
ORIGINAL ARTICLE

A skin membrane-driven membrane algorithm
for many-objective optimization

Zhangxiao Li1 • Lei Zhang2 • Yansen Su2 • Jun Li2 • Xun Wang3

Received: 8 July 2016 / Accepted: 25 October 2016 / Published online: 15 November 2016

� The Natural Computing Applications Forum 2016

Abstract Many-objective optimization problems refer to

problems that hold more than three conflicting objectives,

which are more challenging than those with two or three

objectives. Membrane computing models, usually termed P

systems, are a class of living cell-inspired computing

models, which provide a rich framework for solving a

variety of challenging problems. In this paper, a membrane

computing model-based algorithm is proposed for many-

objective optimization. Specifically, the population in the

skin membrane is divided into two subpopulations, one

used for guiding the convergence of populations in the

internal membrane, while the other taking charge of the

diversity of populations. Experimental results on bench-

mark test problems for many-objective optimization indi-

cate the superiority of the developed algorithm over

existing evolutionary many-objective optimization algo-

rithms and P systems based multi-objective optimization

algorithms.

Keywords Membrane computing � Many-objective

optimization � Membrane algorithm � Archive

1 Introduction

Multi-objective optimization problems (MOPs) are widely

known as a challenging topic in the domain of optimiza-

tion, since often a set of trade-off solutions instead of a

single optimal solution are obtained due to the conflicting

nature between the objectives. In the past years, a great

many popular algorithms based on different ideas have

been developed to solve MOPs. Two representatives

belonging to this category are the fast and elitist multi-

objective genetic algorithm (NSGA-II) [4] and the indica-

tor-based evolutionary algorithm (IBEA) [66]. Recently,

much attention has been paid to an even more challenging

subset of MOPs, where the MOPs hold four or more

objectives, also known as many-objective optimization

problems (MaOPs) [7, 43, 62]. The MaOPs are widely

present in various applications [9, 20]; however, most

existing algorithms for MOPs with two or three objectives

are hard to achieve a satisfied performance due to the

phenomenon called dominance resistance [9]. For solving

MaOPs, many bio-inspired computing models and ideas

have been introduced to design algorithms, e.g., the multi-

objective evolutionary algorithm based decomposition

(MOEA/D) [53], the improved two-archive algorithm

(Two_Arch2) [22], grid-based evolutionary algorithm

(GrEA) [50], hypervolume-based evolutionary algorithm

(HypE) [1], and the knee point-driven evolutionary algo-

rithm (KnEA) [55].

Membrane computing is a branch of natural computing

whose aim is to abstract new algorithms or models from

living cells. For simplicity, we also call the computing

models obtained in membrane computing as P systems.

Since the first P system was initiated by Păun [30], many

novel models of P systems have been developed based on

different biological mechanisms related to cells, e.g., cell-
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like P systems [33, 63], spiking neural P systems (SN P

systems, for short) [16, 38, 57], and tissue-like P systems

[10, 26, 56]. It was shown that P systems have theoretically

powerful capability in handling complex information

[38, 39, 52, 59]. Most variants of P systems can achieve the

same computing power as Turing machines or other

equivalent machines [18, 58], and some P systems have

also been shown to theoretically solve NP-hard problems

[17, 19, 21]. Due to the promising features, P systems have

been applied to deal with a variety of challenging problems

in different research areas, such as modeling economic

processes [32], segmenting images [8], and fault diagnosis

[12]. Readers who are interested in membrane computing

can refer to the books [31, 34] and for more information

refer to the website http://ppage.psystems.eu/.

Among various applications of membrane computing,

one of the most active areas is to apply P systems to design

algorithms for solving computationally hard optimization

problems. The obtained algorithms are usually called

membrane computing model-based algorithms, also known

as membrane algorithms for short. The first membrane

algorithm was developed by Nishida [27], where the cell-

like P systems were used and objects in membranes

evolved by the tabu search. Empirical results demonstrated

that this algorithm was superior over existing algorithms in

solving traveling salesman problems. Since then, a large

number of membrane algorithms have been suggested to

handle other single-objective optimization problems on the

basis of different kinds of P systems and evolution strate-

gies [11, 23, 35, 37, 42, 46, 47, 54, 65]. For example,

Zhang et al. [54] developed a membrane algorithm to

handle knapsack problems, where cell-like P systems using

only one level membrane structure and quantum-inspired

evolution strategy were used. Xiao et al. suggested a cell-

like optimization P system for designing DNA sequence in

DNA computing [23] and an SN P optimization system was

developed in [42] to approximately solve combinatorial

optimization problems.

