
ORIGINAL ARTICLE

Design of memristor-based image convolution calculation
in convolutional neural network

Xiaofen Zeng1,2 • Shiping Wen1,2 • Zhigang Zeng1,2 • Tingwen Huang3

Received: 22 July 2016 / Accepted: 3 November 2016 / Published online: 18 November 2016

� The Natural Computing Applications Forum 2016

Abstract In this paper, an architecture based on memris-

tors is proposed to implement image convolution compu-

tation in convolutional neural networks. This architecture

could extract different features of input images when using

different convolutional kernels. Bipolar memristors with

threshold are employed in this work, which vary their

conductance values under different voltages. Various ker-

nels are needed to extract information of input images,

while different kernels contain different weights. The

memristances of bipolar memristors with threshold are

convenient to be varied and kept, which make them suit-

able to act as the weights of kernels. The performances of

the design are verified by simulation results.

Keywords Memristor � Convolutional neural network �
Image convolution computation

1 Introduction

Chua [1] was the first one to propose the hypothesis about

the memristor. After studying about 40 years theoretically,

HP Labs [2] made out the memristor physically in 2008,

which attracts a lot of attention. Then various kinds of

memristors emerged based on different materials. The

memristance value can be varied under different voltage or

current, and the value can be kept after withdrawing the

voltage or current source applied on it, making memristors

popular candidates for synapses. Besides nonvolatility, the

memristor is characterized by nanoscale size and power

efficiency, which enables them possible to be employed in

neural networks [3–6], neuromorphic computing [7, 8],

approximate computing [9] and memories [10]. Many

researchers applied memristors in different architectures,

such as learning architectures [3], computing architectures

[11], Computation-in-Memory architectures [12], to get

better performance. Moreover, different circuits based on

memristors have been proposed. Adhikari et al. [3] pre-

sented the memristor bridge synapse used to implement

random weight change algorithm in multilayer neural

networks, while many scholars utilized memristor-based

crossbar to realize matrix-vector operation [8, 13], neuro-

morphic character recognition [14], gradient-descent based

learning algorithms [15, 16]. In addition, there are a lot of

studies about memristors [17–21] in the literature.

Nowadays, the study of neural networks develops

rapidly. Recently, Wen et al. [22] used neuroadaptive

control approach to solve distributed consensus tracking

problem for a class of multiagent systems with unmodeled

dynamics and unknown disturbances. Many researches

about them and their applications upsurge [23–26]. Con-

volutional neural network, as a kind of deep learning neural

network was first inspired by the study of neural science,

and a classical architecture of convolutional neural network

was first proposed by Lecun et al. [27]. Compared with

traditional neural networks, convolutional neural networks

take advantages in weight sharing, which reduces the

number of parameters need to be trained. In addition, it is

good at recognizing images with displacement change,

zoom, rotation and other forms of distortion. Therefore,

& Shiping Wen

wenshiping226@126.com

1 School of Automation, Huazhong University of Science and

Technology, Wuhan, People’s Republic of China

2 Key Laboratory of Image Processing and Intelligent Control

of Education Ministry of China, Wuhan, People’s Republic of

China

3 Texas A & M University at Qatar, Doha 5825, Qatar

123

Neural Comput & Applic (2018) 30:503–508

https://doi.org/10.1007/s00521-016-2700-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2700-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2700-2&domain=pdf
https://doi.org/10.1007/s00521-016-2700-2

CNNs are very popular for pattern recognition and classi-

fication, such as human face recognition [28], traffic sign

recognition [29], object recognition [30]. In advances in

Neural Information Processing Systems, Krizhevsky et al.

[31] used deep convolutional neural networks to classify

more than a million images into 1000 different classes,

which achieved a new state-of-the-art classification. Fol-

lowing the deep convolutional neural networks,

Szegedy et al. [32] increased the depth and width of the

network while keeping the computational budget constant

to improve its ability of recognition and detection.

Quite a lot of reports about convolutional neural net-

works have been reported, and almost all of them are

simulated via software. As we all know, software runs

serially, but hardware computes inherently in parallel.

