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Abstract Single-valued trapezoidal neutrosophic numbers

(SVTNNs) are very useful tools for describing complex

information, because they are able to maintain the com-

pleteness of the information and describe it accurately and

comprehensively. This paper develops a method based on

the single-valued trapezoidal neutrosophic normalized

weighted Bonferroni mean (SVTNNWBM) operator to

address multi-criteria group decision-making (MCGDM)

problems. First, the limitations of existing operations for

SVTNNs are discussed, after which improved operations

are defined. Second, a new comparison method based on

score function is proposed. Then, the entropy-weighted

method is established in order to obtain objective expert

weights, and the SVTNNWBM operator is proposed based

on the new operations of SVTNNs. Furthermore, a single-

valued trapezoidal neutrosophic MCGDM method is

developed. Finally, a numerical example and comparison

analysis are conducted to verify the practicality and

effectiveness of the proposed approach.

Keywords Multi-criteria group decision-making � Single-
valued trapezoidal neutrosophic number � Single-valued
trapezoidal neutrosophic weighted Bonferroni mean

operator � Entropy-weighted method

1 Introduction

Multi-criteria decision-making (MCDM) methods and

multi-criteria group decision-making (MCGDM) methods

are widely used in real-life decision-making problems.

However, these situations often involve uncertain, incom-

plete or indeterminate decision-making information. To

address this problem, Zadeh [1] proposed fuzzy sets, which

can provide a better representation of reality. Since then,

various extensions of fuzzy sets have emerged, such as

interval-valued fuzzy sets (IVFSs) [2], intuitionistic fuzzy

sets (IFSs), interval-valued intuitionistic fuzzy sets

(IVIFSs) [3–5], hesitant fuzzy sets (HFSs) [6] and intu-

itionistic hesitant fuzzy sets (IHFSs) [7], all of which have

been used to solve MCDM [8–10] and MCGDM problems

[11–13]. IFSs and IVIFSs have generated further exten-

sions to cope with the vagueness and hesitancy of knowl-

edge or decision information, including triangular

intuitionistic fuzzy numbers (TrIFNs) [7, 14, 15], trape-

zoidal intuitionistic fuzzy numbers (TIFNs) and trapezoidal

interval-valued intuitionistic fuzzy numbers (TIVIFNs)

[16]. These extensions posses notable advantages in that

they extend the domain of IFSs from a discrete set to a

continuous one. For example, TIFNs are defined using

trapezoidal fuzzy numbers (TFNs) to express membership

and non-membership functions, which helps describe

decision makers’ (DMs) information with precision in

different dimensions [17]. Still, many uncertainties exist in

real decision-making processes, including indeterminate,

inconsistent, imprecise, incomplete and even unknown

information, which are beyond the scope of FSs and IFSs.

Smarandache developed his seminal theory of neutro-

sophic logic and neutrosophic sets (NSs) [18, 19] and pointed

that the NS is a generalization of the IFS [20]. The prominent

characteristic of a NS is the independence among the truth-
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membership, falsity-membership and indeterminate mem-

bership which allows them to express more abundant and

flexible information than FSs and IFSs [21]. However, NSs

cannot be applied in real scientific or engineering areas if not

specified described. Since they were proposed, work on NSs

theory has progressed rapidly, and a number of applications

have been identified [22, 23]. Furthermore, many extensions

have been developed, such as simplified neutrosophic sets

(SVNSs and INSs) [24, 25], multi-valued neutrosophic sets

(MVNSs) [26] and normal neutrosophic sets (NNSs) [27].

Moreover, some researchers have attempted to combine NSs

with other traditional sets in order to enhance the ability to

represent uncertainty; examples include single-valued neu-

trosophic graphs [28], interval-valued neutrosophic graphs

[29] and interval-valued neutrosophic parameterized (IVNP-)

soft sets [30]. In addition, interval-valued neutrosophic hesi-

tant fuzzy sets (IVNHFSs) [31] and simplified neutrosophic

linguistic sets (SNLSs) [32–35] have been proposed. How-

ever, in SNLSs, the three membership degrees function rela-

tive to a fuzzy concept ‘‘Excellent’’ or ‘‘Good’’, which is a

discrete set, naturally, this may lead to information loss, such

that it is worthwhile to extend the discrete set to a continuous

one. Two studies [36, 37] addressed this by proposing a

method to transform linguistic information into triangular

fuzzy numbers (TrFNs). Deli and Subas [21] defined single-

valued triangular neutrosophic numbers (SVTrN-numbers) as

a generalization of TrFNs and TrIFNs, allowing the DMs’

information to be expressed completely in different dimen-

sions [17].

Ye [38] proposed single-valued trapezoidal neutrosophic

numbers (SVTNNs) as an extension of SVTrN-numbers in

order to improve the ability to describe indeterminate and

inconsistent information. SVTNNs have attracted a great

deal of research attention because of their advantages in

representing incomplete and inconsistent information while

avoiding information loss and distortion in complex deci-

sion-making problems. For example, Deli and Şubaş [39]

proposed a new ranking method of SVTNNs, which they

applied to tackle MCDM problems. Smarandache defined

single-valued neutrosophic trapezoidal linguistic numbers

(SVNTLNs) by combining SVTNNs with trapezoidal

fuzzy linguistic variables, and he also defined the neutro-

sophic trapezoidal linguistic weighted arithmetic averaging

aggregation operator, the neutrosophic trapezoidal lin-

guistic weighted geometric aggregation operator [40], the

interval neutrosophic trapezoidal linguistic weighted

arithmetic averaging aggregation operator and the interval

neutrosophic trapezoidal linguistic weighted geometric

averaging aggregation operator [41]. Ye [38] proposed the

concept of a trapezoidal neutrosophic number (TNN) and

defined the basic operations of TNNs. Based on this work,

he developed the trapezoidal neutrosophic weighted arith-

metic averaging (TNWAA) operator and the trapezoidal

neutrosophic weighted geometric averaging (TNWGA)

operator. However, in the method proposed by Ye [38], the

TFNs and the three membership degrees are treated inde-

pendently, such that their complementary effects might be

ignored; this could lead to information distortion and

conservative results. Furthermore, the method does not

take into account interrelationships among criteria, which

widely exist in real-world situations.

Aggregation operators have raised concerns about infor-

mation fusion. Many efficient aggregating operators have

been proposed and applied in MCGDM problems [42, 43].

They can be roughly divided into two categories [17]:

aggregation operators with independent criteria, as intro-

duced in the research described above [21, 38–41], and

aggregation operators that consider interdependent inputs,

which widely exist in real decision-making problems.

Bonferroni [44] initially proposed the Bonferroni mean

(BM) operator, which is prominently characterized by its

capacity to capture the interrelationships of input arguments.

Many extensions of the BM operator have been applied in

various fields. For example, Li et al. [45] introduced the

geometric BM operator, applying it to environments with

IFNs; meanwhile, Liu et al. [46] applied the BM operator to

MVNSs, Liu and Jin [47] introduced a trapezoidal fuzzy

linguistic BM operator, and Zhu et al. [48] developed tri-

angular fuzzy BM operators and applied them to MCDM

problems. Chen et al. [49] generalized the extended BM

operator to explore its aggregation mechanism explicitly;

Tian et al. [32] proposed the simplified neutrosophic lin-

guistic normalized weighted BM operator, the simplified

neutrosophic linguistic normalized geometric weighted BM

operator and the gray linguistic weighted BM operator [42]

to handle MCDM problems. Finally, Zhang et al. [50]

constructed an improved decision support model that intro-

duced IVNSs to denote online reviews and utilized BM

operators to consider interrelationships among criteria.

As these examples illustrate, the BM operator has found

applications in many fields, such as FSs, IFSs, linguistic

information, NSs and various extensions of them. At the

same time, SVTNNs can express indeterminate and

inconsistent information more flexibly and have therefore

gained some attention. However, little research has com-

bined these concepts to address MCGDM problems using

BM operators under SVTNN environments. Previous

studies [38, 53] have focused on using the traditional

arithmetic mean operator or geometric mean operator with

SVTNNs, meaning that they only deal with independent

criteria. Moreover, there are some drawbacks in defining

the operations and comparison methods between two

SVTNNs. To overcome these deficiencies, this paper pro-

poses a new comparison method. In addition, expert

weights are determined using an entropy-weighted method.

