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Abstract In this paper, an architecture based on memris-

tors is proposed to implement image convolution compu-

tation in convolutional neural networks. This architecture

could extract different features of input images when using

different convolutional kernels. Bipolar memristors with

threshold are employed in this work, which vary their

conductance values under different voltages. Various ker-

nels are needed to extract information of input images,

while different kernels contain different weights. The

memristances of bipolar memristors with threshold are

convenient to be varied and kept, which make them suit-

able to act as the weights of kernels. The performances of

the design are verified by simulation results.

Keywords Memristor � Convolutional neural network �
Image convolution computation

1 Introduction

Chua [1] was the first one to propose the hypothesis about

the memristor. After studying about 40 years theoretically,

HP Labs [2] made out the memristor physically in 2008,

which attracts a lot of attention. Then various kinds of

memristors emerged based on different materials. The

memristance value can be varied under different voltage or

current, and the value can be kept after withdrawing the

voltage or current source applied on it, making memristors

popular candidates for synapses. Besides nonvolatility, the

memristor is characterized by nanoscale size and power

efficiency, which enables them possible to be employed in

neural networks [3–6], neuromorphic computing [7, 8],

approximate computing [9] and memories [10]. Many

researchers applied memristors in different architectures,

such as learning architectures [3], computing architectures

[11], Computation-in-Memory architectures [12], to get

better performance. Moreover, different circuits based on

memristors have been proposed. Adhikari et al. [3] pre-

sented the memristor bridge synapse used to implement

random weight change algorithm in multilayer neural

networks, while many scholars utilized memristor-based

crossbar to realize matrix-vector operation [8, 13], neuro-

morphic character recognition [14], gradient-descent based

learning algorithms [15, 16]. In addition, there are a lot of

studies about memristors [17–21] in the literature.

Nowadays, the study of neural networks develops

rapidly. Recently, Wen et al. [22] used neuroadaptive

control approach to solve distributed consensus tracking

problem for a class of multiagent systems with unmodeled

dynamics and unknown disturbances. Many researches

about them and their applications upsurge [23–26]. Con-

volutional neural network, as a kind of deep learning neural

network was first inspired by the study of neural science,

and a classical architecture of convolutional neural network

was first proposed by Lecun et al. [27]. Compared with

traditional neural networks, convolutional neural networks

take advantages in weight sharing, which reduces the

number of parameters need to be trained. In addition, it is

good at recognizing images with displacement change,

zoom, rotation and other forms of distortion. Therefore,
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CNNs are very popular for pattern recognition and classi-

fication, such as human face recognition [28], traffic sign

recognition [29], object recognition [30]. In advances in

Neural Information Processing Systems, Krizhevsky et al.

[31] used deep convolutional neural networks to classify

more than a million images into 1000 different classes,

which achieved a new state-of-the-art classification. Fol-

lowing the deep convolutional neural networks,

Szegedy et al. [32] increased the depth and width of the

network while keeping the computational budget constant

to improve its ability of recognition and detection.

Quite a lot of reports about convolutional neural net-

works have been reported, and almost all of them are

simulated via software. As we all know, software runs

serially, but hardware computes inherently in parallel.

However, the realization of the convolutional neural

learning in fast, compact and reliable hardware is a dif-

ficult task. The critical problem is that hardware compo-

nents cannot be utilized to store nonvolatile weight. In

addition, convolution operations are complex for hard-

ware to execute, containing too many multiplication

operations and addition operations. Since memristors are

nonvolatile with nanoscale size, it is necessary to apply

them in convolutional neural networks to speed up the

calculation. In this paper, the bipolar memristor with

threshold is applied, which was put forward by Yuriy

et al. [33]. This kind of memristor is nonvolatile, nanos-

cale and power efficient, with no differences to other

kinds of memristors, but its memristance value is the

same as previous value when the voltage is lower than the

threshold.

