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Abstract Reservoir water saturation is an important

property of tight gas reservoirs. Improper calculation of

water saturation leads to remarkable errors in following

studies for development and production from reservoir.

There are conventional methods to determine water satu-

ration, but these methods suffer from poor generalization

and cannot be applicable for various conditions of reser-

voirs. These methods also depend on core measurements.

On the other hand, well log data are usually accessible for

all the wells and provide continuous information across the

well. Customary techniques are not fully capable to prepare

meaningful results for predicting petrophysical properties,

especially in presence of small data sets. In this regard, soft

computing approaches have been used here. In this

research, Support Vector Machine, Multilayer Perceptron

Neural Network, Decision Tree Forest and Tree Boost

methods have been employed to predict water saturation of

Mesaverde tight gas sandstones located in Uinta Basin.

Tree Boost and Decision Tree Forest are powerful pre-

dictors which have been applied in many research fields.

Multilayer Perceptron is the most common neural network,

and Support Vector Machine has been used in many

petrophysical and reservoir studies. In this research, by

using a small data set, the ability of these methods in

predicting water saturation has been studied. Based on the

data from four wells, two data set patterns were designed to

evaluate training and generalization capabilities of meth-

ods. In each pattern, different combinations of well data

were used. Three error indexes including correlation

coefficient, average absolute error and root-mean-square

error were used to compare the methods results. Results

show that Support Vector Machine models perform better

than other models across data sets, but there are some

exceptions exhibiting better performance of Multilayer

Perceptron Neural Network and Decision Tree Forest

models. Correlation coefficient values vary from 0.6 to 0.8

for support vector machine, which exhibits better perfor-

mance in comparison with other methods.
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Abbreviations

AAE Average absolute error

ANN Artificial neural network

DT Sonic travel-time log

ERM Empirical risk minimization

GR Gamma ray log

ILD Deep induction resistivity log

MLP Multilayer perceptron

MD Millidarcy

NPHI Neutron porosity log

OCR Optical character recognition

r Correlation coefficient

RBF Radial basis function

RCAL Routine core analyses

RHOB Bulk density log

RMSE Root-mean-square

SRM Structural risk minimization
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SV Support vector

SVM Support vector machine

SVR Support vector regression

Sw Water saturation

VC Vapnik–Chervonenkis

1 Introduction

Tight gas is the term commonly used to refer to low-per-

meability reservoirs that produce mainly dry natural gas.

Tight gas reservoirs are often defined as formations with

permeability \0.1 millidarcy. Many ‘‘ultratight’’ gas

reservoirs may have in situ permeability down to 0.001 MD

[1]. Tight gas reserves constitute a significant percentage of

the natural gas resources worldwide and offer tremendous

potential for future reserve growth and production. Eco-

nomical production from these resources depends on

comprehensive understanding from reservoir and deter-

mining petrophysical parameters such as water saturation.

Water saturation is one of the most challenging petro-

physical properties of a hydrocarbon reservoir that is

mainly used to predict the volume of hydrocarbon in place

and determine pay zones. Many researchers have probed

various methods to measure water saturation [2–4]. This

property can be measured directly from routine core anal-

yses (RCAL) or estimated by petrophysical methods. There

are some relationships for predicting water saturation in

specific formations such as Archie equation, which is for-

mulated for clean sand formations [5, 6]. These models are

non-universal and nonlinear empirical relations that need to

be fitted to real data. They can be applicable only for

specified reservoirs which satisfies the model assumptions.

These are the primary reasons for using artificial intelli-

gence techniques like Decision Tree models, artificial

neural network (ANN) and support vector machine (SVM)

to predict water saturation. Employing these methods

reduces the problems associated with costs and general-

ization of the empirical models of water saturation.