Furthermore, the single-valued trapezoidal neutrosophic
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normalized weighted BM (SVTNNWBM) operator is

proposed. Finally, a group decision-making problem for

satisfaction assessment is solved using the approach based

on the SVTNNWBM operator and the new comparison

method with SVTNNs.

The rest of this paper is organized as follows. Section 2

briefly reviews some concepts regarding SVTNNs and their

operations are briefly reviewed. Section 3 defines the new

operations and comparison method. In Sect. 4, some

SVTNN aggregation operators are introduced, including the

single-valued trapezoidal neutrosophic BM (SVTNNBM)

operator and the SVTNNWBM operator. Section 5 intro-

duces the entropy-weighted method and develops a single-

valued trapezoidal neutrosophic MCGDM approach by

integrating the SVTNNWBM operator. Section 6 provides

an illustrative example to demonstrate the feasibility and

applicability of the proposed approach. Additionally, Sect. 6

contains sensitivity and comparative analyses and discus-

sions. Section 7 presents conclusions.

2 Preliminaries

This section introduces some basic concepts and compar-

ison methods related to SVTNNs; these concepts are useful

and will be utilized in the subsequent analyses.

Definition 1 [51] Let K = [a1, a2, a3, a4] be a TFN on the

real number set R, and a1 B a2 B a3 B a4. Then the

membership function lK: R ? [0, 1] is defined as follows:

lK xð Þ ¼

x� a1ð ÞlK= a2 � a1ð Þ; a1 � x\a2;
lK ; a2 � x� a3;
a4 � xð ÞlK= a4 � a3ð Þ; a3\x� a4;
0; otherwise:

8
>><

>>:

when a2 = a3, the TFN K = [a1, a2, a3, a4] is reduced to a

TrFN.

Ye [38] extended the concept of TFNs to SVNSs and

defined SVTNNs. In what follows, we will first introduce

SVNSs.

Definition 2 [52] Let X be a space of points (objects),

with a generic element in X denoted by x. A SVNS V in X is

characterized by three independent parts, namely the truth-

membership function TV, indeterminacy-membership

function IV and falsity-membership function FV. Further-

more, TV: X ? [0, 1], IV: X ? [0, 1], and FV: X ? [0, 1].

For simplification, V is denoted by V = {\x, (TV (x), IV (x),

FV (x))[ |x [ X}.

The SVNS V is a subclass of NSs, and the sum of TV(x),

IV(x) and FV(x) satisfies 0 B TV (x) ? IV (x) ? FV (x) B 3.

As SVNNs are denoted by crisp numbers that cannot

represent much fuzzy information, the SVTNN is proposed

to extend the discrete set to a continuous one.

Definition 3 [38] Let T~a; I~a;F~a 2 0; 1½ �. A SVTNN ~a ¼
a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i is a special NS on the real

number set R, whose truth-membership function l~a, inde-

terminacy-membership function m~a and falsity-membership

function k~a are defined as follows:

l~a xð Þ ¼

x� a1ð ÞT~a= a2 � a1ð Þ a1\x\a2;
T~a a2\x\a3;
a4 � xð ÞT~a= a4 � a3ð Þ a3\x\a4;
0 otherwise:

8
>><

>>:

m~a xð Þ ¼

a2 � xþ I~a x� a1ð Þð Þ= a2 � a1ð Þ a1\x\a2;
I~a a2\x\a3;
x� a3 þ I~a a4 � xð Þð Þ= a4 � a3ð Þ a3\x\a4;
1 otherwise:

8
>><

>>:

k~a xð Þ ¼

a2 � xþ F~a x� a1ð Þð Þ= a2 � a1ð Þ a1\x\a2;
F~a a2\x\a3;
x� a3 þ F~a a4 � xð Þð Þ= a4 � a3ð Þ a3\x\a4;
1 otherwise:

8
>><

>>:

When a1[ 0, ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i is called

a positive SVTNN, denoted by ~a[ 0. Similarly, when

a4 B 0, ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i is a negative

SVTNN, denoted by ~a\0. When 0 B a1 B a2 B a3 -

B a4 B 1 and T~a; I~a;F~a 2 0; 1½ �; ~a is called a normalized

SVTNN.

When I~a ¼ 1� T~a � F~a, the SVTNN is reduced to a

TIFN. When a2 = a3, then ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i
becomes a single-valued triangular neutrosophic number

(SVTrNN). If I~a ¼ 0 and F~a ¼ 0, then the SVTNN is

reduced to a generalized TFN, ~a ¼ a1; a2; a3; a4½ �; T~ah i.

Definition 4 [38] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i
and ~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs, and

f� 0. Their operations are defined as follows:

1. ~a� ~b ¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4½ �;h
T~a þ T~b � T~aT~b; I~aI~b;F~aF~b

� �
i;

2. ~a� ~b ¼ a1b1; a2b2; a3b3; a4b4½ �; T~aT~b; T~a þ T~b

��

�T~aT~b;F~a þ F~b � F~aF~bÞi;
3. f~a ¼ fa1; fa2; fa3; fa4½ �; 1� 1� T~að Þf; I~að Þf;

�D

F~að ÞfÞi;
4. ~af ¼ af1; a

f
2; a

f
3; a

f
4

h i
; T~að Þf; 1� 1� I~að Þf;
�D

1� 1� F~að ÞfÞi:

The following example illustrates some drawbacks in

the operations described in Definition 4.

Example 1 Let ~a ¼ 0:1; 0:1; 0:2; 0:3½ �; 0; 0; 1ð Þh i and ~b ¼
0:1; 0:1; 0:2; 0:3½ �; 1; 0; 0ð Þh i be two SVTNNs. According

to Definition 4, the following result can be calculated:

~aþ ~b ¼ 0:2; 0:2; 0:4; 0:6½ �; 1; 0; 0ð Þh i. This result, however,
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is inaccurate, because the falsity-membership of ~a, the

correlations among TFNs and the membership degrees of ~a

and ~b are not considered. Therefore, these operations

would be impractical.

Example 2 Let ~a1 ¼ ½0:03; 0:05; 0:07; 0:09�; ð0:3; 0:5;h
0:5Þi be a SVTNN and f ¼ 10. Then the result f~a1
obtained using Definition 4 is

10~a1 ¼ 0:3; 0:5; 0:7; 0:9½ �; 0:9718; 0:001; 0:001ð Þh i:

In this result, the three membership degrees of these

SVTNNs are operated repeatedly, significantly distorting

the result and conflicting with common sense.

Therefore, some new operations for SVTNNs must be

defined in order to overcome these operational anomalies.

The new operations will be discussed in Sect. 3.

In order to compare two different SVTNNs, some

previous comparison methods have been proposed.

Definition 5 [53] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be
a SVTNN. The score function and accuracy function of ~a

are defined, respectively, as

S ~að Þ ¼ 1

16
a1 þ a2 þ a3 þ a4½ � 	 2þ T~a � I~a � F~að Þ; ð1Þ

H ~að Þ ¼ 1

16
a1 þ a2 þ a3 þ a4½ � 	 2þ T~a � I~a þ F~að Þ: ð2Þ

Let 
 and * be two binary relations on SVTNNs,

denoted by ~a 
 ~b if ~a is preferred to ~b, and ~a� ~b if ~a is

indifferent to ~b.

Definition 6 [53] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and
~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� ���
be two SVTNNs. Then,

1. If S ~að Þ\S ~b
� �

, then ~a � ~b;

2. If S ~að Þ ¼ S ~b
� �

and H ~að Þ\H ~b
� �

, then ~a � ~b;

3. If S ~að Þ ¼ S ~b
� �

and H ~að Þ ¼ H ~b
� �

, then ~a� ~b.

However, there are some limitations to Definition 5,

which will be illustrated in Example 3.

Example 3 Let ~a ¼ 0:2; 0:3; 0:5; 0:8½ �; 0:1; 0:8; 0ð Þh i and
~b ¼ 0:1; 0:4; 0:5; 0:8½ �; 0:2; 0:9; 0ð Þh i be two SVTNNs. It is

clear that ~a 6¼ ~b. The following results can be obtained

according to Definition 5: S ~að Þ ¼ S ~b
� �

¼ 0:146,

H ~að Þ ¼ H ~b
� �

¼ 0:146, and ~a� ~b. However, these results

are counterintuitive.

