
ORIGINAL ARTICLE

An evolutionary computation approach to solving repairable
multi-state multi-objective redundancy allocation problems

Madjid Tavana1,2 • Kaveh Khalili-Damghani3 • Debora Di Caprio4,5 •

Zeynab Oveisi3

Received: 20 July 2016 / Accepted: 25 October 2016 / Published online: 15 November 2016

� The Natural Computing Applications Forum 2016

Abstract The redundancy allocation problem (RAP) is an

optimization problem for maximizing system reliability at

a predetermined time. Among the several extensions of

RAPs, those considering multi-state and repairable com-

ponents are the closest ones to real-life availability engi-

neering problems. However, despite their practical

implications, this class of problems has not received much

attention in the RAP literature. In this paper, we propose a

multi-objective nonlinear mixed-integer mathematical

programming to model repairable multi-state multi-objec-

tive RAPs (RMMRAPs) where a series of parallel systems

experiencing repairs, partial failures, and component

degrading through time is considered. The performance of

a component depends on its state and may decrease/in-

crease due to minor and major failures/repairs which are

modeled by a Markov process. The proposed RMMRAP

allows for configuring multiple components and redun-

dancy levels in each sub-system while evaluating multiple

objectives (i.e., availability and cost). A customized ver-

sion of the non-dominated sorting genetic algorithm

(NSGA-II), where constraints are handled using a combi-

nation of penalty functions and modification strategies, is

introduced to solve the proposed RMMRAP. The perfor-

mance of the proposed NSGA-II and that of an exact multi-

objective mathematical solution procedure, known as the

epsilon-constraint method, are compared on several

benchmark RMMRAP instances. The results obtained

show the relative dominance of the proposed customized

NSGA-II over the epsilon-constraint method.

Keywords Redundancy allocation problem � Availability
computation � Repairable component � Multi-state

component � Markov process � Multi-objective

programming � NSGA-II

1 Introduction

The redundancy allocation problem (RAP) is a combina-

torial optimization problem with multiple resource con-

straints aimed at improving the system reliability. The RAP

was first introduced by Misra and Ljubojevic [16]. RAPs

are generally formulated as nonlinear integer problems and

usually characterized by a considerable computational

complexity.

A series–parallel RAP consists of a set of sub-systems

which are connected in series where it is possible to select

multiple component choices and redundancy levels in

& Kaveh Khalili-Damghani

kaveh.khalili@gmail.com

Madjid Tavana

tavana@lasalle.edu;

http://tavana.us/

Debora Di Caprio

dicaper@mathstat.yorku.ca

Zeynab Oveisi

zeynab.oveisi@yahoo.com

1 Business Systems and Analytics Department, Distinguished

Chair of Business Systems and Analytics, La Salle

University, Philadelphia, PA 19141, USA

2 Business Information Systems Department, Faculty of

Business Administration and Economics, University of

Paderborn, 33098 Paderborn, Germany

3 Department of Industrial Engineering, South-Tehran Branch,

Islamic Azad University, Tehran, Iran

4 Department of Mathematics and Statistics, York University,

Toronto, Canada

5 Polo Tecnologico IISS G. Galilei, Bolzano, Italy

123

Neural Comput & Applic (2018) 30:127–139

https://doi.org/10.1007/s00521-016-2676-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2676-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2676-y&domain=pdf
https://doi.org/10.1007/s00521-016-2676-y

parallel in each sub-system. The components of each sub-

system may be either binary- or multi-state [10, 30]. The

entire system may also consist of either two or multiple

states. Binary systems are assumed to be either functional

or non-functional [21]. However, a real system may go

through several states ranging from full performance to

complete failure carrying out infinite partial performances

during its service time. That is, the state of a real system

may be either downgraded or improved during its service

time depending on several factors such as aging, mainte-

nance, and workload. The transition between the states can

be modeled using stochastic and Markov processes.

In a multi-state series–parallel system, two different

types of redundancy strategies may be considered. The first

one occurs when the components of the system are binary

state, but each type of component may have a different

nominal performance level. In this case, the system per-

formance depends on the performance levels of the selec-

ted components and on these components being functional

or non-functional. The second type of redundancy strategy

applies to systems with multi-state components where the

system performance is completely determined by the states

of the selected components [21]. In this paper, we consider

this second type of redundancy problem for multi-state

series–parallel systems.

RAPs and their extensions are NP-hard problems [2].

A wide range of solution procedures including heuristics

and meta-heuristics [1, 5, 12, 13, 17–19, 22, 23, 25, 29],

hybrid methods [3, 20, 24], and multi-objective opti-

mization [7] have been proposed to solve these problems.

Yu and Gen [28] provided a comprehensive review of the

genetic algorithm (GA) approaches that have been used to

solve various reliability optimization problems in the

literature.

To solve multi-objective system reliability optimization

problems, Li et al. [11] proposed a procedure consisting of

two steps: (1) generating non-dominated solutions using a

multi-objective evolutionary algorithm; (2) clustering

similar solutions by means of a self-organizing map and

identifying the most efficient solutions by data envelop-

ment analysis. Khalili-Damghani and Amiri [7] proposed a

hybrid approach to solve binary-state multi-objective reli-

ability RAPs. Their approach combines the efficient epsi-

lon-constraint with the multi-start partial bound

enumeration algorithm and data envelopment analysis.

In this paper, a multi-objective mixed-integer nonlinear

programming is proposed to solve repairable multi-state

multi-objective RAPs (RMMRAPs).

A RMMRAP is a series–parallel system where compo-

nents are allowed to go through several performance states.

