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Abstract Due to fast variation of desired variables in

vehicle handling problem, design of an accurate applicable

economic and considerably quick responsible controller for

steering control of such systems has attracted much atten-

tion in the literature. The problem becomes more compli-

cated, if the variation of road condition comes into play

also. In this study, by combination of a simple PID and an

optimized adaptive neural network controller, an arrange-

ment for active front steering control of vehicles in dif-

ferent road frictions is proposed. A general PID controller

is picked up and then optimized using the particle swarm

optimization algorithm. After that, a neural network is

added consecutively and trained by the outputs of PID

controller and neural network toolbox of MATLAB soft-

ware. The proposed controller fulfills both the applicability

and efficiency due to dual use of PID and neural network

controllers. Simulation results confirm the rightness of

suggested controller in active steering control of vehicles

even for unpredictable road friction.

Keywords Particle swarm optimization algorithm �
Artificial neural networks � Vehicle handling � Active front
steering control

1 Introduction

The steering system plays the substantial role in the

dynamics, handling and specially the yaw stability control

of all road vehicles. Due to possible sudden unpre-

dictable and unexpected driving condition changing, hav-

ing a sense of efficient steering control is unavoidable. As

an applicable index, any change in the road coefficient of

friction and its effect on the yaw stability control has been

considered in some articles [1, 2]. Fast and accurate

response to changes in road conditions enforces engineers

to design and introduce efficient controls so that the answer

is minimized for the probably late drivers. In the literature,

several approaches such as direct yaw moment control,

four-wheel steering system, active differential braking and

active front steering control have been proposed to control

the yaw rate of vehicles.

The active front steering (AFS) [2] arrangement is one

of the efficient ones that works by adding an additional

angle to that previously made by conventional steering

system [3]. In the literature, several studies have been done

using simple arrangement controllers to reach economical

applicable solutions. For example, in [4], a fractional-order

PID controller was designed as the AFS to control the yaw

stability of a vehicle. Boada et al. [5] designed a fuzzy

logic controller to control both the yaw rate and sideslip

angle of a vehicle. Hajjaji and Bentalba [6] designed a

Sugeno-type fuzzy logic controller for their control

scheme. Masao et al. [7] designed a steering controller

using the state feedback of both yaw rate and sideslip angle

and utilizing active rear wheel steering and direct yaw

moment control systems jointly. Zeyada et al. [8] devel-

oped a fuzzy logic controller to improve the handling of a

vehicle by using both differential braking and active front

steering control systems.
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Others used almost simplified models for vehicle

dynamics. Rezai and Heidari Shirazi [9] designed a QFT

(quantitative feedback theory) robust controller to control

the yaw rate of a 7-degree-of-freedom vehicle by means of

active front steering system. Their controller was adjusted

for a range of offline road coefficients of friction; thus, it

failed to modify the vehicle behavior completely and

properly. Ma et al. [10] designed a fuzzy logic AFS con-

troller for an eight-degree-of-freedom car. Although the

degrees of freedom grew up, it did not lead to a precise

behavior. Wu et al. in [11], used the back propagation of

error as a learning method for a neural networks AFS

controller. Then, an optimization was done using genetics

algorithm, but the road condition was assumed unchanged

during the maneuvers.

It can be found that some studies employed combined

algorithms and methods to overcome the resultant errors.

Masao et al. [12] designed an optimal control for a vehicle

to enhance the handling quality of the front steering angle

by controlled distribution of moment on all four wheels.

Elbeheiry et al. [13] developed a sliding mode control that

combines both active front steering and active roll moment

control (ARMC) system in order to enhance vehicle sta-

bility and handling of vehicle in emergency maneuvers.

Yihu et al. [14] designed a fuzzy logic controller to

improve yaw stability of a vehicle by integrated yaw

moment control and active front steering. Their study did

not consider unpredictable situation, for example, changes

in road friction.

Although these combination methods can improve the

vehicle handling, they are not economical controllers and

usually increase the overall cost of manufacturing and

production.

Some works have been focused on improving the con-

troller performances using superimposed methods. Zhanga

et al. [15] optimized a fuzzy logic controller for a four-wheel

steering vehicle by a combination of genetic algorithm,

nonlinear programming quadratic line search (NPQL) and

response surface model (RSM) in a fixed road condition.

Motoki and Masao designed a controller by using direct

yaw moment control to manipulate the yaw rate of a

vehicle in different road surface conditions. They used

sideslip angle regulating as the feed forward and both the

sideslip angle and yaw rate as the feedback signal [16].