Definition 7 [38] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be
a SVTNN. The score function of ~a is defined as follows:

S0 ~að Þ ¼ 1

12
a1 þ a2 þ a3 þ a4½ � 	 2þ T~a � I~a � F~að Þ: ð3Þ

Definition 8 [38] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and
~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs. Then,

1. If S0 ~að Þ[ S0 ~b
� �

, then ~a 
 ~b;

2. If S0 ~að Þ ¼ S0 ~b
� �

, then ~a� ~b.

However, some drawbacks also exist in Definition 7,

and they will be discussed in the following example.

Example 4 Let ~a ¼ 0:3; 0:4; 0:5; 0:8½ �; 0:5; 0:3; 0:7ð Þh i
and ~b ¼ 0:5; 0:7; 0:8; 1½ �; 0:2; 0:8; 0:4ð Þh i be two SVTNNs.

It is clear that ~a 6¼ ~b. However, according to Definitions 7

and 8, S0 ~að Þ ¼ S0 ~b
� �

¼ 0:25, and ~a� ~b; these results do not

conform to our intuition.

3 New operations and comparison method
for SVTNNs

In order to overcome the limitations discussed in Sect. 2,

this section defines several new operations. Moreover, a

new comparison method is proposed on the basis of score,

accuracy and certainty functions.

3.1 New operations for SVTNNs

Definition 9 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and ~b ¼
b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs, and f� 0;

then, the new operations for SVTNNs are defined as follows:

1. ~a� ~b

(i) If a3 þ a4 6¼ a1 þ a2 and b3 þ b4 6¼ b1 þ b2,

~a� ~b ¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4½ �;h
u ~að ÞT ~aþu ~bð ÞT ~b

u ~að Þþu ~bð Þ ;
u ~að Þ 1�I ~að Þþu ~bð Þ 1�I ~bð Þ

u ~að Þþu ~bð Þ ;

�

u ~að Þ 1�F ~að Þþu ~bð Þ 1�F ~bð Þ
u ~að Þþu ~bð Þ Þi, where u ~að Þ ¼

a3�a2þa4�a1
2

and u ~b
� �

¼ b3�b2þb4�b1
2

;

(ii) If a1 = a2 = a3 = a4 = a and b3 ? b4

= b1 ? b2, ~a� ~b ¼
D
aþ b1; aþ b2;½ aþ

b3; aþ b4�;
aT ~aþu ~bð ÞT ~b

aþu ~bð Þ ;
a 1�I ~að Þþu ~bð Þ 1�I ~bð Þ

aþu ~bð Þ ;

�

a 1�F ~að Þþu ~bð Þ 1�F ~bð Þ
aþu ~bð Þ

�E
;

(iii) If a3 ? a4 = a1 ? a2 and b1 = b2 = b3 = -

b4 = b, ~a� ~b ¼
	

a1 þ b; a2 þ b; a3 þ b; a4 þ b½ �;

u ~að ÞT ~aþbT ~b

u ~að Þþb
;
u ~að Þ 1�I ~að Þþb 1�I ~bð Þ

u ~að Þþb
;

�

u ~að Þ 1�F ~að Þþb 1�F ~bð Þ
u ~að Þþb


�

;
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(iv) If a1 = a2 = a3 = a4 = a and b1 = b2 =

b3 = b4 = b, ~a� ~b ¼ aþ b;h aT ~aþbT ~b

aþb
;

�

a 1�I ~að Þþb 1�I ~bð Þ
aþb

;
a 1�F ~að Þþb 1�F ~bð Þ

aþb
Þi;

2. ~a� ~b ¼ a1b1; a2b2; a3b3; a4b4½ �; T~aT~b; I~a þ I~b � I~aI~b;
��

F~a þ F~b � F~aF~bÞi;
3. f~a ¼ fa1; fa2; fa3; fa4½ �; T~a; I~a;F~að Þh i; f� 0;

4. ~af ¼ af1; a
f
2; a

f
3; a

f
4

h i
; T~að Þf; 1� 1� I~að Þf; 1�
�D

1� F~að ÞfÞi; f� 0;

5. neg ~að Þ ¼ 1� a4; 1� a3; 1� a2; 1½h �a1�; T~a; I~a;F~að Þi:

Example 5 Using Definition 9 and the data in Example 1,

let f ¼ 2. The calculated results are as follows:

1. ~a� ~b ¼ 0:2; 0:2; 0:35; 0:7½ �; 0:538; 0; 0:538ð Þh i;
2. ~a� ~b ¼ 0:01; 0:01; 0:03; 0:12½ �; 0; 0; 0ð Þh i;
3. 2~a ¼ 0:2; 0:2; 0:4; 0:6½ �; 0; 0; 1ð Þh i;
4. ~a2 ¼ 0:01; 0:01; 0:04; 0:09½ �; 0; 0; 1ð Þh i:

Compared with the operations proposed by Ye [38] and

Deli and Şubaş [53], these newly proposed SVTNN

operations have the following advantages: (1) they can

capture the correlations of TFNs and three membership

degrees of SVTNNs and (2) they can effectively avoid

repeated operations and minimize information loss and

distortion.

Using the corresponding operations for SVTNNs, the

following theorem can be easily proved.

Theorem 1 Let ~a, ~b, and ~c be three SVTNNs, and f� 0;

then, the following equations are true:

1. ~a� ~b ¼ ~b� ~a;

2. ~a� ~b
� �

� ~c ¼ ~a� ~b� ~c
� �

;

3. ~a� ~b ¼ ~b� ~a;

4. ~a� ~b
� �

� ~c ¼ ~a� ~b� ~c
� �

;

5. f~a� f~b ¼ f ~b� ~a
� �

;

6. ~a� ~b
� �f¼ ~af � ~bf:

It is easy to prove Theorem 1 according to Definition 9,

so the proof is omitted here.

3.2 New comparison methods for SVTNNs

Motivated by the comparison methods proposed by Broumi

and Smarandache [40] according to the expected function,

accuracy function and certainty function of SVNTLNs, this

subsection defines a new comparison method, and proves it

to be reasonable and practical.

Definition 10 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be a

SVTNN; then, the score function, accuracy function and

certainty function of SVTNN ~a are defined, respectively, as
follows:

E ~að Þ ¼ a1 þ 2a2 þ 2a3 þ a4

6
	 2þ T~a � I~a � F~a

3

� 


; ð4Þ

A ~að Þ ¼ a1 þ 2a2 þ 2a3 þ a4

6
	 T~a � F~að Þ; ð5Þ

C ~að Þ ¼ a1 þ 2a2 þ 2a3 þ a4

6
T~a: ð6Þ

Assume that ~a and ~b are two SVTNNs; then, they can be

compared using the following rules.

Definition 11 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and
~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs. The

comparison method for ~a and ~b can be defined as follows:

1. If E ~að Þ[E ~b
� �

, then ~a 
 ~b, meaning that ~a is superior

to ~b.

2. If E ~að Þ ¼ E ~b
� �

, and if A ~að Þ[A ~b
� �

, then ~a 
 ~b,

meaning that ~a is superior to ~b, otherwise, ~a � ~b,

meaning that ~a is inferior to ~b.

3. If E ~að Þ ¼ E ~b
� �

and A ~að Þ ¼ A ~b
� �

, then ~a 
 ~b if

C ~að Þ[C ~b
� �

, meaning that ~a is superior to ~b; however,

~a � ~b ifC ~að Þ\C ~b
� �

, meaning that ~a is inferior to ~b; and

~a� ~b if C ~að Þ ¼ C ~b
� �

, meaning that ~a is indifferent to ~b.

Example 6 Utilizing the data in Example 3, we can

determine that E ~að Þ ¼ 0:188 and E ~b
� �

¼ 0:195. Then

~b 
 ~a; in other words, ~b is superior to ~a, which is consistent

with our intuition.

4 Single-valued trapezoidal neutrosophic
aggregation operators

This section reviews the traditional BM operator and the

normalized weighted Bonferroni mean (NWBM) operator,

as well as some of their prominent characteristics. Then,

the SVTNNWBM operator is proposed in an environment

featuring SVTNNs.

4.1 BM and NWBM operators

The BM operator [44] is a traditional aggregation operator

that can capture expressed interrelationships of the indi-

vidual arguments.
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Definition 12 [54] Let p; q� 0, and let ai i ¼ 1; 2; . . .; nð Þ
be a collection of non-negative numbers. Then the aggre-

gation function

BMp;q a1; a2; . . .; anð Þ ¼ 1

n n� 1ð Þ
Xn

i;j¼1
i 6¼j

a
p
i a

q
j

0

B
B
@

1

C
C
A

1= pþ qð Þ

ð7Þ

is called the BM operator.