Decision tree forests are an ensemble learning technique

used for classification, regression and other tasks, which

operate by building a large number of decision trees at

training process and outputting the class that is the mode of

the classes (classification) or mean prediction (regression)

of the individual trees. This method has been rarely used in

reservoir characterization and petroleum engineering

studies. Anifowose et al. [7] employed random forest

method for prediction of permeability and porosity in an oil

reservoir. They also employed this method for prediction of

petroleum reservoir characterization [8].

In the past few years, the Tree Boost method has tran-

spired as a robust method for predictive data mining. It has

been extensively used for regression classification tasks,

with continuous and categorical predictors. Detailed tech-

nical explanation of Tree Boost has been collected in the

studies done by Friedman et al. [9]. The authors could not

find the application of Tree Boost technique in previous

petrophysical and reservoir studies.

An artificial neural network (ANN) is a parallel pro-

cessor including neurons with ability of performing math-

ematical calculations through a learning algorithm. The

knowledge is encoded in the interconnection weights

between input, hidden and output layers [10]. A neural

network is made of nonlinear activation functions. Its

capability to control nonlinearity is important specially if

the underlying distribution responsible for creating the

input–output data is intrinsically nonlinear. The network

learns by building an input–output mapping for the learn-

ing problem. This supervised learning underlies correction

of interconnection weights by means of training samples

including input signal and a corresponding desired

response. The goal is to minimize the difference between

the desired response and estimated response by the network

in accordance to a proper criterion. The training of the

network is repeated until the network reaches a predefined

accuracy [10, 11].

Artificial Neural Networks have been extensively used

in petroleum engineering studies. ANNs have proved their

application in predicting petrophysical and reservoir

properties [12–54]. They also have been employed to

predict water saturation by some researchers [55–60].

Recently, Support Vector Machines (SVMs) have

gained attention in regression and classification tasks due

to their excellent generalization performance. The SVM

formulation is based on the structural risk minimization

(SRM) inductive principle where the empirical risk mini-

mization (ERM) inductive principle and the Vapnik–

Chervonenkis (VC) confidence interval are simultaneously

minimized [61–63]. There are at least three reasons for the

success of SVM: Its ability to learn well with only a very

small number of parameters, its robustness against the error

of data and its computational efficiency. By minimizing the

structural risk, SVM works well not only in classification

but also in regression [64, 65].

SVM has gained popularity in petroleum engineering

studies and have been used for prediction of reservoir and

petrophysical properties [30, 37, 66–76]. There are some

studies focusing on prediction of water saturation by using

SVM [38, 77].

Using Artificial Intelligence and Learning methods leads

to an efficient and universal solution for obtaining reservoir

properties for any location on the world. While experi-

mental correlations are applicable to determined reservoir

and may have many limitations, these methods are uni-

versal and by updating and setting their key parameters can

be used in any reservoir.
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In this research, four techniques including Decision Tree

Forest, Tree Boost, multilayer perceptron neural network

(MLP) and support vector machine (SVM) have been

employed to predict water saturation of Mesaverde tight

gas reservoir located in Uinta Basin, USA. These four

methods have previously proved their brilliant performance

in many fields of science and technology. Decision Tree

Forest and Tree Boost were less employed in petrophysical

studies, while Artificial Neural Network and Support

Vector Machine have been used in many researches in

recent years. The main reason of selecting these methods

was to evaluate Decision Tree Forest and Tree Boost

methods in predicting water saturation and comparing their

performance with those of MLP Neural Network and SVM.

Results obtained for different techniques have been com-

pared to each other, and the best predictor for water satu-

ration has been determined.

1.1 Decision Tree Forest

Decision Tree Forest consists of an ensemble of decision

trees whose predictions are combined to make the overall

prediction for the forest. A decision tree forest is similar to

a Tree Boost model in the sense that a large number of

trees are grown. However, Tree Boost generates a series of

trees with the output of one tree going into the next tree in

the series. In contrast, a decision tree forest grows a

number of independent trees in parallel, and they do not

interact until after all of them have been built. Schematic of

a Decision Tree Forest model has been presented in Fig. 1.

