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Abstract Horizontal displacement of hydropower dams is a

typical nonlinear time-varying behavior that is difficult to

forecast with high accuracy. This paper proposes a novel

hybrid artificial intelligent approach, namely swarm opti-

mized neural fuzzy inference system (SONFIS), for modeling

and forecasting of the horizontal displacement of hydropower

dams. In the proposed model, neural fuzzy inference system

is used to create a regression model whereas Particle swarm

optimization is employed to search the best parameters for

the model. In this work, time series monitoring data (hori-

zontal displacement, air temperature, upstream reservoir

water level, and dam aging) measured for 11 years

(1999–2010) of the Hoa Binh hydropower dam were selected

as a case study. The data were then split into a ratio of 70:30

for developing and validating the hybrid model. The perfor-

mance of the resulting model was assessed using RMSE,

MAE, and R2. Experimental results show that the proposed

SONFIS model performed well on both the training and

validation datasets. The results were then compared with

those derived from current state-of-the-art benchmark

methods using the same data, such as support vector regres-

sion, multilayer perceptron neural networks, Gaussian pro-

cesses, and Random forests. In addition, results from a

Different evolution-based neural fuzzy model are included.

Since the performance of the SONFIS model outperforms

these benchmark models with the monitoring data at hand,

the proposed model, therefore, is a promising tool for mod-

eling horizontal displacement of hydropower dams.

Keywords Horizontal displacement � Hydropower dam �
Neural fuzzy � Hoa Binh � Vietnam

1 Introduction

Safety of hydropower dams requires comprehensive under-

standing of the mechanism of their deformation processes;

therefore, monitoring models for forecasting dam behavior

are important. These are considered to be key components of

dam safety systems that help in the day-to-day operation and

long-term assessment of dams [1]. However, the displace-

ment of hydropower dams is a typical nonlinear and com-

plex process that is influenced by many factors such as

seismic load, sediment pressure, water pressure, air tem-

perature, and rock deformability. Therefore, it is not easy to

forecast dam behavior with high accuracy [2].

Various methods and techniques have been proposed for

dam displacement modeling over the last decade and they

can be grouped in three categories such as deterministic,

statistical, and machine learning methods [3–5]. Determin-

istic methods (i.e., the finite element method (FEM) [6] and

the boundary element method (BEM) [7]) use information

on material properties, acting loads, and stress–strain laws to

establish displacement functions. These functions are then
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used to forecast displacements in different scenarios. Thus,

deterministic methods are considered as the most widely

used in dam deformation modeling. They are especially

useful in the design phase, the filling phase, and the early

stage of dam operation where no or only short time series

monitoring data are available. However, due to many

uncertainties, i.e., imperfect knowledge of the material

properties, the estimated displacements from the determin-

istic methods and the observed values may be significantly

different [8]. Therefore, statistical and machine learning

methods have been proposed.

When long time series of monitoring data are available,

statistical methods could be used for deformation analysis.

Statistical methods have many advantages such as sim-

plicity of formulation and speed of execution [9]; however,

dam deformation is a typical nonlinear time-varying

behavior process; therefore, statistical methods require

collection of a large number of samples to produce reliable

results, which is difficult to obtain in many cases [10].

Nevertheless, it is still difficult to forecast hydropower dam

deformation with high accuracy [2].

Due to the criticality issues of the dam deformation,

machine learning techniques have recently been explored

and employed for the dam displacement modeling. Of these

methods, artificial neural network models are well suited to

deal with nonlinear and complex interactions of input–out-

put relations for dams [1]. Literature review shows that they

are the most used methods for dam modeling, i.e., in

Seyedpoor et al. [11], Karimi et al. [12], Mata [4], Ranković

et al. [13], and Kao and Loh [14]. In more recent years,

support vector regression has been explored for accurate

forecasting of dam displacement with promising results in

many studies such as in Zheng et al. [15], Ranković et al.

[16], Su et al. [17], and Salazar et al. [2]. Further models

have also been investigated for dam deformation analysis,

such as Random forests, boosted regression tree [18], and

multivariate adaptive regression splines [2]. In general,

machine learning methods are effective alternative tools for

modeling of dam displacement [14].

Among the machine learning approaches, neural fuzzy

is accepted to be an effective tool for modeling nonlinear

time-varying behavior of a dam. Seyedpoor et al. [11] used

an adaptive neural fuzzy inference system for the selection

of input variables for finding the optimal shape of arch

dams, with the conclusion that the neural fuzzy model is an

efficient tool. Ranković et al. [13] proposed a neural fuzzy

model to predict the radial displacement of the arch dam

where the best model parameters were found using the

traditional gradient and the least squares methods. They

concluded that the neural fuzzy model was an effective tool

for modeling of behaviors of the arch dam.

It is clear that the performance of a neural fuzzy model is

strongly influenced by the premise and consequent

parameters; therefore, they must be carefully selected. Thus,

searching for optimal parameter values becomes an opti-

mization problem in soft computing [19–21]. Literature

reviews shows that various newly metaheuristic optimization

techniques have been proposed such as Differential evolution

[22, 23], Genetic algorithm [24, 25], Simulated annealing

[26], Ant colony optimization [27], and Artificial bee colony

[28, 29]. However, an integration of metaheuristic optimiza-

tions and neural fuzzy models for displacement modeling of

hydropower dams has not been investigated.