There are also a little work that focuses on designing

effective P system-based algorithms to handle MOPs. The

first multi-objective membrane algorithm was developed to

solve MOPs with two objectives by Huang et al. [14],

where three subsystems of P systems were used, one sub-

system for optimizing the two objectives simultaneously

and the other two for optimizing the two objectives inde-

pendently. To solve multi-objective knapsack problems,

Zhang et al. [61] suggested a multi-objective membrane

algorithm MOMA by using the quantum-inspired evolu-

tionary algorithm, which achieved a better performance

than the existing algorithms designed for solving the

problem. In the past four years, more complex information

of P systems start to be considered for designing multi-

objective membrane algorithms. Cheng et al. [6] developed

a multi-objective optimization algorithm based on tissue-

like P systems with each pair of cells communicating at

every generation. Liu et al. [24] proposed a multi-objective

optimization algorithm by using P systems with division

and dissolution rules. Recently, a multi-objective mem-

brane algorithm, termed SMG-MOMA, was suggested in

[60], where a skin membrane strategy was proposed to

guide the evolution of populations in the internal mem-

brane. It is worth noting that the multi-objective membrane

algorithms mentioned above are all suggested to solve

MOPs with two or three objectives, and they will not

achieve a competitive performance when they are applied

to solve MaOPs.

In this paper, we suggest a skin membrane-guiding

membrane algorithm, termed SMG-MaOMA, specially

tailored for solving MaOPs. In SMG-MaOMA, the popu-

lation in the skin membrane is divided into two subpopu-

lations, which are used to guide the convergence and

diversity of populations in the internal membrane, respec-

tively. The subpopulation related to convergence is used to

accelerate the convergence of populations in the internal

membrane, while the one related to diversity guarantees the

diversity of these populations. In this way, the SMG-

MaOMA can keep well the balance between diversity and

convergence of populations in evolutions. Experimental

results on 16 benchmark many-objective optimization

problems from Deb, Thiele, Laumanns and Zitzler’s DTLZ

and the walking fish group WFG test suites, show that the

SMG-MaOMA performs better than four well-known

evolutionary many-objective optimization algorithms

MOEA/D [53], HypE [1], GrEA [50] and Two_Arch2 [22],

and one P system-based multi-objective optimization

algorithm SMG-MOMA on most test problems used in this

paper.

The rest of the paper is organized as follows. We first

present the details of the proposed algorithm in Sect. 2.

Then, the proposed algorithm is compared with five pop-

ular many-objective optimization algorithms and empirical

results are analyzed in Sect. 3. In Sect. 4, we conclude the

paper and give some remarks.

2 The proposed membrane algorithm for many-
objective optimization

In this section, we will describe the details of the proposed

many-objective membrane algorithm, SMG-MaOMA. The

proposed SMG-MaOMA adopts the one level membrane

structure of cell-like P systems, which is the known sim-

plest structure used in existing membrane algorithms. It is

necessary to stress that there are some membrane algo-

rithms which also used a skin membrane strategy; however,

they hold quite different ways for guiding the skin
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membrane. The skin membrane-guiding strategy proposed

in SMG-MaOMA is specially tailored for solving MaOPs.

In what follows, we first present the main framework of the

proposed algorithm.

Algorithm 1 The Main Framework of SMG-MaOMA
Input: CA (sub-population in skin membrane for convergence), DA (sub-

population in skin membrane for diversity), P1, P2 (populations in internal
membranes) N (population size of CA,DA), N1 (population size of P1, P2)

Output: DA
1: P1, P2 ← Initialize(P1, P2, N1);
2: CA,DA ← Initialize(CA,DA,N);
3: While (termination criterion not satisfied) do
4: P1, P2 ← Genetic Operation(P1, P2);
5: P ← P1 ∪ P2;
6: CA ← CA Update(CA, P );
7: DA ← DA Update(DA,P );
8: P1, P2 ← Skin Guide CA(CA, P1);
9: P1, P2 ← Skin Guide DA(DA,P2);

10: EndWhile

2.1 The main framework of the proposed algorithm

Algorithm 1 presents the main framework of SMG-

MaOMA, which contains the following steps. First, two

populations P1 and P2 with a size of N1 are randomly

generated in the internal membrane. Second, two popu-

lations CA and DA with a size of N are randomly gen-

erated in the skin membrane, which are used for

convergence and diversity of populations in the internal

membrane, respectively. Third, a genetic operation is

applied to population P1 and to generate N1 offspring

individuals and to P2 to generate N1 offspring individuals.

Fourth, an indicator-based approach developed in [66] is

used to update subpopulation CA by using the population

P combined with offspring populations of P1 and P2 in

the internal membrane. Fifth, an environmental selection

based on lp crowding distance suggested in [22] is used to

update population DA by using the combined population

P in the internal membrane. Finally, the skin membrane-

guiding strategy proposed in this paper is used to select

individuals for next population P1 from the combined

populations of CA and P1, and for P2 from DA and P2.