Both Tree Boost and decision tree forests produce high-

accuracy models. Experiments have shown that Tree Boost

works better with some applications and decision tree

forests with others, so it is best to try both methods and

compare the results. The Decision Tree Forest technique

used here is an implementation of the ‘‘random forest’’

algorithm developed by Breiman [78].

Decision Tree Forest models are among the most

accurate models yet invented. These models can be applied

to regression and classification models. Decision tree forest

models often have a degree of accuracy that cannot be

obtained using a large, single-tree model. This method can

handle hundreds or thousands of potential predictor

variables.

Decision tree forests use the ‘‘out-of-bag’’ data rows for

validation of the model. This provides an independent test

without requiring a separate data set or holding back rows

from the tree construction. About one-third of data rows are

excluded from each tree in the forest, and each tree will

have a different set of out-of-bag rows.

In many cases, decision tree forests do not have a

problem with over-fitting. Generally, the more the trees in

the forest, the better the fit. The randomization element in

the decision tree forest algorithm makes it highly resistant

to over-fitting.

The primary disadvantage of decision tree forests is that

the model is complex and cannot be visualized like a single

tree. It is more of a ‘‘black box’’ like a neural network.

1.2 Tree Boost method

Boosting is one of the most popular learning methods

which combines many weak learners to create a single-

strong learner [79, 80]. Boosting is a technique for

improving the accuracy of a predictive function by apply-

ing the function repeatedly in a series and combining the

output of each function with weighting so that the total

error of the prediction is minimized. In many cases, the

predictive accuracy of such a series greatly exceeds the

accuracy of the base function used alone. The Tree Boost

algorithm is functionally similar to decision tree forests

because it creates a tree ensemble, but a Tree Boost model

consists of a series of trees whereas a decision tree forest

consists of a collection of trees grown in parallel. Tree

Boost is also known as ‘‘Stochastic Gradient Boosting’’ and

‘‘Multiple Additive Regression Trees’’ (MART).

The Tree Boost algorithm used here was developed by

Friedman [81] and is optimized for improving the accuracy

of models built on decision trees. Graphically, a Tree Boost

model can be represented as demonstrated in Fig. 2.

The first tree is fitted to the data. The residuals (error

values) from the first tree are then fed into the second tree

which attempts to reduce the error. This process is repeated

through a series of successive trees. The final predicted

Fig. 1 Schematic of Decision Tree Forest Fig. 2 Schematic of a Tree Boost model
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value is formed by adding the weighted contribution of

each tree.

Usually, the individual trees are fairly small (typically 3

levels deep with 8 terminal nodes), but the full Tree Boost

additive series may consist of hundreds of these small trees.

Tree Boost models often have a degree of accuracy that

cannot be obtained using a large, single-tree model. Tree

Boost models can handle hundreds or thousands of

potential predictor variables. Irrelevant predictor variables

are identified automatically and do not affect the predictive

model. Tree Boost uses the Huber M-regression loss

function [82] which makes it highly resistant to outliers and

misclassified cases. The randomization element in the Tree

Boost algorithm makes it highly resistant to over-fitting.

Tree Boost can be applied to regression models and k-class

classification problems.

The primary disadvantage of Tree Boost is that the

model is complex and cannot be visualized like a single

tree. It is more of a ‘‘black box’’ like a neural network.

1.3 Multilayer perceptron neural network

Multilayer perceptron (MLP) networks are currently the

most widely used neural networks. MLP is a popular

estimator to construct nonlinear models of data. It

consists of an input layer one or more internal layers of

hidden neurons and an output layer. They are also

called multilayer feedforward networks (MLFF). The

hidden layers are also called internal layers as they

receive internal inputs. The network is provided with a

training set of patterns having inputs and outputs. The

learning algorithm for this type of network is called the

back-propagation (BP) algorithm [83, 84]. Learning

occurs in the perceptron by changing connection

weights after each piece of data is processed, based on

the amount of error in the output compared to the

expected result. This is an example of supervised

learning and is carried out through back propagation, a

generalization of the least mean squares algorithm in

the linear perceptron. Figure 3 demonstrates the archi-

tecture of an MLP model.