The BM operator has the following obvious properties:

1. BMp;q 0; 0; . . .; 0ð Þ ¼ 0.

2. (Commutativity). Let ai i ¼ 1; 2; . . .; nð Þ and

a0i i ¼ 1; 2; . . .; nð Þ be two sets of non-negative num-

bers. If a01; a
0
2; . . .; a

0
n

� �
is any permutation of

a1; a2; . . .; anð Þ, then BMp;q a01; a
0
2; . . .; a

0
n

� �
¼ BMp;q

a1; a2; . . .; anð Þ.
3. (Idempotency). Let ai (i = 1, 2,…, n) be a set of non-

negative numbers. If all ai are equal for all i, then

BMp;q a1; a2; . . .; anð Þ ¼ a.

4. (Monotonicity). Let ai (i = 1, 2,…, n) and

a0i i ¼ 1; 2; . . .; nð Þ be two sets of non-negative num-

bers, If ai � a0i for all i, then BMp;q a1;ð a2; . . .; anÞ
�BMp;q a01; a

0
2; . . .; a

0
n

� �
.

5. (Boundedness). Let ai (i = 1, 2,…, n) be a set of non-

negative numbers, while a� ¼ min a1; a2; . . .; anð Þ and

aþ ¼ max a1; a2; . . .; anð Þ; then, a� �BMp;q a1;ð
a2; . . .; anÞ� aþ.

Some special cases of the BM operator with respect to

the parameters p and q are discussed as follows:

1. If p = 1 and q = 1, then the BM operator is reduced to

the following:

BM1;1 a1; a2; . . .; anð Þ ¼ 1

n n� 1ð Þ
Xn

i;j¼1
i 6¼j

aiaj

0

B
B
@

1

C
C
A

1=2

:

ð8Þ

2. If q = 0, then the BM operator is reduced to the

generalized mean operator,

BMp;0 a1; a2; . . .; anð Þ ¼ 1

n

Xn

i¼1

a
p
i

 !1=p

: ð9Þ

3. If p = 1 and q = 0, then the BM operator is reduced to

the arithmetic mean operator,

BM1;0 a1; a2; . . .; anð Þ ¼ 1

n

Xn

i¼1

ai ð10Þ

4. If p ? 0 and q = 0, then the BM operator is reduced

the geometric mean operator,

lim
p!0

BMp;0 a1; a2; . . .; anð Þ ¼
Yn

i¼1

ai

 !1=n

: ð11Þ

Definition 13 [55] Let p, q C 0, and let ai (i = 1, 2,…, n)

be a collection of non-negative numbers with the weight

vector w = w1, w2,…, wn) such that wi [ [0, 1] and
Pn

i¼1 wi ¼ 1. If

NWBMp;q
w a1; a2; . . .; anð Þ ¼ �

n

i;j¼1
i 6¼j

wiwj

1� wi

a
p
i � a

q
j

� �

0

B
@

1

C
A

1
pþq

;

ð12Þ

then NWBMp;q
w is called the NWBM operator.

4.2 Single-valued trapezoidal neutrosophic

normalized weighted BM operator

This subsection extends the traditional BM and NWBM

operators to accommodate situations in which the input

arguments are SVTNNs. Furthermore, a SVTNNBM

operator and a SVTNNWBM operator are developed, and

some of their desirable properties are analyzed.

Definition 14 Let p, q C 0, and let ~ai ¼
ai1; ai2; ai3; ai4½ �; T~ai ; I~ai ;F~aið Þh i (i = 1, 2,…, n) be a set of

SVTNNs. If

SVTNNBMp;q ~a1; ~a2; . . .; ~anð Þ ¼ 1

n n� 1ð Þ �
n

i;j¼1
i 6¼j

~api � ~aqj

� �

0

B
@

1

C
A

1
pþq

;

ð13Þ

then SVTNNBMp;q is called the SVTNNBM operator.

The following definition fully introduces the

SVTNNWBM operator.

Definition 15 Let p, q C 0, and let ~ai ¼
ai1; ai2; ai3; ai4½ �; T~ai ; I~ai ;F~aið Þh i (i = 1, 2,…, n) be a set of

SVTNNs. If

SVTNNWBMp;q
w ~a1; ~a2; . . .; ~anð Þ ¼ �

n

i;j¼1
i6¼j

wiwj

1� wi

~api � ~aqj

� �

0

B
@

1

C
A

1
pþq

;

ð14Þ

where w = (w1, w2,…, wn) is the weight vector of ~ai,

wi [ [0, 1], and
Pn

i¼1 wi ¼ 1, then SVTNNWBMp;q
w is

called the SVTNNWBM operator.

Theorem 2 Let p, q C 0, and let ~ai ¼ ai1; ai2; ai3;½h
ai4�; T~ai ; I~ai ;F~aið Þi (i = 1, 2,…, n) be a set of SVTNNs.

Then, the aggregated result using Eq. (14) is also a

SVTNN, and
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SVTNNWBMp;q
w ~a1; ~a2; . . .; ~anð Þ ¼ �

n

i;j¼1
i 6¼j

wiwj

1�wi
~api � ~aqj

� �

0

B
@

1

C
A

1
pþq

¼ �
n

i;j¼1
i 6¼j

wiwj

1�wi
a
p
i1a

q
j1

0

B
@

1

C
A

1
pþq

; �
n

i;j¼1
i6¼j

wiwj

1�wi
a
p
i2a

q
j2

0

B
@

1

C
A

1
pþq

;

2

6
6
4

*

�
n

i;j¼1
i 6¼j

wiwj

1�wi
a
p
i3a

q
j3

0

B
@

1

C
A

1
pþq

; �
n

i;j¼1
i6¼j

wiwj

1�wi
a
p
i4a

q
j4

0

B
@

1

C
A

1
pþq

3

7
7
5;

�
n

i;j¼1
i 6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i
T ~aið Þp T ~ajð Þq

�
n

i;j¼1
i6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i

0

B
B
B
@

1

C
C
C
A

1
pþq

;

0

B
B
B
B
@

1� 1�

�
n

i;j¼1
i 6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i
1�I ~aið Þp 1�I ~ajð Þq

�
n

i;j¼1
i 6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i

0

B
B
B
@

1

C
C
C
A

1
pþq

;

1� 1�

�
n

i;j¼1
i 6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i
1�F ~aið Þp 1�F ~ajð Þq

�
n

i;j¼1
i 6¼j

1
2

wiwj
1�wi

a
p

i3
a
q

j3
�a

p

i2
a
q

j2
þa

p

i4
a
q

j4
�a

p

i1
a
q

j1

h i

0

B
B
B
@

1

C
C
C
A

1
pþq

1

C
C
C
C
A

+

:

ð15Þ

‘‘Appendix 1’’ details the proof of Theorem 2.

The traditional NWBM operator has the properties of

reducibility, commutativity, idempotency, monotonicity

and boundedness. It is easy to see that the SVTNNWBM

operator also satisfies these properties. The following

theorem proves only the monotonicity property, while the

others can be proved in a similar way and are omitted.

Theorem 3 (Monotonicity) Let ~ai¼ ai1; ai2; ai3; ai4½ �;h
T~ai ; I~ai ;F~aið Þi i ¼ 1; 2; . . .nð Þ and ~bi ¼ bi1; bi2; bi3;½h
bi4�; T~bi

; I~bi ;F~bi

� �
i i ¼ 1; 2; . . .; nð Þ be two sets of SVTNNs.

Suppose ai1 � bi1, ai2 � bi2, ai3 � bi3, ai4 � bi4, T~ai � T~bi
,

I~ai � I~bi , and F~ai �F~bi
for all i; then, SVTNNWBp;q

w

~a1; ~a2; . . .;ð ~anÞ� SVTNNWBp;q
w

~b1; ~b2; . . .; ~bn
� �

.

‘‘Appendix 2’’ details the proof of Theorem 3.

5 MCGDM method based on the SVTNNWBM
operator

This section develops an approach based on the

SVTNNWBM operator and the new comparison method

in order to solve MCGDM problems with SVTNN

information.

