waves mediated by

every specified emotional state. Inter-hemispheric phase

coherence was computed individually for eight electrode

pairs (Fp1–Fp2, F3–F4, C3–C4, P3–P4, O1–O2, F7–F8,

T3–T4, T5–T6). Accordingly, we obtained eight emotional

features 180 times (the number of participant � the number

of trials ¼ 10� 18 ¼ 180) in both pleasant and un-pleasant

as well as neutral states for each fba (Delta, Theta, Alpha,

Beta, and Gamma). Tenfold cross-validation was per-

formed in classification steps. Gaussian radial basis func-

tion was used as kernel function in training the data where

the box constraint and scaling factor were 0.05 and 1,

respectively.

It is known that spontaneous EEG series are not sta-

tionary, and amplitude-latency parameters of evoked

potential vary from sweep to sweep [67–70]. In studies

including emotion recognition, the same brain functions are

observed controls when the same emotional stimulus is

received by individuals [71–73]. Therefore, estimation of

two-channel inter-hemispheric correlation between two

separate non-averaged EEG series has been aimed in the

present study. Regarding the applications in both brain–

computer interface studies [74, 75] and emotion recogni-

tion papers [76–78], the number of individuals is not

classified; indeed, the number of instances, i.e., the number

of EEG segments mediated by the identical stimuli, is

classified. To perform tenfold cross-validation (CV), the

features are divided into two spaces to firstly train a model

and then to validate this model in LS-SVM applications

where onefold of the feature set is held out for validation,

while the remaining ninefold are used for learning within

each iteration.

3 Results

The classification performance statistics [Sensitivity

(SNS), Specificity (SPC), and classification accuracy (CA)]

were computed in classifying controls and patients with

respect to each specified EEG fba. In addition, three feature

sets are organized as follows: The feature set so named

Lower Bands (LB) includes the features obtained from low

fba (Delta and Theta), the feature set so named Higher

Bands (HB) includes the features estimated from high fba

(Alpha, Beta, and Gamma), and the final feature set so

named All Bands (AB) includes the features estimated for

each fba. The classification performance results are given

in Table 2.

Regarding this table, it can be said that the best classi-

fication performance is provided by the highest EEG band,

Gamma, such that controls can be classified with the CA

values of 88.06, 86.39, and 83.89% considering neutral, un-

pleasant, and pleasant pictures, respectively. The relatively

lower performance is obtained by using the features gen-

erated by Beta in neutral, un-pleasant, and pleasant states

with the CA values of 88.06, 82.22, and 78.33%, respec-

tively. The useful classification performance can not be

obtained when the features are estimated from other sep-

arate fba (Alpha, Theta, Delta). The LB provided the lower

performance than HB in each emotional state; moreover,

AB produced the lowest classification performance in

comparison with both LB and HB as well as individual fba

in each emotional state. However, the highest classification

performance was obtained for the features which were

estimated from Gamma in each emotional state.

The statistical spectra (mean std) of WC values which

were estimated for relatively high fba (Alpha, Beta, and

Gamma) in accordance with emotional states are shown in

figures for both patients and controls. Figure 1 shows that

patients produced the lower WCs at three lobes (anterio-

frontal, central, parietal) in response to pleasant pictures in

Alpha. In controls, the highest WCs were observed at pre-

frontal lobe in each emotional state.

In addition, controls and patients commonly provide the

higher WCs for all states at pre-frontal lobe in Alpha.

Figure 2 shows that both controls and patients produce

the lower WCs at posterio-frontal, occipital, and temporal

electrode pairs in comparison with other electrode pairs

including anterio-frontal, central, and parietal lobes for

each emotional state in Alpha.

In addition, patients produced the lower WCs at poste-

rio-temporal region for each emotional state in Alpha.

Figure 3 shows that the highest WCs were produced by
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controls at anterio-frontal and central regions for pleasant

state, while patients produce the lower level of WC at

anterio-frontal and central lobes for neutral state in Beta.