In Fig. 3, xp(N) is input variable, Whi(Nh, N) is input

connection weight, netp(Nh) is Net input function, Op(Nh) is

Activation function, Woh(M, Nh) is output connection

weight and yp(N) is output variable. MLP network gener-

ates nonlinear relationship between inputs and outputs by

interconnection of nonlinear neurons. The nonlinearity is

distributed throughout the network. It does not require any

assumption about the underlying data distribution for

designing the networks; hence, the data statistics do not

need to be estimated. For an MLP network, the topology is

important for the solution of a given problem, i.e., the

number of hidden neurons and the size of the training data

set. The network has a strong capability for function

approximation, learning and generalization.

1.4 Support Vector Regression

Support Vector Machines (SVMs) are learning machines

implementing the structural risk minimization inductive

principle to obtain good generalization on a limited number

of learning patterns [37, 63, 67, 85]. Structural risk mini-

mization (SRM) involves simultaneous attempt to mini-

mize the empirical risk and the VC (Vapnik–

Chervonenkis) dimension [85]. The VC dimension of a set

of functions is the size of the largest data set due to that the

set of functions can scatter. VC theory has been developed

over the last three decades by Vapnik and Chervonenkis

[61] and Vapnik [62, 63]. This theory characterizes prop-

erties of learning machines which enable them to effec-

tively generalize the unseen data [85].

In its present form, the Support Vector Machine was

largely developed at AT&T Bell Laboratories by Vapnik

et al. [86–91]. The SV (Support Vector) algorithm is a

nonlinear generalization of the generalized Portrait algo-

rithm developed in Russia in the sixties [92, 93].

SVM is a learning system that uses a high-dimensional

feature space. It yields prediction functions that are

extended on a subset of support vectors. SVM can gener-

alize intricate gray level structures with only a very little

support vectors. A version of a SVM for regression has

been proposed [91], which is called support vector

regression (SVR). The model produced by SVR only

depends on a subset of the training data, because the cost

function for building the model ignores any training data

that is close (within a threshold e) to the model prediction

[85].

2 Geological background

The data set for this study is obtained from Mesaverde tight

gas sandstones located in Uinta Basin in USA. Mesaverde

group sandstones represent the principal gas productive

sandstone unit in the largest Western US tight gas sand-

stone basins including Washakie, Uinta, Piceance, northern

Greater Green River, Wind River and Powder River.

The Mesaverde group is divided into the regressive

deposits of Iles Formation and the overlying massively

stacked, lenticular non-marine Williams Fork Formation.

The Iles Formation comprises the lower part of the

Mesaverde. It contains three marine sandstone intervals,

the Corcoran, Cozzette and Rollins. The Williams Fork

Formation extends from the top of the Rollins to the top of
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the Mesaverde. The lower part of the Williams Fork con-

tains coals, and is commonly referred to as the Cameo coal

interval. Most of the sandstones in the Williams Fork are

discontinuous fluvial sands. The stratigraphy of the Mesa-

verde group is shown in Fig. 4 [94].

3 Data set

To measure the accuracy of the models, log and core

information from four wells were used. These wells are

cited in Uinta Basin. Database here is small in number of

Fig. 3 Multilayer perceptron

neural network architecture

Fig. 4 Cross section showing the stratigraphy of the Mesaverde group [94]

Neural Comput & Applic (2018) 30:1171–1185 1175

123



data points. Well 1 has a total of 190 data points, well 2 has

107 data points, well 3 has 67 data points and well 4 has 41

data points. It is worth mentioning that prediction methods

generally perform better in presence of large number of

training data points, but data points here are small in

number and it may be a challenge for methods to present

their ability to predict water saturation in presence of few

number of data points. Data source is clear and has been

calibrated before using in this research.