However, the realization of the convolutional neural

learning in fast, compact and reliable hardware is a dif-

ficult task. The critical problem is that hardware compo-

nents cannot be utilized to store nonvolatile weight. In

addition, convolution operations are complex for hard-

ware to execute, containing too many multiplication

operations and addition operations. Since memristors are

nonvolatile with nanoscale size, it is necessary to apply

them in convolutional neural networks to speed up the

calculation. In this paper, the bipolar memristor with

threshold is applied, which was put forward by Yuriy

et al. [33]. This kind of memristor is nonvolatile, nanos-

cale and power efficient, with no differences to other

kinds of memristors, but its memristance value is the

same as previous value when the voltage is lower than the

threshold.

Considering the traits of the convolution operation and

the bipolar memristor with threshold, an architecture

with memristors is designed to realize the convolution

operation. The reminder of the article is structured as

follows. Section 2 describes the memristor used in the

design, as well as the modified convolution computation.

Section 3 proposes the computation architecture and

details the computation procedure and builds the com-

putation circuits. Section 4 demonstrates the simulation

results.

2 Background

2.1 Memristor model

Since researchers in HP Labs made the memristors, the

interests in memristors upsurge. Many memristors based on

different materials with diverse electrical properties have

been discussed. Yuriy et al. [33] put forward the bipolar

memristor with threshold. The memristor model is defined

as the following:

I ¼ x�1Vm; ð1Þ
dx

dt
¼ f ðVmÞWðx;VmÞ; ð2Þ

where x is the internal state variable, representing the

memristance R. f(x) is a function modeling the device

threshold property, and W(x) is a window function:

f ðVmÞ ¼ bðVm � 0:5ð Vmj þ Vtj � Vmj � VtjÞÞ; ð3Þ
Wðx;VmÞ ¼ hðVmÞhðRoff � xÞ þ hð�VmÞhðx� RonÞ; ð4Þ

where hðxÞ is the step function, b is a positive parameter

characterizing the rate of memristance change when

Vmj j[Vt, and Vt is the threshold voltage. Ron and Roff are

limiting values of the memristance R. In Eq. (4), the role of

hðxÞ is to restrict the memristance change to the interval

between Ron and Roff . In order to avoid convergence

problems, we modified the step function as:

hsðxÞ ¼
1

1þ expð� x
b
Þ ; ð5Þ

where b is a constant parameter. The absolute function can

be adapted as:

abssðxÞ ¼ x½hsðxÞ � hsð�xÞ�: ð6Þ

When a sinusoidal voltage source as shown in Fig. 1, is

applied on the device, the change of state x(t) is shown in

Fig. 2.

By studying the pictures, we can conclude that the

memristance is a constant value when the applied voltage is

lower than the threshold, and its value varies between Ron

and Roff under the opposite circumstance. Therefore, the

threshold memristor model is adopted in the design and

simulations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t ×10-8

-5

-4

-3

-2

-1

0

1

2

3

4

5

v

Fig. 1 The sinusoidal voltage source

504 Neural Comput & Applic (2018) 30:503–508

123

2.2 Image convolution computation

Image convolution computation aims to extract informa-

tion from input images. Addison et al. [34] studied several

kinds of neural networks’ performance for feature extrac-

tion. Image convolution computation is an important part

of CNNs. An image can be considered as a matrix, so the

image convolution computation operation is the same as

the matrix convolution computation operation. Set A is a

r1 � c1 matrix and B is a r2 � c2 matrix. Generally, a 2-D

convolution computation is defined as:

gðs; tÞ ¼
Xr1þr2�1

r¼1

Xc1þc2�1

c¼1

f ðr; cÞhðs� r þ 1; t � cþ 1Þ: ð7Þ

Following as Eq. (7) showed, it needs to perform ðr1 þ
c1 � 1Þ � ðr2 þ c2 � 1Þ times multiplication and addition

operations, which are very complicated. As we all know, it

is time consumed to execute a multiplication operation by a

software program. To complete a image convolution

computation in convolution neural network efficiently, the

algorithm is altered as:

Y11 ¼ R
XM

i¼1

XN

j¼1

Wijxij

 !
; ð8Þ

where Y11 is the first element of matrix Y, and the output

after first convolution computation when the convolution

kernel overlapped the input image. Integrated output is the

size of ðI �M þ 1Þ � ðJ � N þ 1Þ. I, J represent the

number of rows and columns of the input matrix A,

respectively. Wij is the weight of kernel. xij is the input

converted from input image data or the subsampling layer,

and R is a constant variable.

