
ORIGINAL ARTICLE

Load frequency controller design of a two-area system composing
of PV grid and thermal generator via firefly algorithm

S. M. Abd-Elazim1
• E. S. Ali1

Received: 27 July 2015 / Accepted: 25 October 2016 / Published online: 19 November 2016

� The Natural Computing Applications Forum 2016

Abstract In this paper, firefly algorithm (FA) for optimal

tuning of PI controllers for load frequency control of

hybrid system composing of photovoltaic (PV) system and

thermal generator is introduced. Also, maximum power

point tracking of PV is considered in the design process.

The block diagram of the hybrid system is performed. To

robustly tune the parameters of controllers, a time-domain-

based objective function is established which is solved by

the FA. Simulation results are presented to show the

improved performance of the suggested FA-based con-

trollers compared with genetic algorithm (GA). These

results show that the proposed controllers present better

performance over GA in terms of settling times and dif-

ferent indices.

Keywords Firefly algorithm � LFC � PI controller �
Two-area system � PV grid � MPPT

1 Introduction

The main target of LFC is to guarantee the frequency and

the interarea tie-line power within reasonable ranges to

deal with the change in demands and disturbances [1, 2].

This main task is related to LFC due to the fact that a well-

designed power system should reserve frequency and

voltage in tabulated limit while providing an accepted scale

of power quality [3, 4].

Various algorithms had been used to the problem of

LFC. Robust control [3–6], decentralized aspect [7–10],

linear quadratic [11–13], pole shifting [14] and variable

structure [15] are applied to LFC design. However, these

algorithms have several disadvantages which decrease their

execution. To pass these barriers, many researchers have

used artificial intelligence such as fuzzy logic (FL) [16–20]

and neural network (NN) [21–23]. Although these algo-

rithms are efficient in dealing with the nonlinearities of the

power system, they have various disadvantages. For

example, NN pains from defining the number of layers and

neurons. Also, FL requires a hard work to get the influ-

ential signals.

Another way is to use evolutionary algorithm (EA). EA

can solve the LFC problem due to its ability to fix nonlinear

functions. GA [24–26], PSO [27–30], bacteria foraging

[31, 32], firefly [33, 34], gravitational search [35], cuckoo

search algorithm [36] and bat algorithm [37] are treated

with LFC design. Although these algorithms seem to be

effective for the design problem, they pain from slow

convergence and weak local search ability, which make

them trap in local minimum. Moreover, the effect of PV

system on LFC design problem via optimization algorithm

was not discussed in the literature. A new evolutionary

algorithm, called FA, has been introduced by [38, 39] and

further published recently by [40, 41]. Moreover, it is

simple, and it is an appropriate algorithm for power system

[42–46].

This paper suggests a recent optimization algorithm

known as FA for the optimal tuning of controller gains in

LFC problem for thermal system connected with PV grid.

The objective of this work is to verify the effectiveness of

FA-based controller and to improve the behavior of
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frequency deviation and tie-line power under different

conditions.

2 Thermal generator model

Area 1 is a thermal system which consists of generator,

turbine, governor and re-heater. The system constants are

reported in ‘‘Appendix.’’ The transfer functions of various

blocks are shown below [47, 48]:

The governor transfer function is

Kg

TgSþ 1
: ð1Þ

The re-heater transfer function is

KrTrSþ 1

TrSþ 1
: ð2Þ

The steam turbine transfer function is

Kt

TtSþ 1
; ð3Þ

and the generator transfer function is

KP

TPSþ 1
; ð4Þ

For the ith area, the area control error (ACE) signal

made by frequency and tie-line power variations is stated

by:

ACEi ¼ B:Dfi þ DPtiei; ð5Þ

3 Photovoltaic modeling

The PV cell model is composed of photovoltaic current

source that has directly proportional with the sunlight

intensity parallel with a diode and a small series contact

resistance as shown in Fig. 1. The solar cell mathematical

modeling is given in [49–52].