The population P1 selects the individuals with better

convergence from the combined population of CA and P1,

whereas the P2 enjoys those with better diversity from DA

and P2. We repeat this procedure until a termination

condition is satisfied.

2.2 The proposed skin membrane-guiding strategy

The main idea of the proposed skin membrane-guiding

strategy is as follows. It is firstly to divide the population in

the skin membrane into two subpopulations CA andDA, and

then, CA is used for guiding the convergence of population

P1 in the internal membrane; DA is used to take charge of

the diversity of population P2 in the internal membrane.

Specifically, the next population of P1 can be obtained from

the population combined CA and the current population,

with a convergence-related environmental selection crite-

rion from [66]. The next population of P2 is obtained from

the combined population of DA and P2 by a diversity-re-

lated selection criterion. It is shown in Algorithms 2 and 3

the detailed procedures of subpopulations CA and DA

guiding strategies in SMG-MaOMA, respectively.

Algorithm 2 Skin Guide CA(CA, P1)
Input: CA (sub-population in skin membrane for convergence optimization), P1

(populations in internal membranes)
Output: P1

1: Q ← CA P1;
2: While |Q| > |P1| do
3: Calculate the fitness value of each solution in Q by the formula
4: F (x) = y∈Q\{x} −e−I({y},{x})/κ;
5: Delete the solution with the smallest fitness value from Q;
6: EndWhile
7: P1 ← Q;

Algorithm 3 Skin Guide DA(DA,P2)
Input: DA (sub-population in skin membrane for diversity optimization), P2

(populations in internal membranes)
Output: P2

1: Q ← extreme solutions in DA P2;
2: While |Q| < |P2| do
3: x ← argmaxx∈DA P2\Qminy∈Qdisp(x, y);
4: Q ← Q {x};
5: EndWhile
6: P2 ← Q;

As described in Algorithm 2, the subpopulation CA

guiding population P1 is performed as follows. First, we

calculate the fitness value of each solution in the combined

population of CA and P1 by formula FðxÞ ¼
P

y2Qnfxg �e�Iðfyg;fxgÞ=j proposed in [66], where Q ¼ CA [
P1; Iðfyg; fxgÞ ¼ maxffiðyÞ � fiðxÞj1� i�Mg; fiðxÞ is the

ith objective value of solution x, M is the number of

objectives and j is a scaling parameter with the restriction

j[ 0. The Iðfyg; fxgÞ defines the maximum cost that

solution y dominates solution x, and the larger fitness value

of a solution, the better convergence the solution. With the

fitness values of the solutions, solutions with the smallest

fitness value in the combined population of CA and P1 are

removed one by one until the size of population P1 is

reached.

The subpopulation DA guides the population P2 in the

following way as shown in Algorithm 3. First, the extreme

solutions with at least one objective having the worst value

are selected from the population combined DA with P2 for

next population of P2. If the selected solutions cannot fill

up the population P2, then the solutions with the maximum

Lq crowding distance are added to P2 one by one. This

operation repeats until the size of population P2 is reached.
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3 Experimental results

In this section, we compare the proposed SMG-MaOMA

with five algorithms MOEA/D [53], HypE [1], GrEA [50],

Two_Arch2 [22], and SMG-MOMA [60], on benchmark

test problems for MaOPs. The former four algorithms are

popular many-objective optimization algorithms, and the

last one SMG-MOMA is a membrane computing-based

multi-objective optimization algorithm recently proposed

in [60]. For fair comparisons, all compared algorithms are

set to the recommended values. Specifically, the experi-

mental settings are as follows.

3.1 Experimental settings

1. Test problems

In the experiments, a total of 16 test problems from

DTLZ [51] and WFG [15] test suits are used. For the DTLZ

test suit, the DTLZ1 to DTLZ7 are used, whose parameters

are set as shown in Table 1. As for the WFG test suit, the

WFG1 to WFG9 are adopted, whose parameters are set as

those suggested in [15].

2. Genetic operation

The simulated binary crossover [2] and polynomial

mutation [5] are adopted to generate offspring for all

considered algorithms. The distribution indexes of cross-

over and mutation are set to nc ¼ 20 and nm ¼ 20,

respectively. The crossover probability pc ¼ 1:0 and the

mutation probability pm ¼ 1=n are used, where n denotes

the number of decision variables.