3 The computation architecture

3.1 Design of the architecture

As Eq. (1) shows, the current flowing through the mem-

ristor is the result of the multiplication of voltage and

conductance (G ¼ x�1). So the multiplication operation

can be conducted by the memristor. Kirchhoff’s Current

Law (KCL) describes that at any node (junction) in an

electrical circuit, the sum of currents flowing into that node

is equal to the sum of currents flowing out of that node.

Based on KCL, a novel computation architecture for

implementing Eq. (8) is proposed, as shown in Fig. 3.

Collecting currents from all branch circuits, the circle

outputs the summation, which is multiplied by the resis-

tance, then the product is the output. Now Wij represents

the conductance of a memristor, and R is a resistor,

transforming the current to voltage for the subsampling

conveniently. The architecture presented only can calculate

one element of the output matrix.

In order to complete the whole computation, the calcu-

lation procedure is described by the Algorithm 1 in detail,

where t is a temporary variable. The number of row and

column of the kernel are M, N, respectively, while the

number of row and column of the input image are I, J,

respectively. Do as the Algorithm 1 shows once, you could

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t ×10-8

3000

4000

5000

6000

7000

8000

9000

10000

11000
x(
t)

Fig. 2 The change of state variable x(t)

W W

W W

W

W

x x x

x x x

W WW
x x x

Σ

Fig. 3 The computation architecture

Neural Comput & Applic (2018) 30:503–508 505

123

get a feature map. If you want to get different features, you

need to make different kernels.

3.2 Building circuits

The circuit, using electrical elements to implement the

function as Fig. 3 shows, is proposed in Fig. 4, where i11,

i12; . . .; imn are currents flowing through different memris-

tors. I represents a current-controlled current source

(CCCS), whose value is the summation of i11, i12; . . ., imn.

Y11 is the voltage of the resistor, and it is a part of the

feature map. For acquiring the whole one, two alternative

methods can be adopted, the one being to copy the circuit

to perform the function simultaneously, the other being to

wait until the calculation completed. Obviously, the first

method is more time saving. More circuit elements are

required to build the circuit, in return. Therefore, a trade-

off needs to be handled between speed and cost.

4 Simulation and analysis

HSPICE is compatible with most SPICE variations and

takes advantages in convergence, accurate modeling and

etc. Memristors are very small with nanometer size, and

sensitive to the environment. In order to acquire the sim-

ulation results accurately, HSPICE is applied for simulat-

ing. When using the kernel

�1 �1 �1

�1 8 �1

�1 �1 �1

0
@

1
A;

we could extract the edge information from the input

images. The input image is shown in Fig. 5.

For the input image is a 5� 5 matrix, and the kernel is a

3� 3 matrix, performing the convolution operation as

Algorithm 1 shows, there are 9 times convolution opera-

tions needed to be executed. In each convolution operation,

the convolution kernel corresponding to the area is shown

in Fig. 6. Figure 6a–g shows the area of the input image

corresponding to the convolution kernel at each step. For

example, at the first step, Fig. 6a is the input. After the

input is convolved with the convolution kernel, the result is

the first negative pulse as shown in Fig. 7. Similarly, the

result of Fig. 6b convolved with the kernel is the second

pulse in Fig. 7, and so on. After the calculation, the output

simulated by HSPICE is shown in Fig. 7.

Apparently, there are four negative pulses in Fig. 7,

whose number is the same as the black squares’ in Fig. 5.