Solar panel relies on factors as irradiation and temper-

ature. MPPT algorithm is implemented to enhance the

efficiency of PV system. The characteristic of PV cell for

different radiations and constant temperature at 27 �C is

given in Fig. 2. Figure 3 shows the change in the PV

system temperature as an input disturbance while radiation

is constant at 1000 W/m2.

The complete transfer function of the PV system that

consists of the PV panel, MPPT, inverter and filter is given

by the following equation [47, 48]:

GPV ¼ �18Sþ 900

S2 þ 100Sþ 50
ð6Þ

The block diagram of the system under study is given in

Fig. 4. The change in radiation and temperature is modeled

as the step unit in the PV system.

4 Optimization problem

For the studied system, the traditional integral controller

was replaced by a PI one as shown by the following

equation:

KiðSÞ ¼ KPi þ
KIi

S
; ð7Þ

The control signal is defined by equation:

UiðSÞ ¼ �KiðSÞACEiðSÞ: ð8Þ

A performance index can be defined by the integral of

time multiply absolute error (ITAE) of the frequency

deviation of both areas and tie-line power. Accordingly, the

objective function J is set to be

J ¼
Z1

0

t Df1j j þ Df2j j þ DPtiej jð Þdt ð9Þ

To improve the responses of system, it is necessary to

reduce Eq. (9). The design task can be written as the fol-

lowing constrained optimization problem. Minimize J

subject to:

Kmin
Pi �KPi �Kmax

Pi ;

Kmin
Ii �KIi �Kmax

Ii :
ð10Þ

The limits of the optimized parameters are [-2 to 2] as

given in [31, 32].

5 Overview of firefly algorithm

FA is a metaheuristic algorithm which has been introduced

by Yang [38–40]. This algorithm is inspired by the flashing

behavior of fireflies. These fireflies belong to a family of

insects that are capable to produce natural light to attract a

prey. This light appears to be in a unique pattern and
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Fig. 1 Solar cell equivalent circuit
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produce an amazing sight in the tropical areas during

summer. The intensity of light decreases as the distance

increases, and thus, most fireflies can communicate only up

to several hundred meters. In the implementation of the

algorithm, the flashing light is formulated in such a way

that it gets associated with the objective function to be

optimized.

FA is simple, flexible and versatile, which is very

efficient in solving a wide range of diverse real-world

problems [41]. Moreover, it can divide its population

into subgroups, due to the fact that local attraction is

stronger than long-distance attraction. Hence, FA can

deal with highly nonlinear, multi-modal optimization

problems efficiently. Also, it does not use past individual
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best, and there is no explicit global best either. This

avoids any potential drawbacks of premature conver-

gence as those reported in PSO. In addition, it has an

ability to control its modality and adapt to problem

landscape by controlling its scaling parameter. The

superiority of FA over other algorithms has also been

reported in the literature [42–46].

Some rules are used to extend the structure of FA.

1. A firefly will be attracted by other fireflies regardless of

their sex.

2. Attractiveness is proportional to their brightness and

decreases as the distance among them increases.

3. The value of the objective function determines the

brightness of a firefly [38–40].

FA depends on two important factors: the variation of

the light intensity and the formulation of the attractiveness.

The flow chart of FA is shown in Fig. 5. The parameters of

FA are given in ‘‘Appendix.’’

6 Results and simulations

Several scenarios are examined to verify the robustness of

the suggested FA for optimizing controller constants. The

proposed FA and GA [53] are programmed in MATLAB

7.1. The obtained results are the best for all algorithms

depending on value of J. The convergence times for FA

and GA are 21.7, and 39.8 s, respectively. The gains of all

controllers and the values of performance indices are

shown in Table 1.

Fig. 4 Block diagram of the system under study

Define Objective function

Start

Population initialization, set parameters 
0

Reach the maximum
iteration?