3. Population size

For all algorithms, we adopt the recommended versions

in the comparisons of this paper. The two algorithms

Two_Arch2 and SMG-MOMA use an archive, whose size

is set to 100 as suggested in the experiments. For fair

comparisons, the maximum number of solutions in sub-

populations CA and DA in skin membrane is also fixed to

100. The population size of all considered algorithms is set

to 100, with the only exception of MOEA/D. For MOEA/

D, the population size can not be randomly set, which is

determined by a set of evenly distributed weight vectors as

described in [53]. For this reason, the population size of

MOEA/D was set to 120, 132, 120, 55 for 4, 6, 8, 10-ob-

jective test problems, respectively.

4. Stopping condition and number of runs

For all considered algorithms, we adopt the maximum

number of evaluations suggested in GrEA [50] as the termi-

nation criterion. For DTLZ2, DTLZ4, DTLZ5 and DTLZ7,

the maximum number of evaluations is set to 30,000, and to

100,000 forDTLZ1,DTLZ3andDTLZ6.As for theWFG test

suite, we set the maximum number of evaluations to 100,000

for WFG1 and 75,000 for WFG2, and 25,000 for WFG3 to

WFG9. For each algorithm, 20 independent runs are per-

formed on each test instance and themedian value is reported.

5. Performance metrics

We evaluate the performance of algorithms by the

inverted generational distance (IGD) [28] and Hypervolume

(HV) [1], which are two widely used performance indicators

in many-objective optimization. It is widely accepted that

IGD and HV account for both convergence and diversity of

the solution set found by many-objective optimization

algorithms. The smaller values of IGD, the better perfor-

mance of the algorithms. On the contrary, the larger values

of HV indicates a better performance of the algorithms. The

calculation of IGD needs a set of reference points, which are

uniformly selected from the Pareto optimal fronts of test

problems and 5000 reference points are used. In the calcu-

lation of HV, the Monte Carlo method is used for estimating

the HV and 1,000,000 sampling points are used due to the

high complexity of calculating the exact HV.

3.2 Experimental results and analysis

It is shown in Table 2 that the inverted generational dis-

tance (IGD) values of the six considered algorithms on

DTLZ1 to DTLZ7 with 4, 6, 8, 10 objectives averaging

over 20 independent runs, where the best median value on

each test instance is highlighted in boldface. The rank of

the algorithms on each test instance, as well as the mean

rank of each algorithm averaging over all considered

DTLZ test instances are also shown in the table. From the

table, we can find that the proposed SMG-MaOMA is

Table 1 Settings of DTLZ1 to

DTLZ7 test problems
Problem Number of objectives (M) Number of variables (n) Parameter (k)

DTLZ1 4, 6, 8, 10 M � 1þ k 5

DTLZ2 4, 6, 8, 10 M � 1þ k 10

DTLZ3 4, 6, 8, 10 M � 1þ k 10

DTLZ4 4, 6, 8, 10 M � 1þ k 10

DTLZ5 4, 6, 8, 10 M � 1þ k 10

DTLZ6 4, 6, 8, 10 M � 1þ k 10

DTLZ7 4, 6, 8, 10 M � 1þ k 20
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Table 2 Inverted generational distance (IGD) values of the six compared algorithms on DTLZ1 to DTLZ7 averaging over 20 independent runs,

where the best mean on each instance is highlighted in boldface

Problems Obj. MOEA/D HypE GrEA Two_Arch2 SMG-MOMA SMG-MaOMA

DTLZ1 4 1.03E-1[4] 1.60E-1[5] 1.71E-1[6] 4.54E-2[2] 4.46E22[1] 6.57E-2[3]

(5.24E-3) (2.52E-2) (1.02E-1) (2.05E-3) (1.17E23) (1.28E-2)

6 3.96E-1[5] 5.55E-1[6] 3.09E-1[4] 8.80E22[1] 1.73E-1[3] 1.25E-1[2]

(1.43E-1) (5.91E-1) (1.08E-1) (3.36E23) (1.17E-1) (1.45E-2)

8 2.79E-1[3] 6.43E-1[5] 3.93E-1[4] 1.33E21[1] 2.24E?1[6] 1.65E-1[2]

(2.27E-2) (4.15E-2) (5.86E-2) (4.59E23) (1.46E?1) (5.17E-3)

10 3.32E-1[3] 8.28E-1[5] 4.54E-1[4] 1.85E-1[2] 1.77E?2[6] 1.82E21[1]

(2.61E-2) (1.05E-1) (1.16E-1) (8.16E-3) (5.35E?0) (4.51E23)

DTLZ2 4 2.34E-1[6] 2.55E-1[5] 1.23E21[1] 1.39E-1[4] 1.29E-1[2] 1.35E-1[3]

(1.89E-3) (4.09E-3) (1.06E23) (2.48E-3) (2.68E-3) (3.30E-3)