Regarding Fig. 4, patients produce the higher level of WCs

at temporal lobes for neutral state in Beta.

Figure 5 shows that the highest WCs were produced by

controls at anterio-frontal and central regions for pleasant

state, while the patients produce the higher-level WCs at

the same regions for neutral state in Gamma. Regarding

Fig. 6, patients produce the higher level of WCs at tem-

poral lobes for neutral state in Gamma. By comparing all

figures, it can be said that the largest WCs were obtained

from Gamma at anterio-frontal and central electrode pairs

in pleasant state.

We also used analysis of variance (ANOVA) test to

study the contribution of each pair of EEG channels,

located on scalp symmetrically, in discriminating controls

from patients with FEP in accordance with specified

emotional state. The most useful differences between

controls and patients were observed in Gamma. Therefore,

the related results (p values) are listed in Table 3.

Regarding Table 3, the highest statistically meaningful dif-

ferences between controls and patients were observed at both

pre-frontal and occipital regions of the brain for un-pleasant

Table 2 Statistical results of

classifications
Delta Theta Alpha Beta Gamma LB HB AB

P

SNS 67.22 66.11 76.11 78.89 96.67 73.06 80.00 43.56

SPC 70.00 66.11 81.11 77.78 71.11 46.11 74.26 67.44

PPV 69.14 66.11 80.12 78.02 76.99 57.55 75.66 57.23

NPV 68.11 66.11 77.25 78.65 95.52 63.12 78.78 54.44

CA 68.61 66.11 78.61 78.33 83.89 59.58 77.13 55.50

UP

SNS 65.00 65.56 75.56 82.78 92.78 64.17 79.81 43.89

SPC 66.11 61.11 81.11 81.67 80.00 56.67 73.89 67.89

PPV 65.73 62.77 80.00 81.87 82.27 59.69 75.35 57.75

NPV 65.38 63.95 76.84 82.58 91.72 61.26 78.54 54.75

CA 65.56 63.33 78.33 82.22 86.39 60.42 76.85 55.89

N

SNS 74.44 72.78 78.33 88.89 96.67 66.94 81.85 44.78

SPC 73.89 65.56 83.33 87.22 79.44 55.83 74.63 70.44

PPV 74.03 67.88 82.46 87.43 82.46 60.25 76.34 60.24

NPV 74.30 70.66 79.37 88.70 95.97 62.81 80.44 56.06

CA 74.17 69.17 80.83 88.06 88.06 61.39 78.24 57.61

Fig. 1 Error Bars in Alpha at anterio-frontal, central, and parietal

regions

Fig. 2 Error Bars in Alpha at posterio-frontal, occipital, and temporal

regions
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ðp � 0:0001Þ and neutral ðp � 0:0001Þ pictures in studying

contribution of each electrode pair. When the groups were

compared to each otherwith respect to eight electrode pairs, the

clear difference between groups could be observed for both

unpleasant ðp � 0:0001Þ and neutral ðp\0:001Þ pictures.

4 Discussion and conclusion

The possible dependency of emotional activities on inter-

hemispheric correlation has been studied to classify healthy

controls and patients diagnosed with FEP. The results show

that patients provide the high level of inter-hemispheric

correlation in response to neutral pictures, whereas controls

provided the high level of inter-hemispheric correlation in

response to pleasant pictures at commonly anterio-frontal

and central lobes in Gamma.

The best classification performance was obtained in

Gamma. Although, the useful results could be observed in

other high fba (Alpha, Beta) to classify the data mediated

by neutral and un-pleasant pictures, combination of the

separate features extracted from each sub-band produced

the poor performance.