Considering the traits of the convolution operation and

the bipolar memristor with threshold, an architecture

with memristors is designed to realize the convolution

operation. The reminder of the article is structured as

follows. Section 2 describes the memristor used in the

design, as well as the modified convolution computation.

Section 3 proposes the computation architecture and

details the computation procedure and builds the com-

putation circuits. Section 4 demonstrates the simulation

results.

2 Background

2.1 Memristor model

Since researchers in HP Labs made the memristors, the

interests in memristors upsurge. Many memristors based on

different materials with diverse electrical properties have

been discussed. Yuriy et al. [33] put forward the bipolar

memristor with threshold. The memristor model is defined

as the following:

I ¼ x�1Vm; ð1Þ
dx

dt
¼ f ðVmÞWðx;VmÞ; ð2Þ

where x is the internal state variable, representing the

memristance R. f(x) is a function modeling the device

threshold property, and W(x) is a window function:

f ðVmÞ ¼ bðVm � 0:5ð Vmj þ Vtj � Vmj � VtjÞÞ; ð3Þ
Wðx;VmÞ ¼ hðVmÞhðRoff � xÞ þ hð�VmÞhðx� RonÞ; ð4Þ

where hðxÞ is the step function, b is a positive parameter

characterizing the rate of memristance change when

Vmj j[Vt, and Vt is the threshold voltage. Ron and Roff are

limiting values of the memristance R. In Eq. (4), the role of

hðxÞ is to restrict the memristance change to the interval

between Ron and Roff . In order to avoid convergence

problems, we modified the step function as:

hsðxÞ ¼
1

1þ expð� x
b
Þ ; ð5Þ

where b is a constant parameter. The absolute function can

be adapted as:

abssðxÞ ¼ x½hsðxÞ � hsð�xÞ�: ð6Þ

When a sinusoidal voltage source as shown in Fig. 1, is

applied on the device, the change of state x(t) is shown in

Fig. 2.

By studying the pictures, we can conclude that the

memristance is a constant value when the applied voltage is

lower than the threshold, and its value varies between Ron

and Roff under the opposite circumstance. Therefore, the

threshold memristor model is adopted in the design and

simulations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t ×10-8

-5

-4

-3

-2

-1

0

1

2

3

4

5

v

Fig. 1 The sinusoidal voltage source
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2.2 Image convolution computation

Image convolution computation aims to extract informa-

tion from input images. Addison et al. [34] studied several

kinds of neural networks’ performance for feature extrac-

tion. Image convolution computation is an important part

of CNNs. An image can be considered as a matrix, so the

image convolution computation operation is the same as

the matrix convolution computation operation. Set A is a

r1 � c1 matrix and B is a r2 � c2 matrix. Generally, a 2-D

convolution computation is defined as:

gðs; tÞ ¼
Xr1þr2�1

r¼1

Xc1þc2�1

c¼1

f ðr; cÞhðs� r þ 1; t � cþ 1Þ: ð7Þ

Following as Eq. (7) showed, it needs to perform ðr1 þ
c1 � 1Þ � ðr2 þ c2 � 1Þ times multiplication and addition

operations, which are very complicated. As we all know, it

is time consumed to execute a multiplication operation by a

software program. To complete a image convolution

computation in convolution neural network efficiently, the

algorithm is altered as:

Y11 ¼ R
XM

i¼1

XN

j¼1

Wijxij

 !
; ð8Þ

where Y11 is the first element of matrix Y, and the output

after first convolution computation when the convolution

kernel overlapped the input image. Integrated output is the

size of ðI �M þ 1Þ � ðJ � N þ 1Þ. I, J represent the

number of rows and columns of the input matrix A,

respectively. Wij is the weight of kernel. xij is the input

converted from input image data or the subsampling layer,

and R is a constant variable.