6 4.12E-1[4] 4.73E-1[5] 2.54E21[1] 2.97E-1[3] 4.74E-1[6] 2.72E-1[2]

(2.66E-1) (5.78E?2) (1.52E23) (1.09E-2) (4.91E-2) (7.87E-4)

8 8.08E-1[5] 6.49E-1[4] 3.95E-1[2] 4.63E-1[3] 2.21E?0[6] 3.88E221[1]

(3.46E-2) (3.60E-2) (1.33E-2) (6.46E-3) (2.70E-1) (9.30E23)

10 9.91E-1[5] 7.88E-1[4] 5.01E-1[2] 5.69E-1[3] 2.43E?0[6] 4.50E21[1]

(1.80E-2) (3.57E-2) (2.46E-3) (6.61E-3) (4.71E-2) (3.60E23)

DTLZ3 4 3.55E-1[4] 4.79E-1[5] 5.61E-1[6] 1.54E21[1] 1.61E-1[2] 3.93E-1[3]

(6.08E-2) (1.78E-2) (3.34E-1) (7.82E22) (1.68E-1) (8.22E-2)

6 1.24E?0[3] 2.68E?0[5] 1.08E?0[2] 1.63E?0[4] 1.34E?2[6] 7.35E21[1]

(1.21E?0) (1.79E?0) (1.29E-1) (7.33E-1) (3.34E?1) (2.11E21)

8 1.15E?0[5] 9.08E-1[2] 4.02E?0[4] 1.89E?0[3] 1.02E?3[6] 8.95E21[1]

(8.49E-2) (3.03E-3) (3.00E?0) (6.81E-1) (1.54E?2) (6.51E22)

10 1.35E?0[2] 4.00E?0[4] 6.59E?0[5] 1.38E?0[3] 1.62E?3[6] 9.80E21[1]

(5.32E-2) (4.12E-3) (2.56E?0) (4.79E-2) (1.80E?2) (1.04E21)

DTLZ4 4 4.33E-1[6] 3.78E-1[5] 1.59E-1[3] 1.69E-1[4] 1.36E-1[2] 1.34E21[1]

(1.96E-1) (1.52E-1) (9.85E-2) (6.22E-3) (3.39E-3) (7.50E-4)

6 7.68E-1[6] 6.67E-1[4] 2.55E-1[1] 3.46E-1[3] 7.49E-1[5] 2.71E-1[2]

(2.63E-1) (1.02E-1) (1.51E23) (1.02E-2) (1.07E-1) (2.27E-3)

8 8.12E-1[5] 6.59E-1[4] 3.82E-1[2] 5.32E-1[3] 2.09E?0[6] 3.80E21[1]

(7.43E-2) (2.63E-2) (9.96E-3) (1.39E-2) (4.10E-1) (9.62E23)

10 9.47E-1[5] 7.81E-1[4] 5.04E-1[2] 6.49E-1[3] 2.43E?0[6] 4.47E221[1]

(5.80E-2) (6.05E-2) (1.31E-2) (2.62E-2) (7.01E-2) (1.32E23)

DTLZ5 4 2.72E-2[4] 2.58E-2[3] 1.49E22[1] 3.50E-2[5] 1.25E-1[6] 2.17E-2[2]

(1.71E-5) (6.76E-3) (1.90E23) (3.71E-3) (2.32E-2) (4.08E-3)

6 7.44E-1[5] 1.73E-1[4] 1.20E-1[3] 9.30E-2[2] 8.46E-1[6] 8.83E22[1]

(5.48E-3) (5.94E-2) (2.28E-2) (2.06E-2) (1.22E-1) (1.22E22)

8 1.24E21[1] 3.10E-2[5] 2.43E-1[4] 1.60E-1[3] 1.23E?0[6] 1.49E–1[2]

(2.94E23) (4.81E-3) (4.06E-2) (4.48E-2) (2.00E-1) (1.70E-2)

10 7.45E-1[5] 3.57E22[1] 5.78E-1[4] 1.74E-1[2] 1.20E?0[6] 2.49E-1[3]

(2.06E-2) (8.02E23) (1.05E-1) (2.48E-2) (3.40E-1) (2.26E-2)

DTLZ6 4 1.43E-1[4] 2.45E-1[6] 3.16E-2[2] 3.84E-2[3] 1.84E-1[5] 2.44E22[1]

(2.90E-2) (1.58E-2) (6.19E-3) (4.14E-3) (3.48E-2) (4.43E23)

6 7.45E-1[3] 5.67E?0[6] 1.38E?0[4] 1.01E-1[2] 4.40E?0[5] 9.77E22[1]