We assume that one can select multiple component choices

and redundancy levels in parallel in each sub-system. The

performance of a component may deteriorate or improve

based on minor and major failures and repairs, respec-

tively. The partial failure/repair model is parameterized by

a Markov process.

RMMRAPs are based on practical real-world problems

and, as such, have many practical implications. However,

to the best of our knowledge, so far they have not been

adequately studied in the RAP literature.

Due to conflicting objective functions, we use a multi-

objective decision-making method to solve the proposed

RMMRAP model. Generating non-dominated solutions on

the Pareto front is an insightful way to study the problem

since it imposes no restriction on the priorities of the

objective functions. Thus, a customized version of the

NSGA-II method is introduced to generate a set of non-

dominated solutions on the Pareto front for RMMRAP

instances. The performance of the proposed NSGA-II

method on several benchmark instances is compared with

that of an epsilon-constraint method using a set of well-

known multi-objective comparison metrics.

The paper proceeds as follows. Section 2 provides some

preliminaries including: a brief introduction to the princi-

ples of multi-objective decision making, the basic NSGA-II

method, and the component availability analysis using a

Markov process. Section 3 introduces and describes the

proposed RMMRAP, the customization of the epsilon-

constraint method, and a customized version of the NSGA-

II method. Test problems, software implementation, and

comparison metrics are presented in Sect. 4. The results

obtained for the test problems are reported and discussed in

Sect. 5. Finally, Sect. 6 concludes and suggests future

research directions.

2 Preliminaries

A multi-objective decision-making (MODM) problem

considering minimum objective functions can be presented

as follows [6]:

min f ðxÞ
s:t: x 2 S ¼ x 2 RnjF xð Þ� b; x� 0f g

�
ð1Þ

where f(x) represents a finite number of objective functions,

F(x) B b represents a finite number of constraints, S is the

feasible solution space, and x is the n-vector of decision

variables, n 2 Z?.

The type and the timing of the preference articulations

play a central role in the decision-making process. MODM

solution procedures have been classified into four groups

[6]. In particular, Hwang and Masud [6] showed that when

assuming posterior preference information on the priority

of objective functions, it is desirable to generate non-

dominated solutions on the Pareto front of MODM

problem.

128 Neural Comput & Applic (2018) 30:127–139

123

Mavrotas [15] introduced the efficient epsilon-constraint

method which is an improved version of a classical non-

dominated solution generation method known as the epsi-

lon-constraint method. The efficient epsilon-constraint

method has been widely used to solve MODM problems

[7, 8, 17, 26].

2.1 Non-dominated sorting genetic algorithm

(NSGA-II) method

The NSGA-II method, initially introduced by Deb et al. [4],

is a well-known multi-objective evolutionary algorithm.

This method combines different techniques such as elitism,

fast non-dominated sorting, and diversity maintenance

along with the Pareto-optimal front and has been widely

and successfully employed to solve several engineering,

management, and combinatorial optimization problems.

Details regarding the structure of the standard NSGA-II

algorithm can be found in Deb et al. [4].

2.2 Component performance and availability

According to the general Markov model for a generic

multi-state system introduced by Lisnianski and Levitin

[14], any component h in the multi-state system can have

kh different states corresponding to different performance

levels belonging to the set gh ¼ gh;1; . . .; gh;kh
� �

. The

indexing of the set gh reflects the performance level of the

component h, that is:

8l; q ¼ 1; . . .; kh; l\q $ gh;l\gh;q: ð2Þ

The current state of the component h and the corresponding

value of the component performance level Gh(t) at any

instant t are random variables. Gh(t) takes values in gh, that

is, Gh(t) 2 gh. Thus, given an operational time period [0,

T], the evolution of the performance level Gh(t) of com-

ponent h follows a discrete-state continuous-time Markov

stochastic process.

Lisnianski and Levitin [14] model deals with minor and

major failures and repairs of components. Given a generic

repairable multi-state component h, a minor failure causes

a downgrading from a state q to the adjacent lower state

q - 1, while a major failure causes a downgrading from a

state q to a state l\ q - 1. Similarly, a minor repair

implies a return of the component from a state l to the

adjacent higher state l ? 1, while a major repair a return of

the component from a state l to a state q[l ? 1.

The state probabilities pq(t), with q = 1, …, kh, define

the probabilities that at the instant t[0 the component h

will be in state q and can be obtained from the following

system of differential equations.

dpkh tð Þ
dt

¼
Xkh�1

l¼1

ll;khpl tð Þ � pkh tð Þ
Xkh�1

l¼1

kkh;l

dpq tð Þ
dt

¼
Xkh
l¼qþ1

kl;qpl tð Þ þ
Xq�1

l¼1

ll;qpl tð Þ

� pq tð Þ
Xq�1

l¼1

kq;l þ
Xkh
l¼qþ1

lq;l

 !
for 1\q\kh

dp1 tð Þ
dt

¼
Xkh
l¼2

kl;1pl tð Þ � p1 tð Þ
Xkh
l¼2

l1;l

ð3Þ

where

• pkhð0Þ ¼ 1; pkh�1ð0Þ ¼ � � � ¼ p1ð0Þ ¼ 0 are the initial

conditions representing the fact that at time t = 0 the

component h is new, that is, the component h is in state

kh where no failure has occurred yet;

• ll, q is the repair rate from state l to state q, where

l, q = 1, …, kh and l\ q;

• kq, l is the failure rate from state q to state l, where

l, q = 1, …, kh and l\ q;

If D is a given demand level, that is, a reference com-

ponent performance level, the acceptable states for the

component h are all states q such that gh,q?1 C D[gh,q.