3 The computation architecture

3.1 Design of the architecture

As Eq. (1) shows, the current flowing through the mem-

ristor is the result of the multiplication of voltage and

conductance (G ¼ x�1). So the multiplication operation

can be conducted by the memristor. Kirchhoff’s Current

Law (KCL) describes that at any node (junction) in an

electrical circuit, the sum of currents flowing into that node

is equal to the sum of currents flowing out of that node.

Based on KCL, a novel computation architecture for

implementing Eq. (8) is proposed, as shown in Fig. 3.

Collecting currents from all branch circuits, the circle

outputs the summation, which is multiplied by the resis-

tance, then the product is the output. Now Wij represents

the conductance of a memristor, and R is a resistor,

transforming the current to voltage for the subsampling

conveniently. The architecture presented only can calculate

one element of the output matrix.

In order to complete the whole computation, the calcu-

lation procedure is described by the Algorithm 1 in detail,

where t is a temporary variable. The number of row and

column of the kernel are M, N, respectively, while the

number of row and column of the input image are I, J,

respectively. Do as the Algorithm 1 shows once, you could
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Fig. 2 The change of state variable x(t)
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Fig. 3 The computation architecture
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get a feature map. If you want to get different features, you

need to make different kernels.

3.2 Building circuits

The circuit, using electrical elements to implement the

function as Fig. 3 shows, is proposed in Fig. 4, where i11,

i12; . . .; imn are currents flowing through different memris-

tors. I represents a current-controlled current source

(CCCS), whose value is the summation of i11, i12; . . ., imn.

Y11 is the voltage of the resistor, and it is a part of the

feature map. For acquiring the whole one, two alternative

methods can be adopted, the one being to copy the circuit

to perform the function simultaneously, the other being to

wait until the calculation completed. Obviously, the first

method is more time saving. More circuit elements are

required to build the circuit, in return. Therefore, a trade-

off needs to be handled between speed and cost.

4 Simulation and analysis

HSPICE is compatible with most SPICE variations and

takes advantages in convergence, accurate modeling and

etc. Memristors are very small with nanometer size, and

sensitive to the environment. In order to acquire the sim-

ulation results accurately, HSPICE is applied for simulat-

ing. When using the kernel

�1 �1 �1

�1 8 �1

�1 �1 �1

0
@

1
A;

we could extract the edge information from the input

images. The input image is shown in Fig. 5.

For the input image is a 5� 5 matrix, and the kernel is a

3� 3 matrix, performing the convolution operation as

Algorithm 1 shows, there are 9 times convolution opera-

tions needed to be executed. In each convolution operation,

the convolution kernel corresponding to the area is shown

in Fig. 6. Figure 6a–g shows the area of the input image

corresponding to the convolution kernel at each step. For

example, at the first step, Fig. 6a is the input. After the

input is convolved with the convolution kernel, the result is

the first negative pulse as shown in Fig. 7. Similarly, the

result of Fig. 6b convolved with the kernel is the second

pulse in Fig. 7, and so on. After the calculation, the output

simulated by HSPICE is shown in Fig. 7.

Apparently, there are four negative pulses in Fig. 7,

whose number is the same as the black squares’ in Fig. 5.

Taking into account the characteristics of the image

Fig. 4 Circuits to implement convolution operation Fig. 5 Binary image used for testing
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convolution operation, we know that the feature map is a

3� 3 matrix. So the white pixels of the feature map are the

remaining of the input image, whose number is the same as

the positive pulses. If the negative pulses are taken as the

black pixels and the positive pulses as the black pixels, we

could draw a picture as shown in Fig. 8. The simulation

results verify proposed design eventually

5 Conclusion

Recently, CNNs take important roles in the field of com-

puter vision, artificial intelligence and other areas. Devel-

oping convolutional neural networks in software cannot

meet the commands of speed in today, so it is urgent to

develop the method to achieve the hardware implementa-

tion. The effectiveness of the design is verified by simu-

lations through HSPICE. In the future work, it is necessary

to optimize the architecture and realize different kind of

image processing.
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