(5.87E-4) (5.79E-1) (5.40E-1) (1.49E-2) (5.55E-1) (2.93E22)

8 1.93E-1[2] 6.70E?0[5] 3.05E?0[4] 1.59E21[1] 9.77E?0[6] 2.36E-1[3]

(3.13E-2) (5.83E-1) (1.58E?0) (2.73E22) (2.74E-1) (2.32E--2)

10 7.26E-1[5] 6.91E?0[4] 4.93E?0[3] 1.66E21[1] 9.75E?0[6] 4.84E-1[2]

(6.37E-5) (8.17E-1) (2.05E?0) (1.40E22) (6.80E-1 (1.19E-1)
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superior over the four popular many-objective optimization

algorithms (namely, MOEA/D, HypE, GrEA and

Two_Arch2) and a recently developed membrane com-

puting model-based multi-objective optimization algo-

rithm, SMG-MOMA. The proposed SMG-MaOMA

achieves an average rank of 1.89, which is much better than

the second best algorithm Two_Arch2 who holds an

average rank of 2.36 on all considered test instances.

From the table, we can find that the Two_Arch2 method

also holds a competitive performance on the test instances,

whose superiority seems to be enhanced as the number of

objectives increases on DTLZ test problems. The promising

performance of the Two_Arch2 method may be partly

attributed to the fact that the algorithm also adopts two

archives (similar to subpopulations CA and DA in the skin

membrane). It is necessary to stress that, although the SMG-

MOMA used a skin membrane-guiding strategy, it still can

not achieve a competitive performance on the MaOP test

instances. This is mainly attributed to the skin membrane-

guiding strategy developed in SMG-MOMA, which is only

suited for solving MOPs with two or three objectives. The

performance of skin membrane-guiding strategy in SMG-

MOMA will considerably deteriorate to solve MaOPs. The

above empirical results confirm the effectiveness of the skin

membrane-guiding strategy suggested in SMG-MaOMA.

Therefore, we can conclude that the proposed SMG-

MaOMA is a promising approach for solving MaOPs.

To take a closer look at the results of algorithms on

DTLZ test problems, Figs. 1 and 2 depict the objective

values of the solution set with the best IGD value over 20

runs obtained by different algorithms on DTLZ2 and

DTLZ4 with 10 objectives. From the figures, it can clearly

be seen that the Two_Arch2 method and SMG-MOMA

obtain some solutions which do not converge to the Pareto

front for 10-objective DTLZ2, while the MOEA/D, HypE

and GrEA achieve a solution set which has a worse dis-

tribution than that of SMG-MaOMA. For 10-objective

DTLZ4, a similar result can be observed from Fig. 2. The

Two_Arch2 method, SMG-MOMA and MOEA/D cannot

guarantee that the found solutions are all located on the

Pareto front, but the distribution of solution set obtained by

HypE and GrEA needs to be further improved. Compared

to the five considered algorithms, the proposed SMG-

MaOMA achieves a better balance between convergence

and distribution of the obtained solution set.

In the following, we further verify the performance of the

proposed SMG-MaOMA on the more challenging WFG test

problems forMaOPs.Table 3 presents theHypervolume (HV)

values of the six considered algorithms on WFG1 to WFG9

with 4, 6, 8, 10objectives averaging over 20 independent runs,

where the best mean on each test instance is highlighted in

boldface. The rank of the algorithms on each instance and the

mean rank of each algorithm averaging over all considered

WFG test instances are also shown in the table. From the table,

the following two observations can be obtained. On the one

hand, the performance of GrEA seems to be enhanced for

solving WFG test problems. The GrEA achieves an average

rank of 2.69 on all WFG test instances, which is much better

than the ranks of the MOEA/D, HypE, Two_Arch2 method

and SMG-MOMA. These results demonstrate that GrEA is

well suited to solve the more challengingWFG test problems.

On the other hand, the proposed SMG-MaOMA is also more

suited to solve WFG test problems whose superiority is

enhanced on these test problems. On all 36 test instances of

WFG test problems, the proposed SMG-MaOMA obtains the

best HV value on 23 test instances.

In summary, the proposed SMG-MaOMA is a compet-

itive many-objective optimization algorithm, no matter that

it is compared to existing popular many-objective opti-

mization algorithms or membrane computing model-based

multi-objective optimization algorithms.