This leads to the definition of instantaneous availability of

component h which is calculated as follows [28]:

Ah tð Þ ¼
Xkh
e¼qþ1

pe tð Þ: ð4Þ

Equation (4) says that the instantaneous availability of

component h at time t is given by the sum of all the state

probabilities of the component from state q ? 1 to state kh.

That is, at a given demand level D, Ah(t) calculates the

probability of component h going through all working

states which allow the component to meet the minimum

required performance level.

3 Modeling RMMRAPs

Repairable multi-state multi-objective redundancy alloca-

tion problems (RMMRAPs) consist of series–parallel sys-

tems experiencing repairs, partial failures, and component

degrading through time. RMMRAPs comprise configuring

multiple components and redundancy levels in each sub-

system while evaluating multiple objectives (i.e., avail-

ability and cost). In RMMRAPs, the performance of a

component depends on its state and may decrease/increase

due to minor and major failures/repairs which are modeled

by a Markov process.

Neural Comput & Applic (2018) 30:127–139 129

123

The proposed RMMRAP model is based on the fol-

lowing main assumptions.

• Multi-objectives (i.e., availability and cost) are consid-

ered for planning the RMMRAPs.

• All components are assumed to go through several

states from perfect performance to complete failure.

• All components are assumed to be repairable.

• The performance level is a discrete-state continuous-

time Markov stochastic process.

• Cost and weight of all components are assumed to be

known, deterministic, and time independent.

• The availability of each component is assumed to be

time dependent.

• The demand level is assumed to be constant and hence

time independent.

• There are several redundant component choices within

a sub-system.

• The redundancy strategy is assumed to be active.

• The total number of components in each sub-system is

bounded.

• Final designs must conform to the cost, weight, and

availability constraints.

The main notations used in the proposed RMMRAP are

listed below:

m Number of sub-systems

i Index for the sub-systems, i = 1, 2, …, m

ni Total number of components used in sub-system i

h Index for the components of subsystem i, h = 1,

2,…, ni
j Index for the component types in each sub-systems,

j = 1, 2,…,n

D Demand level

Aij(t) Availability of a component of type j in sub-system

i at the time t

cij Cost of a component of type j in sub-system i

wij Weight of a component of type j in sub-system i

As(t) Overall availability of the series–parallel system at

time t

Cs Overall cost of the series–parallel system

Ao System-level constraint: lower bound limit for

availability (a number between 0 and 1)

Co Overall cost allowed by the system

Wo Overall weight allowed by the system

ai Number of available component choices for sub-

system i

xij Number of components of type j used in sub-

system i

nmax Maximum number of components allowed to be in

parallel

nmin Minimum number of components allowed to be in

parallel

Figure 1 provides the schematic view of a series–par-

allel system whose sub-systems consist of repairable multi-

state components, displaying the decision variables of the

proposed RMMRAP model and the solution encoding that

will be used to solve the model with NSGA-II.

More precisely, the proposed model considers a ser-

ies–parallel system formed of m subsystems (Fig. 1a).

Each sub-system i consists of ni components which are

allowed to be of n different types (Fig. 1b). Thus, a

generic hth component is assigned a type j, where j = 1,

…, n, and it is assumed to have the same states as the

rest of the components of the same type. That is, the

possible states for a component and the corresponding

performance levels depend on the type of the component

(Fig. 1c).

Through time, any component in any sub-system goes

through minor and major failures and repairs while the

demand level D is kept constant. Figure 1d represents the

state-space diagram for a repairable multi-state component.

The state probabilities and the availability of a component

are calculated as in Lisnianski and Levitin [14] (see

Sect. 2.2) and extended to the corresponding component

type. That is, Ah(t) = Ah0(t) = Aij(t) whenever h and h0 are
two components of type j in sub-system i.

The multi-objective model proposed for the RMMRAP

is the following:

Max AsðtÞ ¼
Ym
i¼1

1�
Yai
j¼1

1� Aij tð Þ
� �xij

 !
ð5Þ

Min Cs ¼
Xm
i¼1

Xai
j¼1

xij � cij ð6Þ

s:t:

Ym
i¼1

1�
Yai
j¼1

1� Aij tð Þ
� �xij

 !
�Ao;

ð7Þ

Xm
i¼1

Xai
j¼1

xij � cij �Co; ð8Þ

Xm
i¼1

Xai
j¼1

xij � wij �Wo; ð9Þ

Xai
j¼1

xij � nmax; i ¼ 1; 2; . . .;m; ð10Þ

Xai
j¼1

xij � nmin; i ¼ 1; 2; . . .;m; ð11Þ

xij 2 Zþ; i ¼ 1; 2; . . .;m; j ¼ 1; . . .; n: ð12Þ

Objective functions (5) and (6) seek to optimize the

system availability and system cost, respectively. In par-

ticular, objective function (5) calculates the availability of

130 Neural Comput & Applic (2018) 30:127–139

123

a series–parallel system which consists of m sub-systems

and, in each sub-system i, it is possible to configure in

parallel a number xij of components of type j, for every

j varying from 1 (the sub-system is formed of at least one

type of components) to a predetermined value ai. Con-

straint (7) specifies the lower bound for the system

(a) Series-parallel system

(b) Components of a sub-system and decision variables

(c) Multi-state component h
(d) State-space diagram for a

repairable multi-state component h

Fig. 1 Proposed framework

Neural Comput & Applic (2018) 30:127–139 131

123

availability. Constraints (8) and (9) place an upper bound

on the system cost and weight, respectively. Constraints

(10) and (11) state the minimum and maximum number of

components allowed in each sub-system. Constraint (12)

defines the decision variables to be positive integers.