In this research, training and generalization capabilities

of methods have been evaluated. To assess training capa-

bility of methods, the models were tested by employed data

in training procedure. Table 1 represents the pattern of

using data of various wells for evaluating training ability.

Furthermore, models trained with training wells data

were tested by other wells data to evaluate their capability

in generalizing the relationships between various parame-

ters of training data set into new data set in testing pro-

cedure. Table 2 describes the set of well data in evaluation

of generalization capability of methods.

There was not any geological preference for selecting

training wells. Wells number 1 and number 2 were selected

as training well, because they had enough number of data

points for training procedure, while wells number 3 and

number 4 because of small number of data points cannot be

selected as training wells.

In training process, regression methods employed in this

research got several parameters as input data and a scalar

variable as output and then they tried to establish relations

between input parameters in order to estimate values as

close as possible to output values. In the testing process,

the relations obtained in training were used to predict

output variable.

In this research, input data consists of log data including

gamma ray log (GR), a neutron porosity log (NPHI), a deep

induction resistivity log (ILD), a bulk density log (RHOB)

and a sonic travel-time log (DT) as input vectors. The scalar

output is core-based water saturation. Table 3 represents

each parameter range of values. Moreover, in Fig. 5 scatter

plots of water saturation versus each well log values are

demonstrated. Measurement scales of log data are cited in

Table 3. It is not necessary that input measurement scale be

within the range of output values, because output is water

saturation which is a scalar parameter and have no scale.

4 Methods

Regression models (Decision Tree Forest, Tree Boost,

MLP and SVM) were constructed by using DTREG intel-

ligent software. The number of trees for constructing

Decision Tree Forest models was 400. Generally, the larger

a decision tree forest is, the more accurate the prediction.

Maximum tree levels of the Decision Tree Forest were

chosen 100, which specify the maximum number of levels

(depth) that each tree in the forest may be grown to. When

a tree is constructed in a decision tree forest, a random

subset of the predictor variables are selected as candidate

splitters for each node. Two predictors were chosen as

candidates for each node split. The regression methods

were verified and validated in a manner that models trained

with a well data were tested by using data from other

well(s);then, predicted and actual values of saturation were

compared by using error indexes.

For constructing Tree Boost models, 400 trees were

generated in Tree Boost series. Each tree in the Tree Boost

series had 10 levels of splits. The Tree Boost algorithm

uses Huber M-regression loss function to evaluate error

measurements for regression models [82]. This loss func-

tion is a hybrid of ordinary least squares (OLS) and least

absolute deviation (LAD). For residuals less than a cutoff

point, the squared error values are used. For residuals

greater than the cutoff point, absolute values are used.

Huber cutoff point was chosen 0.1. A tenfold cross-vali-

dation resampling technique was used to strike the right

trade-off between over-fitting and under-fitting.

MLP neural network models constructed here had 4

layers (one input, two hidden and one output). An algo-

rithm was used to automatically determine the number of

neurons in hidden layers. This algorithm tries building

multiple networks with different numbers of neurons in

hidden layers and evaluates how well they fit by using

cross-validation. Twelve neurons were selected for hidden

layer 1, and 4 neurons were selected for hidden layer 2. A

Table 1 Well order for evaluating training capability

Data set number Training wells Testing wells

1 1 1

2 2 2

3 1.2 1.2

4 1.2 1

5 1.2 2

Table 2 Well order for evaluating generalization capability

Data set number Training wells Testing well

1 1 2

2 2 1

3 1 3

4 2 3

5 1.2 3

6 1 4

7 2 4

8 1.2 4
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tenfold cross-validation method was used for validation.

Sigmoid function was selected as activation function of

hidden layers an output layer. The conjugate gradient

method was used to find optimal network weights.