Taking into account the characteristics of the image

Fig. 4 Circuits to implement convolution operation Fig. 5 Binary image used for testing

506 Neural Comput & Applic (2018) 30:503–508

123

convolution operation, we know that the feature map is a

3� 3 matrix. So the white pixels of the feature map are the

remaining of the input image, whose number is the same as

the positive pulses. If the negative pulses are taken as the

black pixels and the positive pulses as the black pixels, we

could draw a picture as shown in Fig. 8. The simulation

results verify proposed design eventually

5 Conclusion

Recently, CNNs take important roles in the field of com-

puter vision, artificial intelligence and other areas. Devel-

oping convolutional neural networks in software cannot

meet the commands of speed in today, so it is urgent to

develop the method to achieve the hardware implementa-

tion. The effectiveness of the design is verified by simu-

lations through HSPICE. In the future work, it is necessary

to optimize the architecture and realize different kind of

image processing.

References

1. Chua LO (1971) Memristor-the missing circuit element. IEEE

Trans Circuit Theory 18(5):507–519

2. Strukov DB, Snider GS, Stewartand DR, Williams RS (2008) The

missing memristor found. Nature 534(7194):80–83

3. Adhikari SP, Kim H, Budhathoki R (2015) A circuit-based

learning architecture for multilayer neural networks with mem-

ristor bridge synapses. IEEE Trans Circuits Syst I 62(1):215–223

4. Ebong IE, Mazumder P (2012) CMOS and memristor-based

neural network design for position detection. Proc IEEE

100(6):2050–2060

5. Liu XY, Zeng ZG, Wen SP (2016) Implementation of memristive

neural network with full-function Pavlov associative memory.

IEEE Trans Circuits Syst I Regul Pap 63(9):1454–1463

6. Li B, Chen L, Li CD, Huang TW, He X, Li H, Chen YR (2014)

STDP learning rule Based on memristor with STDP property. In:

Proceedings of the international joint conference on neural

networks

7. Shi L, Pei J, Deng N, Wang D, Deng L (2015) Development of a

neuromorphic computing system. In: Proceedings of the IEDM,

8. Hu M, Strachan JP, Li Z, Grafals E, Davila N (2016) Dot-product

engine for neuromorphic computing: programming 1T1M cross-

bar to accelerate matrix-vector multiplication. In: Proceedings of

the 53rd annual design automation conference

9. Li B, Gu P, Shan Y, Wang Y, Chen YR, Yang HZ (2015) RRAM-

based analog approximate computing. IEEE Trans Comput Aided

Des Integr Circuits Syst 34(12):1905–1917

10. Ho Y, Huang GM, Li P (2011) Dynamical properties and design

analysis for nonvolatile memristor memories. IEEE Trans Cir-

cuits Syst I 58(4):724–736

11. Knag P, Lu W, Zhang Z (2014) A native stochastic computing

architecture enabled by memristors. IEEE Trans Nanotechnol

33(2):283–293

12. Hamdioui S, Xie L, Nguyen H, Taoui M (2015) Memristor based

computation-in-memory architecture for data-intensive applica-

tions. In: Proceedings of the conference on design, automation

and test in Europe

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Convolution kernel corresponding to the area of the input

images in each convolution operation. a is the input at the first step,

b is the input at the second step, c is the input at the third step, d is the

input at the fourth step, e is the input at the fifth step, f is the input at
the sixth step, g is the input at the seventh step, h is the input at the

eighth step and i is the input at the ninth step

5 6 7 8 9 10 11 12 13
t ×10-10

-20

-15

-10

-5

0

5

10

ou
tp
ut

Fig. 7 Output after convoluting shown by MATLAB

Fig. 8 Output after convoluting shown by a binary picture

Neural Comput & Applic (2018) 30:503–508 507

123

13. Li HH, Liu CC, Yan B, Yang CF, Song LH, Li Z, Chen YR

(2015) Spiking-based matrix computation by leveraging mem-

ristor crossbar array. In: Proceedings of the IEEE symposium on

computational intelligence for security and defense applications

(CISDA)