The right-hand side of constraint (7) represents the

system lower bound limit for availability. Clearly, intro-

ducing constraint (7) imposes the model to seek configu-

rations which have at least an availability value greater

than or equal to Ao. In our model, the value Ao is assumed

to be given, but it could alternatively be customized and set

through managerial insights for different systems. Form an

optimization viewpoint, the direct consequence of intro-

ducing constraint (7) is that the proposed Model (5)–(12)

seeks preferred solutions among all the non-dominated

solutions on the Pareto front of the RMMRAPs. Thus, it is

first necessary to generate a desired section of the Pareto

front from the final non-dominated solution set of Model

(5)–(12).

3.1 Handling RMMRAP using the epsilon-

constraint method

Model (5)–(12) is transformed into Model (13)–(19) using

the efficient epsilon-constraint method proposed by

Mavrotas [15].

Max Z ¼
Ym
i¼1

1�
Yai
j¼1

1� Aij tð Þ
� �xij

 !
� e� Sc

rc
ð13Þ

s:t:

Ym
i¼1

1�
Yai
j¼1

1� Aij tð Þ
� �xij

 !
�Ao;

ð14Þ

Xm
i¼1

Xai
j¼1

xij � cij þ Sc ¼ Co � ðC0 � ClÞ � e2; ð15Þ

Xm
i¼1

Xai
j¼1

xij � wij �Wo; ð16Þ

Xai
j¼1

xij � nmax; i ¼ 1; 2; . . .;m; ð17Þ

Xai
j¼1

xij � nmin; i ¼ 1; 2; . . .;m; ð18Þ

xij 2 Zþ; i ¼ 1; 2; . . .;m; j ¼ 1; . . .; n: ð19Þ

where Cl is the minimum cost allowed by the system, Sc is

the slack variable of the cost objective function, rc is the

range of the cost objective function, e2 is a parameter

belonging to the interval [0, 1], and e is a very small

positive constant value.

Note that the term Sc
rc
in Eq. (13) is to be minimized due

to the negative multiplier before it. Also, rc is the range of

the cost objective function and is a fixed parameters. Thus,

Model (13)–(19) aims at reducing the value of Sc in the

second term of objective function (13). As a consequence,

given the presence of Sc in Eq. (15), the cost of the system

will be as near as to the upper bound of cost in Eq. (15).

This will lead to stronger efficient solutions in terms of cost

objective function while maximizing the availability of the

system expressed by Eq. (13). Moreover, note that the term
Sc
rc

in Eq. (13) normalizes the slack variable of the cost

objective function. Since both 0� Sc
rc
� 1 and

0�A0 �
Qm

i¼1 1�
Qai

j¼1 1� Aij tð Þ
� �xij� �

� 1 hold true,

adding
Qm

i¼1 1�
Qai

j¼1 1� Aij tð Þ
� �xij� �

and �e� Sc
rc

is

meaningful (as both these terms vary in the same range).

Finally, it must be noted that the simultaneous use of

constraints (14) and (15) together with the objective

function in Eq. (15) may lead to some infeasibility issues in

Model (13)–(19). Fortunately, the efficient epsilon-con-

straint method proposed by Mavrotas [15] has a key

advantage with respect to the classic epsilon-constraint

method, that is, it can recognize infeasible loops and break

them. So, no extra computational efforts are imposed to the

model when considering Eqs. (14)–(15).

More formally, consider the parametric Model (13)–

(19) to be solved using a predetermined step size for e2.

In the first iteration, e2 is set equal to zero. Hence, the

term Co - (C0 - Cl) 9 e2 is equal to Co. As the itera-

tions go on, the value of e2 increases and, consequently,

the value of the term Co - (C0 - Cl) 9 e2 decreases

form Co toward Cl. The decreasing behavior of the right-

hand side of constraint (15) may lead to some infeasi-

bilities in Model (13)–(19) when incorporating the role

of constraint (14). Indeed, constraint (14) imposes the

model to generate configurations that have an availability

higher than A0, while in each iteration the model is also

imposed to generate a solution with smaller total cost, as

the Co - (C0 - Cl) 9 e2 is decreasing while iterations

go on. Using the efficient epsilon-constraint method,

when the model is recognized infeasible due to such a

conflict of constraints, the next iterations are discarded,

as they cannot improve the right-hand side of constraint

(15). So, no extra computational efforts are imposed to

the model.

3.2 Customizing NSGA-II for RMMRAP

In this section, a customized version of NSGA-II, initially

introduced by Deb et al. [4], is structured to solve the

proposed RMMRAP.

132 Neural Comput & Applic (2018) 30:127–139

123

3.2.1 Solution encoding

As for any other evolutionary algorithm, a feasible solution

to the proposed RMMRAP is represented by a chromo-

some, while a population can be interpreted as a set of

feasible solutions. Thus, to correctly encoding a solution, a

chromosome must be a string of genes signifying the

available components in all the sub-systems.

Figure 2 shows a schematic representation of the chro-

mosome used to encode the solution to RMMRAP. This

chromosome is composed of m sub-strings one per each

sub-system. The first a1 genes represent the first sub-sys-

tem, the next a2 genes represent the second sub-system,

and so on. The sub-string of genes corresponding to the

sub-system i will be referred to as chromosome i.