4 Conclusions

In this paper, based on membrane computing models, we

proposed a many-objective algorithm named SMG-

MaOMA. In SMG-MaOMA, a skin membrane-guiding

Table 2 continued

Problems Obj. MOEA/D HypE GrEA Two_Arch2 SMG-MOMA SMG-MaOMA

DTLZ7 4 1.01E?0[5] 1.26E?0[6] 1.80E-1[3] 1.44E21[1] 1.51E-1[2] 2.35E-1[4]

(1.56E-1) (1.14E-2) (7.64E-3) (4.57E23) (4.47E-3) (1.01E-1)

6 1.04E?0[5] 3.89E?0[6] 7.28E-1[4] 5.68E21[1] 5.34E-1[2] 6.87E-1[3]

(1.27E-1) (1.94E-1) (2.34E-2) (1.12E22) (1.17E-2) (2.31E-2)

8 1.91E?0[5] 4.17E?0[6] 1.19E?0[4] 9.73E21[1] 1.15E?0[3] 1.14E?0[2]

(1.94E-1) (1.77E-1) (6.94E-2) (2.74E22) (1.07E-1) (2.41E-1)

10 3.36E?0[5] 8.24E?0[6] 1.34E?0[2] 1.21E10[1] 2.28E?0[4] 1.39E?0[3]

(4.42E-1) (9.76E-2) (5.03E-2) (1.43E22) (8.10E-1) (3.75E-2)

Average rank 4.29 4.64 3.11 2.36 4.71 1.89
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Fig. 1 Objective values of the solution set with the best IGD value over 20 runs obtained by the six compared algorithms on 10-objective
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Table 3 Hypervolume (HV) values of the six compared algorithms on WFG1 to WFG9, where the best mean on each instance is highlighted in

boldface

Problems Obj. MOEA/D HypE GrEA Two_Arch2 SMG-

MOMA

SMG-

MaOMA

WFG1 4 3.56E?2[2] 2.96E?2[4] 2.82E?2[5] 1.20E?2[6] 3.22E?2[3] 3.65E12[1]

(2.20E?1) (2.47E?1) (1.81E?1) (1.25E?0) (2.36E?1) (1.14E10)

6 3.89E?4[4] 4.51E14[1] 4.48E?4[3] 1.29E?4[6] 2.73E?4[5] 4.50E?4[2]

(6.75E?3) (5.38E11) (2.31E?2) (1.15E?3) (2.70E?3) (1.41E?2)

8 6.85E?6[2] 6.91E16[1] 6.32E?6[4] 2.48E?6[6] 6.04E?6[5] 6.36E?6[2]

(1.23E?6) (5.10E15) (1.24E?6) (2.61E?4) (8.01E?5) (1.35E?5)

10 1.69E?9[5] 2.62E?9[4] 3.29E?9[2] 8.66E?8[6] 3.02E?9[3] 3.61E19[1]

(4.30E?8) (4.14E?8) (8.72E?7) (6.04E?7) (2.00E?8) (3.00E17)

WFG2 4 2.58E?2[5] 2.32E?2[6] 2.72E?2[4] 3.51E?2[2] 3.72E12[1] 3.59E?2[3]

(4.02E?1) (2.99E?0) (4.18E?1) (2.93E?1) (9.52E21) (3.36E?2)

6 4.14E?4[5] 4.22E?4[3] 4.37E?4[2] 4.40E14[1] 4.01E?4[6] 4.29E?4[4]

(3.78E?3) (4.93E?3) (2.58E?3) (2.78E12) (2.22E?2) (3.89E?3)

8 1.03E?7[2] 1.02E?7[3] 9.95E?6[6] 1.00E?7[5] 1.01E?7[4] 1.13E17[1]

(9.28E?4) (2.39E?3) (4.39E?4) (6.33E?4) (3.84E?4) (3.77E14)

10 3.31E?9[6] 3.70E19[1] 3.56E?9[5] 3.64E?9[4] 3.67E?9[3] 3.68E?9[2]

(4.93E?8) (6.06E15) (1.89E?7) (1.19E?7) (5.94E?6) (1.82E?7)

WFG3 4 1.89E?2[3] 1.98E?2[2] 2.15E12[1] 1.76E?2[4] 1.32E?2[6] 1.60E?2[5]

(5.26E-1) (3.19E?0) (2.19E10) (7.16E?2) (3.72E-1) (3.96E?0)

6 1.71E?4[6] 4.30E?4[2] 3.19E?4[4] 5.26E14[1] 2.45E?4[5] 3.35E?4[3]

(1.93E-1) (3.23E?3) (2.56E?3) (5.02E12) (2.56E?2) (2.60E?2)

8 3.57E?6[3] 4.82E?6[2] 5.93E16[1] 2.82E?6[6] 3.25E?6[5] 4.27E?6[4]

(1.73E?5) (2.96E?4) (4.12E14) (3.36E?4) (5.97E?5) (2.91E?5)

10 1.25E?9[6] 1.43E?9[2] 1.53E19[1] 1.36E?9[4] 1.27E?9[5] 1.38E?9[3]