Halvai et al. developed an adaptive neuro-fuzzy controller

and studied the effect of sudden changes of road friction

coefficient for right side wheels of the vehicle [17]. It is

noted that the proposed controller can steer to desired

conditions for almost limited variation.

Most of the controllers, which have been recommended in

the literature, were based on the simplified vehicle dynamic

models or assumed constant road and parameter conditions.

Due to unpredictable and unexpected parameter changes, an

applicable and efficient controller must be developed in

order to adjust itself with these various conditions. It is

necessary to design a controller that adapts its parameters

during maneuvers to improve the handling of vehicle.

In this study, an applicable and economic but simulta-

neously efficient and adaptive neural network controller

was proposed. In order to design an efficient neural net-

work controller, some problems must first be noticed and

solved. First, it is noted that an efficient network has many

neuron interconnections and unknown parameters that must

be optimized. Second, the ranges of neural network’s

parameters are not initially specified. Third, during the

training of the network, the parameters (layer weights) may

be trapped in local optimums.

For not dealing with these problems, first a general PID

controller with only three unknown parameters but almost

specified ranges of variation is picked up. Then, utilizing the

PSO (particle swarm optimization) algorithm, the PID con-

troller parameters are optimized. PSO algorithm works with

both the local and global solutions; therefore, the final global

optimal solution can be reached. By means of the neural

network toolbox in MATLAB software and data obtained

from optimized PID controller, the neural network is trained.

This integrated controller is applied to the vehicle, and again

by using back propagation of error as a learning algorithm,

the controller canmodify its weights to improve the handling

for different road conditions. The proposed controller satis-

fies both the applicability and effectiveness due to joint use of

PID and adaptive neural network controllers.

2 Vehicle model description

In this section, both the reference and actual models for our

system will be introduced. With respect to Fig. 1, the ref-

erence model is a 2D reduction of a real 3D vehicle whose

two rear and front wheels were replaced by a set of wheels.

In a real vehicle, the best condition for minimized slipping

and optimal handling occurs when the wheels rotate about

a point. This introduced model can satisfy these optimal

conditions for desired handling simply. One advantage of

this simple model is that the trajectory response of vehicle

under step input of steering is a circle or the yaw rate is a

constant value [18, 19].

With reference to Fig. 1, the 2D governing equations of

motion become:

mð _vy þ _wvxÞ ¼ Fcr þ Fcf cos df ð1Þ

mð� _wvyÞ ¼ �Fcf sin df ð2Þ

Iz €w ¼ lfFcf � lrFcr ð3Þ

where m is the total mass of car, vy and vx are the velocities

along y-direction and x-direction, respectively, Fcr and Fcf
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are the lateral forces exerted to the rear and front wheels, df
is the steering angle of front wheel, Iz is the mass moment

of inertia, and w is yaw angle.

lf and lr are the interspaces between front/rear wheels

and the center of mass, l is the distance between rear and

front axles, and af and ar are the lateral slip angle of front

rear wheels, respectively.

Assuming the constant cornering stiffness for rear and

front tire leads someone to rewrite the lateral forces as:

Fcf ¼ Cfaf ) Fcf ¼ Cf bþ
_wlf
vx

� df

 !
ð4Þ

Fcr ¼ Crar ) Fcr ¼ �Cr b�
_wlr
vx

 !
ð5Þ

where Cf, Cr and b are the cornering stiffness of front and

rear wheels and sideslip angle of the car, respectively. By

introducing b and dw/dt as the state variables, one can

simply reach to such following state space equation

between df and defined state variables:

_b
€w

" #
¼

�ðCf þ CrÞ
mvx

�1� ðlfCf � lrCrÞ
mv2x

�ðlfCf � lrCrÞ
Iz

�ðl2fCf þ l2rCrÞ
mv2x

2
6664

3
7775 b

_w

� �

þ

Cf

mvx
lfCf

Iz

2
664

3
775df ð6Þ

A simple calculation results in the transfer function

between the yaw rate and the steer angle of the frontwheel as:

_w
df

¼ A1sþ A2

B1s2 þ B2sþ B3

ð7Þ

where s is the Laplace operator and the coefficients A1, A2,

B1, B2 and B3 are:

A1 ¼ mvxlfCf

A2 ¼ LCfCr

B1 ¼ mvxIz

B2 ¼ IzðCf þ CrÞ þ mðl2fCf þ l2rCrÞ

B3 ¼
CfCr

vx
ðlf þ lrÞ2 1þ mv2xðlrCr � lfCfÞ

CfCrðlf þ lrÞ2

" # ð8Þ

With respect to Fig. 1, it can be shown that:

df � af þ ar ¼
l

R
! df ¼ af � ar þ

l

R
ð9Þ

Also, by rewriting Eqs. (4) and (5), we have:

af ¼
Fcf

Cf

¼ mf

Cf

v2

R
ð10Þ

ar ¼
Fcr

Cr

¼ mr

Cr

v2

R
ð11Þ

where mf and mr show the distributed masses on the rear

and front axles in nonoperating situation. Substituting

Eqs. (10) and (11) to (9), one can reach to:

df ¼
l

R
þ mf

Cf

� mr

Cr

� �
v2

R

¼ l

R
þ mf

Cf

� mr

Cr

� �
ay

¼ l

R
þ Kuay

ð12Þ

where ay is the lateral acceleration and Ku is known as the

understeering coefficient, with such following relation:

Ku ¼
mf

Cf

� mr

Cr

¼ af � arð Þ R
v2

ð13Þ

Finally, using Eqs. (10)–(13), one can rearrange the

transfer function between the yaw rate of vehicle and

steering angle (Eq. (7)) as:

_w ¼ vdf
lþ kuv2

ð14Þ

Equation (14) prepares the reference signal for our

control simulation arrangement, while, in this paper, a

virtual but completely efficient software is used to model

the actual plant. CarSim software as one of the MATLAB

Simulink toolbox is used to model an actual vehicle with

Fig. 1 The schematic diagram of the reference model
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real and different road conditions and other true situations.

Many studies have used this software package to simulate

the vehicle responses in their control schemes (see for

example [12, 13, 20, 21]).

The parameters of the vehicle, we used in this study, are

shown in Table 1. In this table, Rw is the nominal radius of

the wheel, Iw is the mass moment of inertia of the wheel, h

is the height of the center of gravity of the sprung mass,

and lw is the width between right and left wheels.

3 Controller design pattern

In this section, the logic and procedure of selecting and

designing the proposed controller will be described. Since

the whole controlling process happens in a very short time

interval, it should be able to demonstrate more efficient and

precise behaviors rather than simple conventional

controllers.

Here, and due to simplicity, generality and widespread

use of PID controllers, a general PID controller is picked

up for a determined and fixed road condition. After using

the particle swarm optimization method and an artificial

neural network, the PID coefficients have been optimized

and updated throughout such a smart planned process in

real time. This advanced and smart combination can

improve the handling of the vehicle in different road

coefficients of friction in short intervals of time.

3.1 Particle swarm optimization algorithm

The particle swarm optimization (PSO) is a random search

algorithm, which was imitated from the social behavior of

the bird flocks or fish schools, to find the best value of a

cost function. This algorithm was first introduced by

Kennedy and Eberhart [22] and can be used to optimize

binary discrete optimization problems as well as the con-

tinuous ones [23]. The ability of algorithm in finding

optimized candidate has been studied in some works (see

for example [24–26]). In this optimization algorithm, first a

set of population (swarm) of n particles was created (ini-

tialization step). Then, the fitness function for these parti-

cles was evaluated. The best position for each particle

(personal best) and the best position among all particles

(global best) were selected and be named as ‘‘Pbest’’ and

‘‘Gbest,’’ respectively [27, 28]. If the stopping criterion

was satisfied, the process stopped and the final Gbest was

reported as the optimal population.

In our simulation, each particle includes three parame-

ters, i.e., the coefficient of a general PID controller. They

are named as xi1 = kp, xi2 = kint and xi3 = kd where i is the

ith particle. First a set of 3D particles is created. Then, the

fitness function (the integral of squared error) for these

particles is evaluated and the ‘‘Pbest’’ and ‘‘Gbest’’ are

computed. Each particle can be defined by its current

velocity and position. The position of each particle changes

according to the following update formula [28]:

xij nþ 1ð Þ ¼ xij nð Þ þ vijðnþ 1Þ ð15Þ

where xij and vij are the position and the velocity of the

parameter j of ith particle of the whole population. Also,

the update rule for the velocity is [28]:

vij nþ 1ð Þ ¼ wvij nð Þ þ c1r1jðnÞ½Pbestij � xij�
þ c2r2jðnÞ½Gbestj � xij� ð16Þ

The first term at the right side of Eq. 16 is known as the

inertia term and makes the particle moves in the same

direction and with the same velocity. The second term

which is known as ‘‘the personal influence’’ makes the

particle come back to a possibly better previous position,

while the third term which is known as ‘‘the social influ-

ence’’ makes the particle monitor the best neighbor direc-

tion. In these terms, r1j and r2j are some random values in

the range of [0, 1], while w, c1 and c2 are the weighting

factors. These weighting factors enable one to manipulate

the rate of convergence and also the magnitude of each

effect in the searching process. See for example [29, 30]

that presented some methods to select optimal values of

above weighting factors. The flowchart of the PSO algo-

rithm is schematically drawn in Fig. 2.

The constant values that are used in our PSO algorithm

are also tabulated in Table 2.

3.2 Proposed neural network controller

As it can be seen in many works, an artificial neural net-

work is an imitation of making a decision with respect to

previous trained behaviors and data in the biological

human brain [31–33]. After an ANN has been trained by

some defined and determined input/output signals, it may

decide about a suitable response due to an unknown input

[33]. The efficiency and correctness of this method has

been discussed in many applications including control

systems. See for example [34–36].

Figure 3 shows the architecture of a two-layer feed-

forward neural network controller that is used in this study.

In this model, all the activation functions (f) of first layer

are hyperbolic tangent sigmoid functions, while that of

Table 1 The parameters of the vehicle used in our simulations

m 1530 (kg) lf 1.14 (m) Rw 0.31 (m)

Iz 4607.5 (kg m2) lr 1.64 (m) Iw 0.9 (kg m2)

v 72 (km/h) lw 1.55 (m) H 0.52 (m)
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second layer are all linear. With reference to this archi-

tecture, the outlets of first layer are:

zi ¼ f
X2
j¼1

wijxj

 !
ði ¼ 1; 2; . . .30Þ ð17Þ

While the output signals of the second layer become:

u ¼ f
X30
l¼1

vlzl

 !
ð18Þ

Here wij’s and vl’s are the layer weights between the

input, intermediate and output neurons.

During the simulation/training and in each iteration, the

error signal is computed via the following relation:

e nð Þ ¼ Yref � yðnÞ ð19Þ

and the cost function is defined as:

E ¼ 1

2
e2 nð Þ ð20Þ

To minimize the cost function (Eq. 20), the back-propa-

gation method is used. The method was first introduced by

Werbos [37] and then used in neural networks as a learning

algorithm in [38]. Here, this method is used to update the

weights iteratively to reach an optimal value for the desired

cost function. In fact, the back-propagation algorithm toge-

ther with the delta learning rule [39, 40] is used to compute

layer weights for minimizing the cost function E (Eq. 20) in

this study. Based on above methods, the weight variation in

each iteration must be proportional to the minus gradient of

the cost function with respect to that layer weight, i.e.,

Dwij / � oE

owij

¼Chain rule� oE

oeðnÞ
oeðnÞ
oyðnÞ

oy

ou

ou

owij

Dvi / � oE

ovi
¼Chain rule� oE

oeðnÞ
oeðnÞ
oyðnÞ

oy

ou

ou

ovi

ð21Þ

A simple calculation leads someone to reach such fol-

lowing relation for layer weight changing rule:

Dwij ¼ ge nð Þ ou

owij

Dvi ¼ ge nð Þ ou
ovi

ð22Þ

where g is the coefficient of training. This coefficient must

be selected such that both the stability of iterations and the

speed of training will be satisfied. In this study, g = 0.0002

satisfies both conditions; therefore, the updating law of

layer weights becomes:

wij nþ 1ð Þ ¼ wij nð Þ þ geðnÞ ou

owij

vi nþ 1ð Þ ¼ vi nð Þ þ geðnÞ ou
ovi

ð23Þ

More specifically, first the parameters of a conventional

PID controller, i.e., Kp, Kd and Ki, are optimized for a

Fig. 2 The schematic flowchart of the PSO algorithm

Table 2 The values of parameters that are used in our PSO algorithm

Description Notation

(parameter)

Value

The initial population n 100

Cognitive position acceleration c1 1.5

Social position acceleration c2 1

Weight of inertia w 0.8

The stopping criterion

(number of iteration)

– 1000

Fig. 3 The architecture of the network used in our simulation
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specified road condition using particle swarm optimization

algorithm. After that, train the NN controller to set the

weights of NN controller, and then, the weights of NN are

adjusted during the control process. Here the PSO (particle

swarm optimization) algorithm has utilized to optimize the

PID controller that must train the NN controller, and ANN

(artificial neural network) has used to control the yaw rate

of vehicle.