3.2.2 Determining the initial population

The size of the initial population is generated randomly to

be 50. After generating the initial population, each chro-

mosome is checked for feasibility based on the minimum

and maximum number of components allowed in each sub-

system.

3.2.3 Handling the constraints

In order to handle the constraints of the RMMRAP, a

combination of the modification and penalty strategies is

employed.

3.2.3.1 Penalty strategy Constraints (7)–(9) are handled

by incorporating a penalty strategy. Two sets of violation

values are calculated for each chromosome i. The first set

of violations has an effect on the availability objective,

while the second one has an effect on the cost objective.

The first set of violations relative to chromosome i is

given by:

AVi1 ¼ Max Ao �
Ym
i¼1

1�
Yai
j¼1

1� Aij

� �xij
 !

; 0

()
ð20Þ

CVi1 ¼ Max

Pm
i¼1

Pai
j¼1 xij � cij
Co

� 1; 0

� 	
ð21Þ

WVi1 ¼ Max

Pm
i¼1

Pai
j¼1 xij � wij

Wo

� 1; 0

� 	
ð22Þ

where AVi1, CVi1, and WVi1 are, respectively, the violation

values for the availability, cost, and weight of chromosome

i relative to the first objective. Therefore, the availability

objective is dynamically penalized as follows:

A0
si ¼ Asi � max AVi1;CVi1;WVi1f g � itð Þ ð23Þ

where A0
si is the penalized availability function for the

violated chromosome i and it is the iteration number. The

second set of violations is relative to chromosome i is given

by:

AVi2 ¼ Max Ao �
Ym
i¼1

1�
Yai
j¼1

1� Aij

� �xij
 !

; 0

()
�M

ð24Þ

CVi2 ¼ Max
Xm
i¼1

Xai
j¼1

xij � cij � Co; 0

()
ð25Þ

WVi2 ¼ Max
Xm
i¼1

Xai
j¼1

xij � wij �Wo; 0

()
ð26Þ

where AVi2, CVi2, and WVi2 are, respectively, the violation

values of the availability, cost, and weight of chromosome i

for the second objective. Hence, the cost objective is

dynamically penalized as follows:

C0
si ¼ Csi þ max AVi2;CVi2;WVi2f g � itð Þ ð27Þ

where C0
si is the penalized cost function for the violated

chromosome i and it is the iteration number.

3.2.3.2 Modification strategy Constraints (10) and (11)

are handled using the modification strategy. The chromo-

somes violating the condition nmin �
Pai

j¼1 xij � nmax, for

i = 1, …, m, are modified by using the methods proposed

by Khalili-Damghani et al. [9]. This modification strategy

allows to determine which one of the component types of

the violated chromosome i should be pruned by introducing

a cost–benefit heuristic. Following again Khalili-Damghani

et al. [9], a cost–benefit ratio is associated with each

component type of the proposed RMMRAP model. This

ratio is obtained dividing the availability of the component

type by the sum of its cost with its weight, that is:

Ratioij tð Þ ¼
Aij tð Þ

cij þ wij

: ð28Þ

The components with a lower RatioijðtÞ have a higher

pruning priority, while the components with a higher

RatioijðtÞ have a higher adding priority in the case of a

shortage. That is, after ordering all the ratios from the

11x 12x
11ax 21x 22x

22ax 1mx 2mx
mmax

Sub-system 1 Sub-system 2 Sub-system m

...
Fig. 2 Structure of the

proposed chromosome

Neural Comput & Applic (2018) 30:127–139 133

123

lowest to the highest one, the redundant components are

those whose ratios are at the top of the list while the

components corresponding to ratios at the bottom of the list

can be used to supply a shortage of components.

3.2.4 Fitness function and non-dominated ranking

The fitness functions are calculated based on the penalized

objective functions. All the solutions in a population are

assigned a rank according to a non-dominated ranking

procedure: Assign Rank 1 to non-dominated solutions;

omit these solutions from the population; assign Rank 2 to

other non-dominated solutions; omit these solutions; and so

on until when all the solutions in the current population

receive a rank.

3.2.5 Genetic operators

3.2.5.1 Crossover operator Double-point crossover is

applied based on a predefined cross-rate. In the double-

point crossover, two different points between 1 and the

chromosome length minus 1 are selected randomly. Parents

are divided into three separate parts by these two points.

Each child is formed based on a selection of a mid-piece

from one of the parents and two other pieces from the other

parent.

3.2.5.2 Mutation operator First, an initial step size is

determined. A binary random number is then generated. If

the generated number is one, the step size is added to the

value of the selected gene for mutation. Otherwise, the step

size is subtracted from the value of the selected gene. In

this method, an exception is intended to avoid a negative

number for the values of genes. If the value of the selected

gene for mutation is zero, then the step size will be added

regardless of the random number value.

3.2.6 Stopping criterion

In the proposed customized version of NSGA-II, the

number of iterations works as the stopping criterion.

4 Test problems, software implementation,
and comparison metrics

Thirty test RMMRAP instances belonging to three classes

of test problems, namely small-size, medium-size, and

large-size problems, have been used to test the performance

of the proposed algorithm. The efficient epsilon-constraint

and the proposed NSGA-II methods have been imple-

mented on all instances and their performances compared

using multi-objective metrics.

4.1 Test problems

The characteristics of the test instances are reported in

Table 1.

These characteristics have been simulated using uniform

probability density functions. U[a, b] in Table 1 means that

the associated parameters have been generated using a

uniform distribution function with parameters a and b.