For SVM models, correct selection of the kernel func-

tion is so important. RBF, sigmoid and linear kernels are

common kernel functions which have been employed in

many researches previously [37, 66, 73]. In this research, at

the first step, a collection of 320 data points from all 4

wells were used to train the SVM models built by sigmoid

and RBF, and later, the models were tested against 85 data

points. The best results were obtained by RBF kernel

function. So, for constructing SVM models, the RBF kernel

function was used. Tenfold cross-validation method was

used for validation. The accuracy of an SVM model defi-

nitely depends on correct choice of the parameters C, e and
the kernel parameters. The problem of optimal parameter

selection is more complex by the principle that a SVM

model complexity depends on all mentioned parameters. In

procedure of constructing a SVM model, the user has to

choose the proper kernel function, and for the selected

kernel, how to adjust the parameters. In order to find

optimal parameter values, two methods including grid

search and pattern search were used. A grid search tries

values of each parameter across the specified search range

using geometric steps. A pattern search starts at the center

of the search range and makes trial steps in each direction

for each parameter. If the fit of the model improves, the

search center moves to the new point and the process is

repeated. If no improvement is found, the step size is

reduced and the search is tried again. The pattern search

stops when the search step size is reduced to a specified

tolerance. When using both grid search and pattern search,

the grid search is performed first. Once the grid search

finishes, a pattern search is performed over a narrow search

range surrounding the best point found by the grid search.

Hopefully, the grid search will find a region near the global

optimum point and the pattern search will then find the

global optimum by starting in the right region.

Different error statistics including correlation coefficient

(r), root-mean-square error (RMSE) and average absolute

error (AAE) were used to evaluate the accuracy of different

models. The mathematical expressions of these error

measures are demonstrated in Table 4.

5 Results and discussion

The error analysis for selection of SVM kernel is repre-

sented in Table 5. As it can be inferred from the Table 5,

RBF kernel function relatively has the lowest values of

error among various kernel functions, and so, it has been

selected to be the kernel function of SVM models in this

study.

5.1 Training capability of models

In this section, capability of methods in training has been

evaluated and it has been argued that which method has been

well trained. In this regard, models based on Table 1 were

tested by data which has been used in training process of

them. Correlation coefficients of 4 employed methods

(Decision Tree Forest, Tree Boost, MLP and SVM) among 5

regarded data sets in Table 1 have been compared in Fig. 6.

As it can be seen in Fig. 6, it is obvious that all

employed methods have been well trained. SVM has

gained best results in predicting water saturation, although

MLP performs better in data set number 4. MLP has better

training ability rather than Tree Boost and Decision Tree

Forest. Furthermore, it can be mentioned that Decision

Tree Forest has better training sufficiency than Tree Boost

technique. Moreover, Training capability of these methods

has been assessed by using AAE and RMSE error mea-

surements. Values of mentioned errors are presented in

Table 6. Error measures in Table 6 verify the comparison

depicted in Fig. 6 and show that SVM and MLP have better

training capability.

5.2 Generalization capability of models

In this section, capability of methods in generalization has

been assessed and it has been investigated that which

Table 3 Range of parameters values

Well no. 1 Well no. 2 Well no. 3 Well no. 4

Neutron porosity 0.026–0.410 0.033–0.617 0.043–0.783 0.073–0.189

Sonic travel-time (US/F) 50.373–146.004 64.757–99.236 61.538–83.745 58.750–75.125

Bulk density (g/cm3) 1.907–2.650 1.236–2.762 1.849–2.622 2.284–2.725

Gamma ray (GAPI) 26.770–128.273 25.075–119.483 32.491–93.741 38.342–84.753

Deep induction resistivity log (OHMM) 4.106–81.224 12.592–139.640 6.486–16.787 6.281–27.922

Depth (m) 2279–3658 3327–3758 2953–3205 3103–3184

Water saturation 0.270–0.942 0.107–0.933 0.217–0.876 0.255–0.899
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technique has the best ability in predicting water satura-

tion by using input data which has not been introduced to

model earlier. In this regard, models based on Table 2

were tested by data which have not been used in their

training process. Correlation coefficients of 4 employed

methods (Decision Tree Forest, Tree Boost, MLP and

SVM) among 8 regarded data sets in Table 2 have been

compared in Fig. 7.