For a group decision-making problemwith a finite set ofm

alternatives, let D = {D1, D2,…, Ds} be the set of DMs,

A = {A1,A2,…,Am} be the set of alternatives, andC = {C1,

C2,…, Cn} be the set of criteria. Assume that the subjective

weight vector of the criteria provided by eachDMDk (k = 1,

2,…, s) is -k ¼ -k
1;-

k
2; . . .;-

k
n

� �
, such that -k

j 2 0; 1½ � and
Pn

j¼1 -
k
j ¼ 1. Similarly, the weight vector of the DMs are

specified as w = (w1, w2,…, ws), where wk C 0, and
Ps

k¼1 wk ¼ 1. The evaluation values provided by the experts

are converted into SVTNNs through two questionnaires, and

~akij ¼ akij1; a
k
ij2; a

k
ij3; a

k
ij4

h i
; T~ak

ij
; I~ak

ij
;F~ak

ij

� �D E
, k ¼ 1; 2;ð . . .;

s; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .;mÞ stands for the evaluation

value of DM Dk (k = 1, 2,…, s) for alternative

~ai i ¼ 1; 2; . . .;mð Þ under criteria Cj (j = 1, 2,…, n).

To elucidate the proposed methodology, this section is

divided into two parts: determining each DM’s weight

using an entropy-weighted method and describing the

algorithm in the proposed approach.

5.1 Determining each DM’s weight using entropy-

weighted method

Shannon [56] introduced the term ‘‘entropy’’ to measure

the degree of uncertainty in information. It is a useful tool

in decision-making, and it has found many applications

[57–60]. Applying the existed entropy-weighted methods,

this subsection proposes a new method to obtain the

objective weights of DMs.

We can first identify the decision matrix ~ak and the

weight vector of criteria -k, which are provided by DM Dk

(k = 1, 2,…, s).

~ak ¼

~ak11 ~ak12 � � � ~ak1n
~ak21 ~ak22 � � � ~ak2n
..
. ..

. ..
.

~akm1 ~akm2 � � � ~akmn

2

6
6
6
4

3

7
7
7
5
; ð16Þ

-k ¼ -k
1;-

k
2; . . .;-

k
n

� �
; k ¼ 1; 2; . . .; sð Þ; ð17Þ

where the elements of the decision matrix ~ak is character-

ized by SVTNNs.

The main procedures are as follows:

1. Two types of criteria exist in decision matrices: benefit

and cost criteria. In order to make the criterion type

uniform, the cost criteriamust be transformed into benefit

criteria using the negation operator defined in Definition

9. The normalized evaluation information matrix is

�ak ¼

�ak11 �ak12 � � � �ak1n
�ak21 �ak22 � � � �ak2n
..
. ..

. ..
.

�akm1 �akm2 � � � �akmn

2

6
6
6
4

3

7
7
7
5
: ð18Þ
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2. Using Definition 9, the jth criteria weight -k
j (k = 1,

2,…, s) is assigned to the jth criteria value �akij in

decision matrix �ak in Eq. (18). The weighted decision

matrix is then identified as follows:

Uk ¼ ~ukij

� �

m	n
¼ -k

j � �akij

� �

m	n

¼

~uk11 ~uk12 � � � ~uk1n
~uk21 ~uk22 � � � ~uk2n
..
. ..

. ..
.

~ukm1 ~ukm2 � � � ~ukmn

2

6
6
6
4

3

7
7
7
5
;

k ¼ 1; 2; . . .; sð Þ;

ð19Þ

where the elements of the weighted decision matrix are

denoted as ~ukij ¼ ukij1; u
k
ij2; u

k
ij3; u

k
ij4

h i
; T~uk

ij
; I~uk

ij
;F~uk

ij

� �D E
.

3. Let Ik be the entropy of the kth DM; then,

Ik ¼ � 1

lnm

Xm

i¼1

ekiPm
i¼1 e

k
i


 ln ekiPm
i¼1 e

k
i

�
�
�
�

�
�
�
�

� 


; ð20Þ

where eki is calculated according to Definition 10, and

its form is presented as follows:

eki ¼
Xn

j¼1

E ~ukij

� �
; ð21Þ

E ~ukij

� �
¼

ukij1 þ 2ukij2 þ 2ukij3 þ uki4

6
	

2þ T~uk
ij
� I~uk

ij
� F~uk

ij

3

 !

;

ð22Þ

where E ~ukij

� �
denotes the score function of the

assessment information ~ui i ¼ 1; 2; . . .;mð Þ with respect

to Cj (j = 1, 2,…, n) for DM Dk (k = 1, 2,…, s). If

eki ¼ 0, it is assumed that

ekiPm
i¼1 e

k
i


 ln ekiPm
i¼1 e

k
i

�
�
�
�

�
�
�
� ¼ 0;

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; sð Þ:

4. We can elicit the objective expert weight as follows:

wk ¼
1� Ik

Ps
k¼1 1� Ikð Þ ; ð23Þ

in which wk C 0, and
Ps

k¼1 wk ¼ 1.

5.2 The algorithm of the proposed approach

The procedures of the MCGDM approach involve the

following steps:

Step 1: Establish the decision matrices and weight vector

of the criteria.

According to Eqs. (16) and (17), we can get the

decision matrix ~ak and weight vector of criteria

-k (k = 1, 2,…, s) provided by each DM Dk

(k = 1, 2,…, s).

Step 2: Normalize the decision matrices.

Decision matrices include benefit criteria and

cost criteria. Using Definition 9, the cost criteria

can be transformed into benefit criteria.

Step 3: Obtain the weighted decision matrices.

According to Eq. (19), the weighted decision

matrices can be constructed by multiplying the

subjective weight vector of DMs

-k ¼ -k
1;-

k
2; . . .;-

k
n

� �
, (k = 1, 2,…, s) into the

decision matrices.

Step 4: Obtain expert weights through the entropy-

weighted method.

We can identify the objective expert weights

using Eqs. (20) through (23).

Step 5: Calculate the comprehensive criteria weights.

Utilizing the weighted arithmetic mean operator,

we can identify the comprehensive criteria

weights ~- ¼ ~-1; ~-2; . . .; ~-nð Þ with ~-j 2 0; 1½ �
(j = 1, 2,…, n) and

Pn
j¼1 ~-j ¼ 1.

~-j ¼
Xs

k¼1

wk-
k
j ; k ¼ 1; 2; . . .; sð Þ: ð24Þ

Step 6: Obtain the aggregated decision matrix.

According to the new operations described in

Definition 9 and using both the objective expert

weights obtained in Step 4 and the weighted

arithmetic mean operator, we can calculate the

aggregated decision matrix as follows:

M ¼ ��aij
� �

m	n
¼

Xs

k¼1

wk�a
k
ij

 !

m	n

¼

��a11 ��a12 � � � ��a1n
��a21 ��a22 � � � ��a2n
..
. ..

. ..
.

��am1 ��am2 � � � ��amn

2

6
6
6
4

3

7
7
7
5
: ð25Þ

Step 7: Obtain the overall value of Ai.

Utilizing Eq. (15), the overall value of

alternative Ai can be aggregated.

Step 8: Calculate the score values.

Utilizing Eqs. (4) through (6), the score values

can be obtained for comparison.
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Step 9: Rank all alternatives.

Comparing the values obtained in Step 8 yields

the final ranking results, and the optimal

ranking(s) can be selected.

6 A numerical example

This section uses a numerical example adapted from Yue

[61] to demonstrate the applicability of the proposedmethod.

A year-end report is required to assess various con-

stituencies’ satisfaction with respect to the institutional leader

at Chinese universities. The following four leaders of a uni-

versity in Guangdong, China, must be assessed: (1) A1 rep-

resents the president; (2) A2 is the first vice president; (3) A3 is

the second vice president; (4) A4 is the third vice president.

Teams are assembled from several constituencies to serve as

DMs (reviewers), including teachers (D1), researchers (D2)

and undergraduate students (D3). These DMs use the three

criteria C1 (working experience), C2(academic performance)

and C3 (personality) to evaluate the four alternatives.

Reviewers can evaluate the four alternatives with respect

to each criterion according to a hundred-point scale, inwhich

100 is the maximum grade and 0 is the minimum grade. As

the evaluation team includes a large number of people, we

must first obtain an interval number representing common

opinion. Second, we should take into consideration the

minimum andmaximum scores from the reviewers, such that

a TFN can be obtained. Furthermore, reviewers can evaluate

the obtained TFN by voting in favor, voting in against or

abstaining on each evaluation index. The final result is a

SVTNN. For example, the assessment value of alternativeA1

is denoted as ~a111 ¼ 0:6; 0:7; 0:8; 0:9½ �; 0:36; 0:3; 0:27ð Þh i.