Table 1 Test problem configuration

Case Max

component

type

Number of

sub-systems

Component attributes

Component

cost

Component

weight

Number of

component’s

states

Performance of

components

System

cost

System

weight

Availability

Small

size

3 3 U [2, 15] U [2, 10] U [2, 5] U[0, 100] or

U[0, 10] or

U[0,1]

U[Cl,Cu] U[Wl,

Wu]

U[0.95,1]

Medium

size

3 6

Large

size

4 13

Component type j Minor repair Major repair Minor failure Major failure

1 U[50, 100] U[0, 40] U[0.7, 2] U[0.1, 0.4]

2 �* U[50, 100] �* U[0, 40] U[0.7, 2] U[0.1, 0.4]

3 �* U[50, 100] �* U[0, 40] 2* U[0.7, 2] 2* U[0.1, 0.4]

4 �* U[50, 100] �* U[0, 40] 2* U[0.7, 2] 2* U[0.1, 0.4]

Time span* = [0, 0.1, 0.2], * Time intervals in which availability of components and system are calculated

134 Neural Comput & Applic (2018) 30:127–139

123

4.2 Software–hardware implementation

The test instances have been simulated with MS-Excel. The

LINGO software was used to code the efficient epsilon-

constraint method, while the proposed customized version

of NSGA-II was coded using the MATLAB software. All

codes were run on a laptop with MS-Windows 8.0, with

4 GB of RAM and 1.8 GHz Core i7 CPU.

4.3 Comparison metrics

In order to analyze and compare the accuracy and the

diversity of the epsilon-constraint and the NSGA-II meth-

ods with respect to the Pareto front of the RMMRAP,

several metrics proposed by Yu and Gen [28] have been

used [i.e., number of non-dominated solutions (NNSs),

error ratio (ER), generational distance (GD), and spacing

metric (SM)]. The interested reader may refer to Khalili-

Damghani and Amiri [7], Khalili-Damghani et al. [9], and

Tavana et al. [27] for a detailed review of these metrics.

Moreover, the reference set (RS) was retrieved for all runs

since the real Pareto front cannot be achieved through

direct enumeration for the test problems. The RS contains

the non-dominated solutions for all the methods in all the

runs. We performed 20 runs for each method and retrieved

a suitable estimation of the RS.

5 Results

The results are presented in three subsections. The first

subsection presents the results obtained when calculating

the availability of the components. The second subsection

discusses the results relative to a single run of the NSGA-II

and epsilon-constraint methods for all test problems com-

paring them to the RS. The third subsection describes the

results obtained for the computational CPU time for the

NSGA-II and epsilon-constraint methods.

5.1 Results for the availability values of components

The differential Eq. (3) is coded in MATLAB for each

component. The availability graphs of the components are

plotted and illustrated in Fig. 3.

As shown in Fig. 3, the availability value of each

component takes the maximum value at time zero and

decreases over time. This is due to the fact that the com-

ponents are in their best state at the start time. As time goes

on, the components become less available due to compo-

nent aging, until their availability becomes constant. This

component behavior can be observed in all the test

problems.

5.2 Results of the proposed NSGA-II and epsilon-

constraint methods

In this subsection, the result of the customized NSGA-II

and the epsilon-constraint methods is presented for all test

problems.

5.2.1 Results for the small-size test problems

The solutions generated for the small-size test problems by

implementing the proposed customized version of NSGA-

II and the epsilon-constraint method together with the RS

Fig. 3 Availability graphs for

the components in the test

problems

Neural Comput & Applic (2018) 30:127–139 135

123

are represented in Fig. 4, while the corresponding accuracy

and diversity metrics are displayed in Table 2.

Relative to the small-size test problems, Table 2

shows that the NNS for the NSGA-II method is much

higher than the NNS for the epsilon-constraint method.

That is, the number of non-dominated solutions gener-

ated by the NSGA-II method is higher than that gener-

ated by the epsilon-constraint method. The ER measure

is zero for the customized NSGA-II method and much

smaller than the ER measure for the epsilon-constraint

method. The zero value obtained for ER when imple-

menting NSGA-II indicates the fact that the NSGA-II

method allows for a complete convergence of the solu-

tions toward the Pareto front in the considered small-size

test problems. The GD value in the NSGA-II method not

only is much smaller than the GD value in the epsilon-

constraint method, but equals zero. Therefore, the dis-

tance between the Pareto front/RS and the solution set

generated in the customized NSGA-II method is mini-

mal. The SM value in the NSGA-II method is zero and

much smaller than that in the epsilon-constraint method,

which means that the non-dominated solutions obtained

by the NSGA-II method are considerably more uniformly

distributed than those obtained by the epsilon-constraint

method.

5.2.2 Results for the medium-size test problems

The solutions generated for the medium-size test problems

for the NSGA-II and the epsilon-constraint methods toge-

ther with the RS are represented in Fig. 5, while the cor-

responding accuracy and diversity metrics are displayed in

Table 2.

As given in Table 2, in the medium-size case, the NNS

for the customized NSGA-II method is significantly higher

than the NNS for the epsilon-constraint method. The ER in

the NSGA-II is very low compared to the ER in the epsi-

lon-constraint method. The GD value in the customized

NSGA-II method is considerably smaller than the GD

value in the epsilon-constraint method. The SM measure in

the NSGA-II is very small in comparison with the SM

measure in the epsilon-constraint.