It can be well understood that SVM performs efficiently

and better than other methods based on results showed in

Fig. 7. It is also notable that in some data sets other

methods has better correlation coefficient than SVM, as in

data set 1 MLP and in data set 4 MLP and Decision Tree

Forest represent better performance. Decision Tree Forest

and MLP have similar results, and both of them can be

applicable techniques for prediction of water saturation. It

should be mentioned that MLP has relatively better per-

formance rather than Decision Tree Forest. The weakest

results are gained by Tree Boost models which reveal that

although it has good training capability, it cannot be a

Fig. 5 Scatter plots of selected petrophysical logs versus water saturation. a DT versus water saturation. b NPHI versus water saturation. c GR
versus water saturation. d RHOB versus water saturation. e ILD versus water saturation
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reliable method in predicting water saturation based on

previously unseen input data.

As it can be seen in Fig. 7, predictions made by all

methods in data sets 5 and 8 have more accuracy rather

than predictions made in other data sets. It should be

regarded that in these two data sets, training data includes

data gathered from two wells and provide more training

data points, and as result, models in data sets 5 and 8 are

well trained and it enables them to predict water saturation

better than models trained with fewer data points.

Error analyses of generalization capability of methods

also have been studied by employing AAE and RMSE

error statistics. Values of these errors have been presented

in Table 7.

Error measures in Table 7 verify the error analyses done

by using correlation coefficient. Interpretation of Table 7 is

detailed as below:

Data set 1 Decision Tree Forest in comparison with

SVM, Tree Boost and MLP models has the lowest

average error. SVM also has acceptable error measures,

but MLP and Tree Boost have large values of errors.

Data set 2 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP and Decision Tree Forest also have

acceptable error measures, but Tree Boost has large

values of errors.

Data set 3 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP and Decision Tree Forest also have

acceptable error measures, but Tree Boost has large

values of errors.

Data set 4 MLP in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

Fig. 6 Correlation coefficient of Tree Boost, Decision Tree Forest, MLP and SVM in predicting water saturation from previously seen data

Table 6 Comparison of RMSE,

and AAE error measures

between SVM, MLP neural

network, Decision Tree Forest

and Tree Boost models in order

to evaluate training capability

Data set number Tree Boost Decision Tree Forest MLP SVM

AAE RMSE AAE RMSE AAE RMSE AAE RMSE

1 0.114 0.102 0.102 0.094 0.096 0.081 0.071 0.059

2 0.083 0.087 0.089 0.082 0.083 0.074 0.076 0.062

3 0.103 0.093 0.072 0.066 0.071 0.057 0.068 0.044

4 0.079 0.065 0.074 0.070 0.048 0.039 0.050 0.035

5 0.078 0.071 0.062 0.065 0.059 0.043 0.052 0.033

Table 4 Error statistics formulas

Error type Formula

Correlation coefficient, r
Pl

i¼1
ðyi�yiÞðŷi�ŷiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

i¼1
ðyi�yiÞ2

PNp

i¼1
ðŷi�ŷiÞ2

q

Average absolute error, AAE 1
l

Pl
i¼1 yi � ŷij j

Root-mean-square error,

RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Pl
i¼1 ðyi � ŷiÞ2

q

Table 5 Error measures in different kernel functions of SVM

Kernel function r (%) AAE RMSE

Sigmoid 68 0.136 0.114

RBF 65 0.092 0.078

Linear 59 0.147 0.121
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average error. SVM and Decision Tree Forest also have

acceptable error measures, but Tree Boost has large

values of errors.