This result is obtained by DMD1 with respect to criterion C1

using the two questionnaires. Initially, we can identify an

interval number representing the common opinion, denoted

as [0.7, 0.8]. Meanwhile, a few people offered remarkably

low or high assessment values, denoted as 0.6 and 0.9,

respectively; obviously, these values should also be taken

into consideration. This process yields the TFN [0.6, 0.7, 0.8,

0.9]. For a second time, the constituents are asked to evaluate

this TFNby voting in favor, voting in against or abstaining on

each evaluation index, which refers to the three membership

degrees of the SVTNNs. This produces the final assessment

information ~a111 ¼ 0:6; 0:7; 0:8; 0:9½ �; 0:36; 0:3; 0:27ð Þh i.
The four possible alternatives are evaluated according to

the three criteria listed above in the form of SVTNNs,

which are transformed from evaluation values, as shown in

the following three decision matrices:

The subjective criteria weights offered by the DMs are

-1 ¼ 0:4; 0:2; 0:4ð Þ, -2 ¼ 0:3; 0:3; 0:4ð Þ, and -3 ¼ 0:4;ð
0:4; 0:2Þ, respectively.

6.1 Evaluation steps for the new MCGDM method

based on the SVTNNWBM operator

The following steps describe the procedure for assessing

DMs’ satisfaction with respect to their leaders and

obtaining a final ranking order for the four alternatives.

Step 1: Establish the decision matrices and weight vector

of the criteria.

The decision matrices and weight vector of

criteria are listed in the previous subsection.

Step 2: Normalize the decision matrices.

Since all the criteria are benefit criteria, there is

no need for normalization.

~a1 ¼

A1

A2

A3

A4

0:6; 0:7; 0:8; 0:9½ �; 0:36; 0:3; 0:27ð Þh i 0:72; 0:5; 0:8; 0:86½ �; 0:53; 0:3; 0:28ð Þh i 0:85; 0:85; 0:9; 0:92½ �; 0:57; 0:35; 0:22ð Þh i
0:77; 0:77; 0:8; 0:81½ �; 0:72; 0:3; 0:28ð Þh i 0:69; 0:7; 0:8; 0:93½ �; 0:91; 0:5; 0:07ð Þh i 0:83; 0:85; 0:85; 0:88½ �; 0:80; 0:2; 0:10ð Þh i
0:8; 0:85; 0:9; 0:96½ �; 0:63; 0:5; 0:19ð Þh i 0:59; 0:7; 0:8; 0:87½ �; 0:88; 0:3; 0:12ð Þh i 0:68; 0:7; 0:8; 0:85½ �; 0:86; 0:4; 0:14ð Þh i
0:6; 0:6; 0:8; 0:9½ �; 0:65; 0:3; 0:33ð Þh i 0:58; 0:6; 0:8; 0:9½ �; 0:72; 0:3; 0:23ð Þh i 0:6; 0:7; 0:8; 0:9½ �; 0:77; 0:45; 0:23ð Þh i

0

B
B
B
@

1

C
C
C
A

~a2 ¼

A1

A2

A3

A4

0:77; 0:8; 0:8; 0:83½ �; 0:53; 0:3; 0:26ð Þh i 0:68; 0:7; 0:8; 0:86½ �; 0:54; 0:4; 0:35ð Þh i 0:82; 0:85; 0:9; 0:9½ �; 0:68; 0:35; 0:32ð Þh i
0:93; 0:94; 0:95; 0:98½ �; 0:85; 0:3; 0:15ð Þh i 0:76; 0:8; 0:8; 0:86½ �; 0:86; 0:5; 0:13ð Þh i 0:65; 0:7; 0:8; 0:87½ �; 0:69; 0:2; 0:3ð Þh i
0:79; 0:8; 0:84; 0:85½ �; 0:83; 0:4; 0:16ð Þh i 0:72; 0:8; 0:9; 0:92½ �; 0:76; 0:5; 0:24ð Þh i 0:81; 0:85; 0:9; 0:97½ �; 0:73; 0:4; 0:13ð Þh i
0:7; 0:78; 0:8; 0:9½ �; 0:9; 0:3; 0:07ð Þh i 0:58; 0:6; 0:8; 0:9½ �; 0:91; 0:2; 0:03ð Þh i 0:7; 0:7; 0:8; 0:9½ �; 0:66; 0:4; 0:12ð Þh i

0

B
B
B
@

1

C
C
C
A

~a3 ¼

A1

A2

A3

A4

0:85; 0:85; 0:9; 0:96½ �; 0:81; 0:3; 0:18ð Þh i 0:76; 0:8; 0:8; 0:86½ �; 0:76; 0:5; 0:24ð Þh i 0:8; 0:85; 0:9; 0:97½ �; 0:74; 0:35; 0:19ð Þh i
0:79; 0:8; 0:8; 0:87½ �; 0:75; 0:3; 0:16ð Þh i 0:75; 0:75; 0:8; 0:89½ �; 0:84; 0:5; 0:16ð Þh i 0:81; 0:85; 0:9; 0:93½ �; 0:97; 0:2; 0:03ð Þh i
0:62; 0:7; 0:8; 0:82½ �; 0:89; 0:1; 0:11ð Þh i 0:84; 0:85; 0:85; 0:89½ �; 0:78; 0:5; 0:21ð Þh i 0:78; 0:8; 0:8; 0:82½ �; 0:74; 0:4; 0:11ð Þh i
0:6; 0:6; 0:8; 0:9½ �; 0:66; 0:3; 0:18ð Þh i 0:64; 0:7; 0:8; 0:9½ �; 0:63; 0:3; 0:27ð Þh i 0:6; 0:65; 0:8; 0:9½ �; 0:71; 0:4; 0:29ð Þh i

0

B
B
B
@

1

C
C
C
A
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Step 3: Obtain the weighted decision matrices.

Since every DM offers different subjective

weights for the criteria, we must multiply the

subjective weight vector of the DMs into the

initial decision matrices. Utilizing Definition 9,

we can acquire the following results:

Step 4: Obtain expert weights through the entropy-weigh-

ted method.

We can identify the objective expert weights using

Eqs. (20) through (23). The results are calculated as

follows:

(i) According to Eq. (22), we have

E ~u1ij

� �h i

m	n
¼

0:179 0:0906 0:2342

0:2245 0:1193 0:2839

0:2268 0:1219 0:2335

0:193 0:1041 0:209

2

6
6
6
4

3

7
7
7
5
;

E ~u2ij

� �h i

m	n
¼

0:2749 0:2164 0:1288

0:2473 0:2296 0:1438

0:2644 0:236 0:1189

0:2083 0:2078 0:0988

2

6
6
6
4

3

7
7
7
5
;

and E ~u3ij

� �h i

m	n
¼

0:179 0:0906 0:2342

0:2245 0:1193 0:2839

0:2268 0:1219 0:2335

0:193 0:1041 0:209

2

6
6
6
4

3

7
7
7
5
:

(ii) According to Eqs. (20) through (22), we have

I1 ¼ 0:996789; I2 ¼ 0:997812; and

I3 ¼ 0:996789:

(iii) According to Eq. (23), the expert weights can be

identified as follows:

w1 ¼ 0:3729; w2 ¼ 0:2542; and

w3 ¼ 0:3729:
Step 5: Calculate the comprehensive criteria weights.

The following comprehensive criteria weights can be

obtained using Eq. (24):

-1 ¼ 0:3746; -2 ¼ 0:3; and -3 ¼ 0:3254:

Step 6: Obtain the aggregated decision matrix.