Fig. 4 Pareto front for the small-size test problems

Table 2 Comparison metrics for the test problems

Case Accuracy metric Diversity metric

NNS ER GD SM

e-Constraint NSGA-II e-Constraint NSGA-II e-Constraint NSGA-II e-Constraint NSGA-II

Small size 1 7 0.5 0 2.5 0 3.5355 0

Medium size 0 20 1 0.1667 18.5 0.1667 24.7487 0.4815

Large size N/A 5 N/A 0.8980 N/A 0.2449 N/A 0.4345

136 Neural Comput & Applic (2018) 30:127–139

123

5.2.3 Results for the large-size test problems

Figure 6 represents the solutions generated for the large-

size test problems for the NSGA-II and the epsilon-con-

straint methods together with the RS. The accuracy and

diversity metrics for the large-size test problems are dis-

played again in Table 2.

The epsilon-constraint method was unable to solve the

problem for the large-size instances. Therefore, the graph

of Fig. 6 and the comparison metrics of Table 2 show

solutions and values relative only to the NSGA-II method.

Although the NNS for the NSGA-II method for the large

instances is low, the GD and the SM metrics are accept-

able. The GD measure shows that the distance between the

solution sets obtained by the NSGA-II method and the RS

is very small. Finally, the SM value shows that the non-

dominated solutions obtained by the NSGA-II are diverse.

5.3 Computational CPU time

Table 3 reports the average CPU time of the test problems

for the NSGA-II method. The NSGA-II was run ten times

and the average computing time reported.

Table 4 presents the average CPU time of the test

problems for the epsilon-constraint method. The CPU time

in the epsilon-constraint method consists of two average

time calculations. The first average time corresponds to the

time needed for solving the differential equations using the

MATLAB software, and the second average time accounts

for the time necessary to solve the problem with the

LINGO software.

It must be observed that a comparison of the computa-

tional CPU time between the two methods is not feasible.

In fact, in order to solve the problem with the epsilon-

constraint method, we must first solve the differential

equations in MATLAB. Thus, considering that some time

is needed to change from one software to the other, the real

time for solving the test problems is actually larger than the

sum of the times which are presented in Table 3. In addi-

tion, although the sum of the average times for the epsilon-

Fig. 5 Pareto front for the medium-size test problems

Fig. 6 Pareto front for the large-size test problems

Neural Comput & Applic (2018) 30:127–139 137

123

constraint method is less than the corresponding times for

NSGA-II method for the small and medium-size test

problems, the NNS for the epsilon-constraint method is

very small while the other accuracy and diversity metrics

for the large-size test problems are not even acceptable.

6 Conclusions and future research direction

We proposed a multi-objective mixed-integer nonlinear

programming to solve repairable multi-state multi-objec-

tive redundancy allocation problems (RMMRAPs). Despite

being among the extensions of RAPs which are the closest

to real-life availability engineering problems, to the best of

our knowledge, this class of problems has not been

receiving the adequate attention in the RAP literature.

A customized version of the NSGA-II method was

introduced in order to generate a set of non-dominated

solutions on the Pareto front for RMMRAPs. Several test

instances were designed and simulated to compare the

proposed NSGA-II method to an epsilon-constraint method

on several benchmark instances by using a set of well-

known multi-objective comparison metrics. The Pareto

front was generated for all instances together with a ref-

erence set (RS) using both solution procedures based on

several runs. The performance of both solution procedures

was compared with the RS using diversity and accuracy

metrics.

The proposed customized version of the NSGA-II

method showed better accuracy and diversity when com-

pared to the epsilon-constraint method. In particular,

although the total computational times for the epsilon-

constraint method were less than the corresponding times

for NSGA-II method for small- and medium-size test

problems, the NNS obtained by the epsilon-constraint

method was very small and the other accuracy and diver-

sity metrics for large-size test problems were not even

acceptable.

Future work may include the selection of other redun-

dancy strategies such as hot-standby or cold-standby

strategies in place of the active redundancy strategy

addressed in this study. Furthermore, additional objective

functions (e.g., weight) could be considered in future for-

mulations of the problem. Considering dynamic and dif-

ferent demand levels of performance could also provide

interesting extensions of the model proposed in this study.

Acknowledgements The authors would like to thank the anonymous

reviewers and the editor for their insightful comments and

suggestions.