Update the position of fireflies Rank the 
fireflies and find the current best

Calculate the relative brightness and attraction 
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Fig. 5 Flow chart of FA
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Table 1 Gains and

performance indices for both

algorithms

FA GA

Controller gains KP1 = -0.8811, KI1 = -0.5765

KP2 = -0.7626, KI2 = -0.8307

KP1 = -0.5663, KI1 = -0.4024

KP2 = -0.5127, KI2 = -0.7256

IAE 1.7207 2.3341

ITAE 7.4259 12.1244

ISE 0.2907 0.3202

ITSE 0.4723 0.8618
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6.1 Scenario 1: step change in demand of thermal

system

A 10% step increase in demand of thermal system is used.

Figures 6, 7 and 8 show the system responses. It is clear

that the designed controllers are more powerful in

improving the damping characteristic of power system

compared with GA. Thus, FA gives better results than

GA.

6.2 Scenario 2: step change in both areas

In this scenario, a 10% step increase in demand of thermal

system and radiation and temperature of PV system is

employed. Figures 9, 10 and 11 introduce the signals of the

closed loop system. In these figures, the system oscillations

are attenuated with the proposed controllers. Moreover, the

designed controllers have a lower settling time compared

with GA, and system response reached steady state rapidly.
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Also, the capability of the designed algorithm is proved in

solving LFC problem.

6.3 Parameter variation

A parameter variation test is applied to assess the effec-

tiveness of the proposed FA-based LFC. Figure 12 shows

the response of frequency of first area with variation in

governor time constant. It is clear that the system is

stable with the proposed controller. Another parameter

variation test is also performed to validate the robustness of

the proposed controller. Figure 13 gives the response of

frequency with variation in turbine time constant. The

designed controller is capable of providing sufficient

damping, and the robustness of the proposed controller is

verified.

6.4 Performance indices and robustness

The effectiveness of the designed controllers is verified

through various indices such as the integral of absolute

value of the error (IAE), ITAE, the integral of square error

(ISE) and the integral of time multiply square error (ITSE)

are being utilized as:
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IAE ¼
Z30

0

Df1j j þ Df2j j þ DPtiej jð Þdt; ð11Þ

ITAE ¼
Z30

0

t Df1j j þ Df2j j þ DPtiej jð Þdt: ð12Þ

ISE ¼
Z30

0

Df1ð Þ2þ Df2ð Þ2þ DPtieð Þ2
� �

dt ð13Þ

ITSE ¼
Z30

0

t Df1ð Þ2þ Df2ð Þ2þ DPtieð Þ2
� �

dt ð14Þ

Table 1 gives the parameters of each controller and the

values of various indices. It is clear that the values of these

indices with the designed controllers are lower compared

with these of GA. This confirms that the time domain

characteristics are greatly reduced by using the proposed

FA. Thus, the designed controllers via FA are more pow-

erful and faster than these via GA.
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7 Conclusions

In this paper, the parameters of PI controllers are tuned

by FA for LFC problem. PV system at MPPT is con-

sidered and connected to thermal generator. An integral

time absolute error of the frequency deviation of both

areas and tie-line power is taken as the objective function

to improve the system response. The priority of the pro-

posed approach is clarified by using different distur-

bances, indices and parameter variations. It is clear that

FA outlasts GA in solving LFC problem. Moreover, the

superiority of the developed controllers in terms of vari-

ous indices is proved.

Appendix

The system data are as shown below:

(a) The parameters of the thermal system: TP = 20 s;

Tt = 0.3 s; Tr =10 s; T12 = 0.545 p.u; Tg = 0.08 s;

KP = 120 Hz/p.u MW; B = 0.8 p.u MW/Hz;

a12 = -1;R = 0.4 Hz/p.uMW;Kr1 = 0.33p.uMW.

(b) The parameters of FA: the contrast of the attractive-

ness = 1.0; the attractiveness = 0.1 at r ¼ 0; ran-

domization parameter ðaÞ = 0.1; maximum number

of generations = 100; number of fireflies = 50.

(c) The parameters of GA are as follows: max gener-

ation = 100; population size = 50; crossover prob-

abilities = 0.75; mutation probabilities = 0.1.
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