In conclusion, emotional functions of the brain could

be observed in relatively higher fba (16�32 and

32�64Hz). The lower fba (0:5�4 and 4:5�8Hz) do not

reflect the emotional functions in detail. Visual and static

pictures activated mostly anterio-frontal and central lobes

in Gamma. The largest level of inter-hemispheric corre-

lation was observed at mostly frontal lobe in Gamma in

response to pleasant pictures in controls, while the largest

level of inter-hemispheric correlation was observed at

mostly frontal lobe in Gamma in response to neutral

pictures in patients. In Alpha, the lowest level of inter-

Fig. 3 Error Bars in Beta at anterio-frontal, central, and parietal

regions

Fig. 4 Error Bars in Beta at posterio-frontal, occipital, and temporal

regions

Fig. 5 Error Bars in Gamma at anterio-frontal, central, and parietal

regions

Fig. 6 Error Bars in Gamma at posterio-frontal, occipital, and

temporal regions
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hemispheric correlation in addition to the narrower

interval of correlations (mean� std) was observed at

temporal lobes (T3–T4, T5–T6) in response to un-pleas-

ant and neutral pictures in controls and patients, respec-

tively. In Gamma, the lowest level of inter-hemispheric

correlation was observed at parieto-central lobes (P3–P4,

O1–O2) in response to un-pleasant pictures in both con-

trols and patients.

Our results are compatible with the previous findings,

including three main statements as follows: decreased

hippocampal volume closely linked with emotional dys-

functions [79], functional insufficiency at mostly the right

hemisphere in depression [80], and increased emotional

coherence in controls in Gamma (low Gamma: 30�50Hz

and high Gamma: 50�80Hz) [80]. In addition, the rela-

tively decreased cortical activities at right and left hemi-

spheres were found to be related to withdrawal and

approach motivations, respectively, in MDD [81]. In detail,

the relatively higher EEG asymmetry was reported as

associated with motivational system and affect at anterio-

frontal (F3–F4) and posterio-frontal (F7–F8) regions in

Alpha in depression before treatment [82]. Depression was

also reported as connected with not only increased resting-

state activities at left hemisphere but also decreased rest-

ing-state activities at right hemisphere in Alpha [83–85].

Commonly, depressive inter-hemispheric emotional dys-

functions were correlated with relatively higher fba in the

literature.

The amygdala having the main role in existing an

emotion, includes perceptual pathways (from primary

visual cortex to inferior temporal cortex) and reciprocal

connections (between prefrontal cortex and orbito-frontal

cortex) in humans. The orbito-frontal cortex, located at the

base of the frontal lobes, receives direct neural inputs such

as emotional stimuli from medial thalamus. Then, sensory

information is received and strengthen by amygdala. In

summary, once the brain is mediated by an affective pic-

ture, the thalamus and cortex interact to each other through

not only firing of individual neurons but also transient

functional integrations of local neuronal assemblies across

right and left brain regions. Therefore, our results support

that cortical EEG series can be analyzed by means of

neuronal inter-hemispheric correlation in wavelet domain

in high fba (16�32Hz and 32�64Hz) for early detection

of FEP.

In future work, both POMS scale [86] and theta coher-

ence analysis [87] would be examined to re-analyze the

emotional data explained in the present study.
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Appendix

In the present study, several pictures were selected from

IAPS as emotional stimuli as follows: Adaptation (Neutral)

pictures: 2745 and 2191. Pleasant pictures: 1440, 1460,

1610, 1710, 1920, 2035, 2071, 2311, 2347, 2550, 4626,

5210, 5621, 5760, 5780, 5833, 7330, 8170. Unpleasant

pictures: 1111, 3185, 3195, 3213, 3550.1, 6312, 6313,

6520, 7359, 8230, 9043, 9075, 9291, 9300, 9413, 9560,

9600, 9940. Neutral pictures: 2026, 2102, 2273, 2377,

2411, 2512, 7001, 7002, 7004,7009, 7014, 7019, 7032,

7050, 7052, 7081, 7179, 7211.

References

1. Chang C, Glove GH (2010) Time–frequency dynamics of resting-

state brain connectivity measured with fMRI. NeuroImage

50(1):81–98
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