References

1. Agarwal M, Gupta R (2006) Genetic search for redundancy

optimization in complex systems. J Qual Maint Eng

12(4):338–353

2. Chern MS (1992) On the computational complexity of reliability

redundancy allocation in a series system. Oper Res Lett

11(5):309–315

3. Coit DW, Smith AE (1996) Solving the redundancy allocation

problem using a combined neural network/genetic algorithm

approach. Comput Oper Res 23(6):515–526

4. Deb K, Pratap A, Agarwal S, Meyarivan TA (2002) A fast and

elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 6(2):182–197

5. Garg H, Sharma SP (2013) Multi-objective reliability-redundancy

allocation problem using particle swarm optimization. Comput

Ind Eng 64(1):247–255

6. Hwang CL, Masud ASM (1983) Multiple objective decision

making methods and applications. Springer, New York

7. Khalili-Damghani K, Amiri M (2012) Solving binary-state multi-

objective reliability redundancy allocation series-parallel prob-

lem using efficient epsilon-constraint, multi-start partial bound

enumeration algorithm, and DEA. Reliab Eng Syst Saf 103:35–44

8. Khalili-Damghani K, Tavana M, Sadi-Nezhad S (2012) An

integrated multi-objective framework for solving multi-period

project selection problems. Appl Math Comput 219(6):3122–

3138

9. Khalili-Damghani K, Tavana M, Abtahi AR (2013) A new multi-

objective particle swarm optimization method for solving relia-

bility redundancy allocation problems. Reliab Eng Syst Saf

111:58–75

10. Kuo W, Zuo MJ (2003) Optimal reliability modeling: principles

and applications. Wiley, Hoboken

11. Li Z, Liao H, Coit DW (2009) A two-stage approach for multi-

objective decision making with applications to system reliability

optimization. Reliab Eng Syst Saf 94(10):1585–1592

12. Liang YC, Lo MH (2012) A variable neighborhood search

algorithm with novel archive update strategies for redundancy

allocation problems. Eng Optim 44(3):289–303

13. Liang YC, Smith E (2004) An ant colony optimization algorithm

for the redundancy allocation problem (RAP). IEEE Trans Reliab

53(3):417–423

14. Lisnianski A, Levitin G (2003) Multi-state system reliability

assessment, optimization and applications. World Scientific,

Singapore

Table 3 CPU time for the customized NSGA-II

Case Number of iteration Average of CPU time

Small size 50 11.402933

Medium size 500 118.3679657

Large size 1000 239.5948666

Table 4 CPU time for the epsilon-constraint method

Case Average time

in MATLAB

Average time

in LINGO

Small size 4.109219 4.5

Medium size 4.708507 4

Large size 6.462567 N/A

138 Neural Comput & Applic (2018) 30:127–139

123

15. Mavrotas G (2009) Effective implementation of the e-constraint
method in multi-objective mathematical programming problems.

Appl Math Comput 213(2):455–465

16. Misra KB, Ljubojevic MD (1973) Optimal reliability design of a

system: a new look. IEEE Trans Reliab 22(5):255–258

17. Mousavi SM, Alikar N, Niaki STA, Bahreininejad A (2015) Two

tuned multi-objective meta-heuristic algorithms for solving a

fuzzy multi-state redundancy allocation problem under discount

strategies. Appl Math Model 39(22):6968–6989

18. Mousavi SM, Alikar N, Niaki STA, Bahreininejad A (2015)

Optimizing a location allocation-inventory problem in a two-

echelon supply chain network: a modified fruit fly optimization

algorithm. Comput Ind Eng 87:543–560

19. Mousavi SM, Alikar N, Niaki STA (2016) An improved fruit fly

optimization algorithm to solve the homogeneous fuzzy series-

parallel redundancy allocation problem under discount strategies.

Soft Comput 20(6):2281–2307

20. Onishi J, Kimura S, James RJW, Nakagawa Y (2007) Solving the

redundancy allocation problem with a mix of components using

the improved surrogate constraint method. IEEE Trans Reliab

56(1):94–101

21. Ramirez-Marquez JE, Coit DW, Konak A (2004) Redundancy

allocation for series-parallel systems using a max-min approach.

IIE Trans 36(9):891–898

22. Safari J (2012) Multi-objective reliability optimization of series-

parallel systems with a choice of redundancy strategies. Reliab

Eng Syst Saf 108:10–20

23. Safari J, Tavakkoli-Moghaddam R (2010) A redundancy alloca-

tion problem with the choice of redundancy strategies by a

memetic algorithm. J Ind Eng Int 6(11):6–16

24. Sheikhalishahi M, Ebrahimipour V, Shiri H, Zaman H, Jeihoo-

nian M (2013) A hybrid GA–PSO approach for reliability opti-

mization in redundancy allocation problem. Int J Adv Manuf

Technol 68(1–4):317–338

25. Tavakkoli-Moghaddam R, Safari J, Sassani F (2008) Reliability

optimization of series-parallel systems with a choice of redun-

dancy strategies using a genetic algorithm. Reliab Eng Syst Saf

93:550–556

26. Tavana M, Khalili-Damghani K, Abtahi AR (2013) A new

variant of fuzzy multi-choice knapsack for project selection

problem. Ann Oper Res 206(1):449–483

27. Tavana M, Abtahi AR, Khalili-Damghani K (2014) A new multi-

objective multi-mode model for solving preemptive time–cost–

quality trade-off project scheduling problems. Exp Syst Appl

41(4):1830–1846

28. Yu X, Gen M (2010) Introduction to evolutionary algorithms.

Springer, London

29. Zhao JH, Liu Z, Dao MT (2007) Reliability optimization using

multiobjective ant colony system approaches. Reliab Eng Syst

Saf 92:109–120

30. Zio E (2009) Reliability engineering: old problems and new

challenges. Reliab Eng Syst Saf 94:125–141

Neural Comput & Applic (2018) 30:127–139 139

123

	An evolutionary computation approach to solving repairable multi-state multi-objective redundancy allocation problems
	Abstract
	Introduction
	Preliminaries
	Non-dominated sorting genetic algorithm (NSGA-II) method
	Component performance and availability

	Modeling RMMRAPs
	Handling RMMRAP using the epsilon-constraint method
	Customizing NSGA-II for RMMRAP
	Solution encoding
	Determining the initial population
	Handling the constraints
	Penalty strategy
	Modification strategy

	Fitness function and non-dominated ranking
	Genetic operators
	Crossover operator
	Mutation operator

	Stopping criterion

	Test problems, software implementation, and comparison metrics
	Test problems
	Software--hardware implementation
	Comparison metrics

	Results
	Results for the availability values of components
	Results of the proposed NSGA-II and epsilon-constraint methods
	Results for the small-size test problems
	Results for the medium-size test problems
	Results for the large-size test problems

	Computational CPU time

	Conclusions and future research direction
	Acknowledgements
	References