(1.34E?8) (3.99E?7) (4.33E18) (6.30E?8) (5.89E?8) (2.02E?8)

WFG4 4 1.87E?2[4] 1.97E?2[2] 1.91E?2[3] 1.84E?2[5] 1.65E?2[6] 2.03E12[1]

(6.28E?0) (3.45E?0) (9.92E-1) (2.92E?0) (2.04E?0) (2.53E10)

6 1.50E?4[6] 2.41E?4[3] 2.86E?4[2] 2.25E?4[4] 1.90E?4[5] 3.05E14[1]

(8.52E?3) (1.94E?3) (4.30E?2) (6.64E?2) (1.02E?3) (7.38E12)

8 4.91E?6[5] 6.43E?6[2] 5.72E?6[3] 5.25E?6[4] 4.70E?6[6] 7.16E16[1]

(8.29E?5) (4.99E?5) (9.43E?4) (8.86E?4) (1.68E?5) (1.42E15)

10 9.05E?8[6] 2.02E?9[4] 2.20E?9[2] 2.07E?9[3] 1.63E?9[5] 2.61E19[1]

(4.07E?8) (3.65E?8) (3.22E?7) (1.53E?8) (9.01E?7) (4.23E17)

WFG5 4 1.81E?2[3] 1.12E?2[6] 1.85E?2[2] 1.71E?2[4] 1.66E?2[5] 1.88E12[1]

(3.28E?0) (9.25E?0) (7.23E-1) (1.80E?0) (2.09E?0) (8.34E21)

6 1.67E?4[6] 3.03E14[1] 2.80E?4[3] 2.09E?4[4] 2.00E?4[5] 2.94E?4[2]

(1.35E?4) (3.72E12) (2.14E?2) (2.30E?3) (3.22E?2) (2.09e?2)

8 5.00E?6[4] 4.58E?6[6] 6.23E?6[2] 5.38E?6[3] 4.90E?6[5] 7.03E16[1]

(2.08E?6) (2.87E?5) (9.87E?4) (8.44E?4) (2.29E?5) (9.34E14)

10 8.94E?8[6] 1.61E?9[5] 2.45E?9[2] 2.05E?9[3] 1.67E?9[4] 2.51E19[1]

(5.95E?8) (3.48E?7) (2.85E?7) (2.27E?7) (1.01E?8) (2.97E17)

WFG6 4 1.66E?2[2] 4.96E?1[6] 1.47E?2[5] 1.40E?2[4] 1.60E?2[3] 1.88E12[1]

(7.36E?0) (1.48E?0) (1.04E?0) (1.80E?0) (9.28E?0) (5.35E10)

6 2.27E?4[6] 3.08E14[1] 2.75E?4[3] 1.83E?4[4] 1.99E?4[5] 2.85E?4[2]

(9.70E?3) (5.34E12) (9.51E?2) (4.33E?2) (7.23E?2) (8.72E?2)

8 2.70E?6[4] 1.36E?6[6] 4.89E?6[2] 4.39E?6[3] 4.59E?6[5] 6.80E16[1]

(1.78E?6) (3.96E?4) (6.53E?4) (1.08E?5) (4.14E?5) (1.79E15)

10 4.08E?8[6] 4.93E?8[5] 1.87E?9[2] 1.70E?9[3] 1.38E?9[4] 2.54E19[1]

(3.30E?8) (6.50E?6) (2.70E?7) (6.88E?7) (1.53E?8) (7.25E17)
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strategy specially tailored for solving MaOPs is developed,

where the population in the skin membrane is divided into

two subpopulations. One ubpopulation focuses on

improving the convergence of populations in the internal

membrane, while the other subpopulation aims to maintain

the diversity of populations in the internal membrane.

Experimental results show that the proposed SMG-

MaOMA is very competitive compared with P system-

based multi-objective algorithms and popular many-ob-

jective optimization algorithms.

The SMG-MaOMA has shown that the skin mem-

brane-guiding strategy is an effective idea for designing

membrane computing model-based many-objective algo-

rithms; however, its performance can still be further

improved. Hence, an interesting topic along this research

line is to investigate the effect of convergence and

diversity of populations for MaOPs and design a more

effective the skin membrane-guiding strategy. It also

deserves to use the proposed SMG-MaOMA to solve the

many-objective optimization problems in real-world, since

there are a large number of challenging many-objective

optimization problems widely present in engineering

applications and scientific research that still need to be

investigated.

For further research, it would be of interests to consider

the most heavily investigated models, such as neural net-

works [3, 25, 40, 41] and novel approaches, such as

matching strategies [29, 36, 45, 48], learning algorithms

[13, 44, 49, 64] for multi/many-objective optimization.
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