Based on the initial decision matrices and the expert

weights obtained in Step 4, and using the new operations

proposed in Definition 9, we can acquire the following

U1 ¼

A1

A2

A3

A4

0:24; 0:28; 0:32; 0:36½ �; 0:36; 0:3; 0:27ð Þh i 0:144; 0:1; 0:16; 0:172½ �; 0:53; 0:3; 0:28ð Þh i 0:34; 0:34; 0:36; 0:368½ �; 0:57; 0:35; 0:22ð Þh i
0:308; 0:308; 0:32; 0:324½ �; 0:72; 0:3; 0:28ð Þh i 0:138; 0:14; 0:16; 0:18½ �; 0:91; 0:5; 0:07ð Þh i 0:332; 0:34; 0:34; 0:352½ �; 0:80; 0:2; 0:10ð Þh i
0:32; 0:34; 0:36; 0:384½ �; 0:63; 0:5; 0:19ð Þh i 0:118; 0:14; 0:16; 0:174½ �; 0:88; 0:3; 0:12ð Þh i 0:272; 0:28; 0:32; 0:34½ �; 0:86; 0:4; 0:14ð Þh i
0:24; 0:24; 0:32; 0:36½ �; 0:65; 0:3; 0:33ð Þh i 0:116; 0:12; 0:16; 0:18½ �; 0:72; 0:3; 0:23ð Þh i 0:24; 0:28; 0:32; 0:36½ �; 0:77; 0:45; 0:23ð Þh i

0

B
B
B
@

1

C
C
C
A

U2 ¼

A1

A2

A3

A4

0:231; 0:24; 0:24; 0:249½ �; 0:53; 0:3; 0:26ð Þh i 0:204; 0:21; 0:24; 0:258½ �; 0:54; 0:4; 0:35ð Þh i 0:328; 0:34; 0:36; 0:36½ �; 0:68; 0:35; 0:32ð Þh i
0:279; 0:282; 0:285; 0:294½ �; 0:85; 0:3; 0:15ð Þh i 0:228; 0:24; 0:24; 0:258½ �; 0:86; 0:5; 0:13ð Þh i 0:26; 0:28; 0:32; 0:348½ �; 0:69; 0:2; 0:3ð Þh i
0:237; 0:24; 0:252; 0:255½ �; 0:83; 0:4; 0:16ð Þh i 0:216; 0:24; 0:27; 0:276½ �; 0:76; 0:5; 0:24ð Þh i 0:324; 0:34; 0:36; 0:388½ �; 0:73; 0:4; 0:13ð Þh i
0:21; 0:234; 0:24; 0:27½ �; 0:9; 0:3; 0:07ð Þh i 0:174; 0:18; 0:24; 0:27½ �; 0:91; 0:2; 0:03ð Þh i 0:28; 0:28; 0:32; 0:36½ �; 0:66; 0:4; 0:12ð Þh i

0

B
B
B
@

1

C
C
C
A

U3 ¼

A1

A2

A3

A4

0:34; 0:34; 0:36; 0:384½ �; 0:81; 0:3; 0:18ð Þh i 0:304; 0:32; 0:32; 0:344½ �; 0:76; 0:5; 0:24ð Þh i 0:16; 0:17; 0:18; 0:194½ �; 0:74; 0:35; 0:19ð Þh i
0:316; 0:32; 0:32; 0:348½ �; 0:75; 0:3; 0:16ð Þh i 0:3; 0:3; 0:32; 0:356½ �; 0:84; 0:5; 0:16ð Þh i 0:162; 0:17; 0:18; 0:186½ �; 0:97; 0:2; 0:03ð Þh i
0:248; 0:28; 0:32; 0:328½ �; 0:89; 0:1; 0:11ð Þh i 0:336; 0:34; 0:34; 0:356½ �; 0:78; 0:5; 0:21ð Þh i 0:156; 0:16; 0:16; 0:164½ �; 0:74; 0:4; 0:11ð Þh i
0:24; 0:24; 0:32; 0:36½ �; 0:66; 0:3; 0:18ð Þh i 0:256; 0:28; 0:32; 0:36½ �; 0:63; 0:3; 0:27ð Þh i 0:12; 0:13; 0:16; 0:18½ �; 0:71; 0:4; 0:29ð Þh i

0

B
B
B
@

1

C
C
C
A
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aggregated decision matrix:

Step 7: Obtain the overall value of Ai.

For simplicity, we assume that p = q = 1; then, utilizing

Eq. (15), we can identify the overall value of Ai

Step 8: Calculate the score values.

E A1ð Þ ¼ 0:6012; E A2ð Þ ¼ 0:675;

E A3ð Þ ¼ 0:6569; and E A4ð Þ ¼ 0:5836:

Step 9:Rank all alternatives.

Based on the score values obtained in Step 8, we can set

forward the final ranking results: A2 
 A3 
 A1 
 A4.

These results show that alternative A2 is the best one.

6.2 The influence of parameters p and q on the final

order of the alternatives

In order to illustrate the influence of different criteria

weights, different values of p and q should be evaluated to

check their influence on the example’s decision-making

results. Several different values of p and q were taken into

consideration in order to gain a comprehensive view, and

the results are shown in Table 1.

An analysis of the results in Table 1 reveals that dif-

ferent values of p and q in the SVTNNWBM operator can

lead to different ranking results. Except for the two situa-

tions p = 1, q = 0 and p = q = 0.5, the final ranking

order is A2 
 A3 
 A4 
 A1; under the other conditions,

the ranking order is A2 
 A3 
 A1 
 A4, as shown in

Table 1. The best alternative is always A2, while the worst

alternative changes between A1 and A4.

The reasons for this inconsistency are as follows. In

special cases where at least one of the two parameters p and

q takes the value of zero, the SVTNNWBMoperator cannot

capture the interrelationship of the individual arguments,

which produces a different ranking order. This is why the

final ranking result when p = 1, q = 0 is different from the

M ¼

0:737; 0:781; 0:837; 0:905½ �;
0:491; 0:406; 0:416ð Þ

* +
0:725; 0:663; 0:8; 0:86½ �;

0:564; 0:353; 0:364ð Þ

* +
0:824; 0:85; 0:9; 0:934½ �;

0:68; 0:504; 0:543ð Þ

* +

0:792; 0:824; 0:838; 0:876½ �;
0:75; 0:423; 0:431ð Þ

* +
0:73; 0:744; 0:8; 0:897½ �;

0:882; 0:5; 0:321ð Þ

* +
0:777; 0:812; 0:856; 0:896½ �;

0:811; 0:433; 0:537ð Þ

* +

0:73; 0:781; 0:847; 0:88½ �;
0:789; 0:696; 0:55ð Þ

* +
0:716; 0:781; 0:844; 0:89½ �;

0:833; 0:38; 0:212ð Þ

* +
0:75; 0:775; 0:825; 0:869½ �;

0:808; 0:418; 0:203ð Þ

* +

0:625; 0:646; 0:8; 0:9½ �;
0:687; 0:474; 0:509ð Þ

* +
0:602; 0:637; 0:8; 0:9½ �;
0:748; 0:388; 0:318ð Þ

* +
0:625; 0:681; 0:8; 0:9½ �;
0:723; 0:504; 0:413ð Þ

* +

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Ai ¼

A1

A2

A3

A4

0:761; 0:7653; 0:8459; 0:9½ �; 0:5718; 0:1847; 0:171ð Þh i
0:7675; 0:7948; 0:8319; 0:8891½ �; 0:8145; 0:1628; 0:1772ð Þh i
0:7325; 0:7794; 0:8391; 0:8796½ �; 0:8092; 0:124; 0:2467ð Þh i
0:6182; 0:6547; 0:8; 0:9½ �; 0:7179; 0:16; 0:1852ð Þh i

0

B
B
@

1

C
C
A:

Table 1 Ranking orders with

different values of p and q in

SVTNNWBM operator

p and q Ranking p and q Ranking

p = 1, q = 0 A2 
 A3 
 A4 
 A1 p = q = 4 A2 
 A3 
 A1 
 A4

p = 0.5, q = 0.5 A2 
 A3 
 A4 
 A1 p = q = 5 A2 
 A3 
 A1 
 A4

p = q = 1 A2 
 A3 
 A1 
 A4 p = q = 6 A2 
 A3 
 A1 
 A4

p = 1, q = 2 A2 
 A3 
 A1 
 A4 p = q = 7 A2 
 A3 
 A1 
 A4

p = 2, q = 1 A2 
 A3 
 A1 
 A4 p = q = 8 A2 
 A3 
 A1 
 A4

p = q = 2 A2 
 A3 
 A1 
 A4 p = q = 9 A2 
 A3 
 A1 
 A4

p = q = 3 A2 
 A3 
 A1 
 A4 p = q = 10 A2 
 A3 
 A1 
 A4

Neural Comput & Applic (2018) 30:241–260 251

123



other circumstances. Moreover, when p = q = 0.5,

because both of the parameters are smaller than 1, the

aggregation value may be amplified when calculating the

comprehensive value of Ai; as a result, the final ranking

order of A1 and A4 will switch. In general, we can take the

values of p and q as p = q = 1; not only is this intuitive and

simple, but also it considers the interrelationships among

criteria. Thus, the proposed method enables the DMs to

select the desirable alternative according to their interest

and actual needs.