Data set 5 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP and Decision Tree Forest also have

acceptable error measures, and Tree Boost has better

performance in comparison with previous data sets.

Data set 6 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP and Decision Tree Forest also have

acceptable error measures, but Tree Boost has large

values of errors.

Data set 7 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP also has acceptable error measures,

but Tree Boost and Decision Tree Forest have large

values of errors.

Data set 8 SVM in comparison with Decision Tree

Forest, Tree Boost and MLP models has the lowest

average error. MLP performs better than Decision Tree

Forest and Tree boost, but these two methods also have

acceptable error measures.

It can be understood that SVM has the best performance

in predicting water saturation, because as shown in Figs. 6

and 7, Tables 6 and 7, SVM has the lowest values of error

indexes including correlation coefficient, average absolute

error and root-mean-square error. MLP and Decision Tree

forest are moderate predictors, but Tree Boost cannot be

regarded as a powerful method in predicting water

saturation.

Scatter plots of core-based values and predicted values

of water saturation by each method in data set 6 are pre-

sented in Fig. 8. Figures 9, 10, 11 and 12 represent the

results of estimating water saturation by all four methods

(Tree Boost, Decision Tree Forest, MLP and SVM) in data

set 8.

6 Conclusions

In this study, Support Vector Machine, Multilayer Per-

ceptron Neural Network, Decision Tree Forest and Tree

Boost methods were used to predict water saturation

measures in Mesaverde tight gas sandstones located in

Uinta Basin, USA. Also, performances of these methods

Fig. 7 Correlation coefficient of Tree Boost, Decision Tree Forest, MLP and SVM in predicting water saturation from previously unseen data

Table 7 Comparison of RMSE,

and AAE error measures

between SVM, MLP neural

network, Decision Tree Forest

and Tree Boost models in order

to evaluate generalization

capability

Data set number Tree Boost Decision Tree Forest MLP SVM

AAE RMSE AAE RMSE AAE RMSE AAE RMSE

1 0.133 0.127 0.083 0.084 0.103 0.099 0.088 0.091

2 0.157 0.135 0.105 0.100 0.095 0.091 0.079 0.073

3 0.166 0.152 0.093 0.107 0.091 0.085 0.081 0.071

4 0.126 0.115 0.101 0.094 0.089 0.074 0.099 0.097

5 0.113 0.108 0.097 0.091 0.087 0.077 0.068 0.064

6 0.125 0.111 0.108 0.099 0.098 0.102 0.075 0.069

7 0.127 0.120 0.131 0.124 0.107 0.100 0.089 0.081

8 0.105 0.093 0.071 0.058 0.074 0.064 0.062 0.051
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Fig. 8 Scatter plots of predictions made by different methods in data set 6. a Prediction made by Tree Boost. b Prediction made by Decision

Tree Forest. c Prediction made by MLP. d Prediction made by SVM

Fig. 9 Comparison of water saturation measured of core and predicted by Tree Boost in data set 8
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were compared. Capabilities of methods in predicting

water saturation were evaluated in two divided categories

including training and generalization. The main conclu-

sions of this study are as follow:

• Support Vector Machine, Multilayer Perceptron Neural

Network and Decision Tree Forest are reliable methods

in predicting water saturation in the tight gas reservoirs.

• Support Vector Machine has better efficiency in

training and generalization rather than other methods.

• Decision Tree Forest performs superior than Tree Boost

in the prediction of water saturation, and it represents

acceptable results in training and generalization tasks.

• RBF is the best kernel function for SVM in prediction

of water saturation.

Fig. 10 Comparison of water saturation measured of core and predicted by Decision Tree Forest in data set 8

Fig. 11 Comparison of water saturation measured of core and predicted by MLP in data set 8
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• Tree Boost cannot be considered as an accurate

predictor because of its poor generalization capability.
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