14. Ahmad MS, Hyunsang H, Moongu J, Jeon M (2014) Neuro-

morphic character recognition system with two PCMO memris-

tors as a synapse. IEEETrans Ind Electron 21(6):2933–2941

15. Nair MV, Dudek P (2015) Practical gradient-descent for mem-

ristive crossbars. In: Proceedings of the conference on memristive

systems (MEMRISYS)

16. Alibart F, Zamanidoost E, Strukov DB (2013) Pattern classifi-

cation by memristive crossbar circuits using ex situ and in situ

training. Nat Commun 4(3):131–140

17. Abdel-Kader RF, Abuelenin SM (2015) Memristor model based

on fuzzy window function. In: Proceedings of the fuzzy systems

(FUZZ-IEEE)

18. Li B, Wang Y, Chen YR, Li HH, Yang HZ (2014) ICE: inline

calibration for memristor crossbar-based computing engine. In:

Proceedings of the conference on design, automation and test in

Europe (DATE14)

19. Chen YR, Tian W, Li H, Wang XB, Zhu WZ (2010) PCMO

device with high switching stability. IEEE Electron Device Lett

31(8):866–868

20. Lucia VG, Arturo B, Luigi F, Fortuna L (2015) Memristor-based

adaptive coupling for consensus and synchronization. IEEE Trans

Circuits Syst I 62(4):1175–1184

21. Wen SP, Zeng ZG, Chen MZQ, Huang TW (2016) Synchro-

nization of switched neural networks with communication delays

via the event-triggered method. IEEE Trans Neural Netw Learn

Syst. doi:10.1109/TNNLS.2016.2580609

22. Wen GH, Yu WW, Li ZK, Yu XH, Cao JZ (2016) Neuro-adap-

tive consensus tracking of multiagent systems with a high-di-

mensional leader. IEEE Trans Cybern. doi:10.1109/TCYB.2016.

2556002

23. Lu JQ, Ho D, Cao J, Kurths J (2011) Exponential synchronization

of linearly coupled neural networks with impulsive disturbances.

IEEE Trans Neural Netw 22(2):329–336

24. Wen SP, Zeng ZG, Huang TW, Meng QG, Yao W (2015) Lag

synchronization of switched neural networks via neural activation

function and applications in image encryption. IEEE Trans

Neural Netw Learn Syst 26:1493–1502

25. Liu D, Li H, Wang D (2013) Neural-network-based zero-sum

game for discrete-time nonlinear systems via iterative adaptive

dynamic programming algorithm. Neurocomputing 110:92–100

26. Cheng L, Hou ZG, Tan M, Lin YZ, Zhang WJ (2013) Neural-

network-based adaptive leader-following control for multiagent

systems with uncertainties. Neurocomputing 110:92–100

27. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

28. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recog-

nition: a convolutional neural-network approach. IEEE Trans

Neural Netw 8(1):98–113

29. Mian ML, King HL (2015) Malaysia traffic sign recognition with

convolutional neural network. In: Proceedings of the DSP

30. Wang JH, Lu JJ, Chen WH, Wu XM (2015) Convolutional neural

network for 3D object recognition based on RGB-D dataset. In:

Proceedings of the ICLR

31. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classi-

fication with deep convolutional neural networks. In: Proceedings

of the NIPS

32. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. In: Proceedings of the CVPR

33. Yuriy VP, Dalibor B, Massimiliano DV (2013) Reliable SPICE

simulations of memristors, memcapacitors and meminductors,

p 2717. arXiv:1307

34. Addison J, Wermter S, MacIntyre J (1999) Effectiveness of

feature extraction in neural network architectures for novelty

detection. In: Ninth international conference on artificial neural

networks (ICANN 99)

508 Neural Comput & Applic (2018) 30:503–508

123

http://dx.doi.org/10.1109/TNNLS.2016.2580609
http://dx.doi.org/10.1109/TCYB.2016.2556002
http://dx.doi.org/10.1109/TCYB.2016.2556002
http://arxiv.org/abs/1307

	Design of memristor-based image convolution calculation in convolutional neural network
	Abstract
	Introduction
	Background
	Memristor model
	Image convolution computation

	The computation architecture
	Design of the architecture
	Building circuits

	Simulation and analysis
	Conclusion
	References