6.3 Comparison analysis and discussion

In this subsection, a comparative study is conducted to validate

the practicality and effectiveness of the proposed approach.

Case 1 Comparative analysis in the context of SNLS

environments.

In order to verify its feasibility, the method proposed in

this paper was used to solve the example in Tian et al. [33],

which features an environment characterized by SNLSs.

An analysis is conducted here to compare the proposed

method and the method in [33].

The method proposed in [33] incorporates power aggrega-

tion operators and a TOPSIS-based QUALIFLEX method to

solve green product design selection problems using neutro-

sophic linguistic information. According to the method

proposed in this paper, the first step, in order to keep the

decision information the same, is to translate the data in [33]

into SVTNNs as defined in [62]. Next, the expert weights are

obtained using the entropy-weighted method, and the com-

prehensive decision matrix is obtained using the

SVTNNWBMoperator. Then, the ranking results are obtained

based on the new comparison method described in Sect. 3.2.

The example found in [33] can be solved as follows (Table 2):

The example in [33] yields the same ranking results

A2 
 A3 
 A4 
 A1 using the two different methods when

p = 1, q = 0. There are subtle differences in other condi-

tions where A2 
 A3 
 A1 
 A4, but alternative A2 remains

the optimum design. This can be explained as follows.

Using the proposed method, SNLS information is first

converted into SVTNN information using the technique

developed in [62]. In SNLSs, the membership degree, non-

membership degree and indeterminate degree are relative

to a fuzzy concept ‘‘Excellent’’ or ‘‘Good’’, which is a

discrete set and can cause information distortion and loss.

However, SVTNNs allow for representation as a contin-

uous set, which has more ability to express the uncertainty

and maintain completeness of information. The discrep-

ancy could also be caused by the distinct inherent

characteristics of the aggregation operators and comparison

methods utilized by these two methods. Although both the

power average operators and BM operators take into

account information about the relationships among the

arguments being aggregated, they accomplish this differ-

ently, as stated in [33]. Given the above analysis, SVTNNs

may reflect the assessment information better than SNLSs

because they transform the linguistic terms into TFNs.

Therefore, the results obtained in this paper can be

considered to be relatively convincing.

Case 2 Comparative analysis in the context of SVTNN

environments.

In order to validate the accuracy and superior perfor-

mance of the proposed method, the method in Ye [38] was

applied to deal with the example in Sect. 6. A comparative

study is conducted here between the proposed approach

and the method developed in [38], based on the illustrative

example described in this paper.

The method proposed in [38] is used to handle a MCDM

problem through four main procedures. First, the trape-

zoidal neutrosophic weighted arithmetic averaging

(TNWAA) operator and trapezoidal neutrosophic weighted

geometric averaging (TNWGA) operator are used to

aggregate the evaluation values. Second, the score func-

tions are calculated for each alternative’s collective overall

value. Third, the best choice is selected according to the

score values. When solving the example in Sect. 6 using

the approach in [38], the first five procedures are the same

as in our proposed method. However, in Step 6, the

aggregated decision matrix is obtained by the operations in

[38]; then, the TNWAA operator and TNWGA operator are

applied to identify the overall evaluation values of each

alternative in Step 7. Finally, the score values can be

calculated, and the ranking results can be obtained.

As shown in Table 3, different ranking orders are

obtained using the different methods, but the differences

are subtle. The reasons for the inconsistency can be

summarized as follows.

From the perspective of operations, the improved oper-

ations for SVTNNs in this paper take into consideration the

correlation between TFNs and the threemembership degrees

of SVTNNs. This is a reliable principle that can effectively

avoid losing the information. The operations in [38],

however, divide the TFNs and three membership degrees

Table 2 Ranking results of different methods in SNLS environments

Methods Ranking of

alternatives

Best

alternative

The method in [32] based on

SNLPWA operator with f*1,

k = 2 and d = 0.5

A2 
 A3 
 A4 
 A1 A2

Proposed approach

When p = 1, q = 0 A2 
 A3 
 A4 
 A1 A2

When p = 1, q = 1 A2 
 A3 
 A1 
 A4 A2

When p = 1, q = 2 A2 
 A3 
 A1 
 A4 A2
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of SVTNNs into two separate parts, which may lead the

aggregated results to deviate from the reality.

In terms of comparison methods, the new comparison

method for SVTNNs proposed in this paper has some

notable advantages over the corresponding method based

on the score function in [38]. The details were discussed in

Sect. 3.2.

In terms of aggregation operators, the use of the

SVTNNWBM operator can take the interrelationships of

the input arguments into consideration, allowing the user to

assign different results by adjusting the value of parameters

p and q. This adds flexibility to the proposed method. The

TNWAA and TNWGA operators used in [38], however,

cannot recreate the pairwise influence of different input

arguments. Therefore, the ranking results in this paper are

more reasonable, and the proposed method has more

flexibility than the method in [38].

The results of the comparative analysis validate the

proposed approach and confirm that it is practical and

effective in addressing MCGDM problems.

7 Conclusion

SVTNNs have a strong ability to represent incomplete and

inconsistent information, and they can avoid information loss

and distortion in complex decision-making problems.

MCGDMmethods with SVTNNs have extensive application

prospects in many domains. The BM operator can take into

consideration interrelationships among the input arguments.

Furthermore, the entropy-weighted method is an appropriate

tool for determining objective weights, which is significant in

solving decision-making problems. This paper developed a

new approach to MCGDM problems using SVTNNs. We

redefined the improved operations and proposed a new com-

parison method for SVTNNs. We obtained experts weights

through the entropy-weightedmethod, andwe applied theBM

operator. Then, we proposed the SVTNNWBM operator to

aggregate the decision information expressed by SVTNNs.

We further studied some properties of the BM operator and

discussed some special cases. In addition, a sensitivity

analysis was constructed to assess the impact of changing the

values of parameters p and q. Finally, we confirmed the new

MCGDMapproach to be practical and effective by applying it

to a numerical example and comparing it with two different

methods found in the literature. In future research, thismethod

can be applied to other scenarios including personal selection,

green supplier selection andmedical diagnosis problems. This

study considered the interrelationships among input argu-

ments and acquired experts weights objectively; however, the

risk preferences of DMswere ignored. Our next topic of study

aims to cover this deficiency. In future research, the proposed

approach can be applied tomore practical cases to illustrate its

efficiency and effectiveness. Because SVTNNs can be easily

and intuitively obtained in education evaluation processes,

this method should find further applications in this field.
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Appendix 1

Proof In the following steps, Eq. (15) will be proved using

mathematical induction on n.

(1) The following equation must be proved first:
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Table 3 Ranking results of different methods in SVTNN

environments

Methods Operators Ranking of

alternatives

The method in [37] TNWAA operator A2 
 A3 
 A4 
 A1

TNWGA operator A2 
 A3 
 A4 
 A1

Proposed approach SVTNNWBM operator A2 
 A3 
 A1 
 A4
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(a) Utilizing the operations for SVTNNs and mathe-

matical induction on n, we have
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When n = 2, the following equation can be calculated:
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:

In other words, when n = 2, Eq. (26) is true.

(b) Suppose that when n = k, Eq. (26) is true. That is,
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Then, when n = k ? 1, the following result can be

obtained:
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Next, the following equation must be proved:
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In the following steps, Eq. (29) will be proved using

mathematical induction on k.

(i) When k = 2, the following result can be calculated:

That is, when k = 2, Eq. (29) is true.

(ii) Suppose that when k = l, Eq. (29) is true. That is,
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Then, when k = l ? 1, the following result can be calcu-

lated:
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:

That is, when k = l ? 1, Eq. (29) is true.

(iii) So, for all k, Eq. (29) is true.

The following equation can be proved in a similar fashion,

and the proof is omitted here.

Using Eqs. (27), (29) and (20), Eq. (28) can be transformed

as follows:
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:

Then, when n = k ? 1, Eq. (26) is true. Therefore,

Eq. (26) is true for all n.

(2) Using the SVTNN operations and Eq. (26), Eq. (15)

can be obtained. This completes the proof of Theorem 3.

Appendix 2

Proof For an arbitrary i, there are ai1 C bi1, ai2 C bi2,

ai3 C bi3, ai4 C bi4; therefore, it is easy to obtain the fol-

lowing inequalities:
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The truth-membership, indeterminacy-membership and

falsity-membership parts can be proved using mathemat-

ical induction on n.
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Then, using the new comparison method in Sect. 3.2,

Theorem 3 can be proved.
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