Briefly, the parameters of a conventional PID controller,

i.e., Kp, Kd and Ki, are optimized when the road coefficient

of friction is equal to one by using particle swarm opti-

mization algorithm. After that, a two-layer neural network

is designed and trained. The trained layer weights of the

network can tune the controller signal for other road con-

ditions. In the next section, the efficiency and effectiveness

of the controller for three types of road conditions will be

justified in real time for some famous vehicle maneuvers.
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Fig. 4 Three famous maneuvers that must be tracked in our

simulations
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Fig. 5 The desired, uncontrolled and controlled yaw rate of the vehicle for the change lane maneuver when the road coefficient of friction is a 1,
b 0.6 and c 0.2
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4 Simulation results

In what follows, the adeptness and the ability of the designed

controller for three famous maneuvers, i.e., J-turn, fishhook

and change lane in three different road friction conditions, are

investigated. Figure 4 shows these three famous maneuvers.

In this study, the coefficient of friction as an unpre-

dictable condition was selected and varied from a road with

coefficient of friction equal to one to a road with coefficient of

friction equal to 0.2. As an analogical study, the behaviors of

the system under the PID that was optimized by PSO andwhen

it was integrated to ANN are compared. In the following fig-

ure legends, ‘‘PID’’ is the abbreviation of PID controller opti-

mized by SFO, while ‘‘neural network’’ is the abbreviation of

PID controller optimized by SFO and integrated by the ANN.

Figure 5 shows the desired, uncontrolled and controlled

yaw rate of the vehicle for the change lane maneuver at

different road conditions under mentioned controllers.

According to this figure, in first road coefficient of

friction, i.e., the case (a) of Fig. 5, both the controllers can

track the desired path, properly. It is completely

expectable since the PSO algorithm is used to find opti-

mized controller for this road condition only and the neural

network has been trained at this road condition. Of course,

when road coefficient of friction decreases, the optimized

PID controller cannot control the vehicle alone and

employing an auxiliary adaptive ANN is unavoidable as

Fig. 5b, c indicates this matter.

The simulation is repeated for other two maneuvers, i.e.,

the J-turn and fishhook. Figures 6 and 7 show the superi-

ority of the integrated optimized PID plus ANN controller

with respect to optimized PID controller alone in tracking

the desired trajectories.

In Table 3, one can compare the performance of the

mentioned controllers of previous cases quantitatively and

entirely.
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Fig. 6 The desired, uncontrolled and controlled yaw rate of the vehicle for the J-turn maneuver when the road coefficient of friction is a 1, b 0.6

and c 0.2
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5 Conclusion

It was tried to introduce an active steering control scheme for

vehicle handling that satisfies both the applicability and

effectiveness criteria. An integrated optimized PID and artifi-

cial neural network controller was designed, and its perfor-

mance was investigated for three famous yaw rate maneuvers

in different road frictions. An analogical study was also done

between the PID that was optimized by particle swarm algo-

rithm and the entire represented controller. It was shown that in

regular road friction, both the controllers can steer the vehicle

well, but for rainy and icy roads, only the integrated PID plus

adaptive ANN can follow the desired trajectory precisely.
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Fig. 7 The desired, uncontrolled and controlled yaw rate of the vehicle for the fishhook maneuver when the road coefficient of friction is a 1,

b 0.6 and c 0.2

Table 3 The integral of squared error between the desired and actual

trajectories for our case studies

Maneuver/controller Adaptive NN PID ? PSO

Coefficient of friction = 1

Change lane 4.998 e(-5) 1.438 e(-6)

J-turn 8.182 e(-5) 3.859 e(-6)

Fishhook 5.081 e(-5) 2.004 e(-6)

Coefficient of friction = 0.6

Change lane 3.857 e(-5) 0.0007666

J-turn 3.432 e(-5) 0.0004785

Fishhook 4.575 e(-5) 0.0008475

Coefficient of friction = 0.3

Change lane 3. 084 e(-5) 0.0009413

J-turn 2.741 e(-5) 0.001162

Fishhook 2.696 e(-5) 0.0009974
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