We fill this gap in the literature by proposing a hybrid

artificial intelligence approach based on a neural fuzzy

inference system with metaheuristic optimization (namely

SONFIS) for dam deformation modeling. The Hoa Binh

hydropower dam (Vietnam) is selected as a case study. For

this purpose, Particle swarm optimization (PSO) [30],

which is the most promising and powerful metaheuristic

optimization technique [31, 32], was selected to search the

best parameters for the SONFIS model. In addition, the

usability of the proposed model is assessed through com-

parisons with other methods such as Support vector

regression (SVR), Multilayer perceptron neural networks

(MLP Neural Nets), Gaussian processes, Random forest,

and Different evolution-based neural fuzzy inference sys-

tem (DE-FIS) using the same data.

In this research, the time series data preprocessing and

visualization were carried out using Microsoft Excel�2013.

The neural fuzzy algorithm is implemented in the Fuzzy

Logic ToolboxTM in Matlab�2014. The proposed SONFIS

model that combines the neural fuzzy algorithm and PSO is

programed by the authors in Matlab�2014. The modeling

process using SVR, MLP Neural Nets, Gaussian processes,

and Random forests was carried out using WEKA�3.7.10

(The University of Waikato, Hamilton City, New Zealand).

The rest of the paper is organized as follows: the second

section describes briefly the theoretical background of the

ANFIS algorithm and PSO; the third section provides

description of the study area and the collected data; the

next section depicts the proposed hybrid artificial intelli-

gence approach (SONFIS); the results, discussion, and

comparison are presented in the fifth section. Concluding

remarks of this research are stated in the final section.

2 Theoretical background of the method used

2.1 Neural fuzzy inference system

Adaptive neural fuzzy inference system proposed by Jang

[33] is a combination of artificial neural networks and the

Sugeno-type fuzzy inference system. Structurally, this is a

feedforward multilayer neural network designed with five

layers: fuzzy layer, rule layer, normalization layer,
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defuzzification layer, and aggregation layer. Figure 1 illus-

trates a general ANFIS architecture (with two input factors,

one output, and two rules) in which circles and squares are

fixed nodes and adaptive node functions, respectively.

Layer 1: This layer is called the fuzzification layer where

fuzzy membership values for input factors are generated

using a membership function as follows:

O1;i ¼ lAiðxÞ; O2;i ¼ lBiðyÞ for i ¼ 1; 2 ð1Þ

where A and B are the linguistic variables, specified by the

membership functions, lAiðxÞ and lBiðyÞ. In this study,

Gaussian membership function was used (Eq. 2).

lAiðxÞ ¼ e
�ðx�cÞ2

2d2 ð2Þ

where d and c are called antecedent parameters that control

the shape of the Gaussian membership function.

Layer 2: This layer is the rule layer where each node in this

layer has one fuzzy rule with firing strength (xi). This firing

strength is calculated as the product of all incoming signals.

O2;i ¼ xi ¼ lAiðyÞ � lBiðyÞ; with i ¼ 1; 2 ð3Þ

Layer 3: This layer is called the normalization layer

where the output firing strength ( �xi) for each node is

normalized using an equation as follows:

O3;i ¼ �xi ¼ xi=ðx1 þ x2Þ; i ¼ 1; 2 ð4Þ

Layer 4: This layer is called the defuzzification layer

where the value of the rule consequence for each node is

calculated as follows:

O4;i ¼ �xi � fi ¼ �xi � ðp0i þ p1ixþ p2iyÞ; i ¼ 1; 2 ð5Þ

where p0i, p1i, and p2i are the consequent parameters of the

output function fi.

Layer 5: This layer is called the aggregation layer that

transforms fuzzy values into a crisp output using an

equation as follows.

O5;i ¼
X

i

�xifi ¼
X

i

xifi

,
X

i

xi; i ¼ 1; 2 ð6Þ

2.2 Particle swarm optimization

Particle swarm optimization (PSO) is a relatively new

swarm intelligence technique proposed by Kennedy and

Eberhart [30]. This technique was developed based on

the social behavior of bird flocks for solving complex

optimization problems. Using a population (swarm),

PSO scatter a number of individuals (particles) of the

swarm in the domain space, to find the best position

which is the optimized solution of an optimization

problem [34].

Assume that D is the dimension of the search space with

m is the population size. xi and vi (i = 1,…, m) are position

and velocity vectors for particle i, respectively. pbest is the

best position of an individual particle in the swarm, and

gbest is the best position of all particles in the swarm. The

evolutionary process of the PSO algorithm is summarized

as follows:

Step 1: Initialization. An initial population (swarm) with

random positions and velocities was generated in the

D dimension of the search space.

Step 2: Fitness evaluation. A fitness function must be

determined, and in this study, RMSE is used as the

fitness function. RMSE for each particle in the swarm is

evaluated to determine pbest, and the particle with the

lowest RMSE is used as gbest.

Step 3: Change and update. The position and velocity of

each particle in the swarm are changed using Eqs. 7, and

8 and then pbest and gbest are updated.

viþ1 ¼ xvi þ ac1r1 pbest � xið Þ þ ac2r2 gbest � xið Þ ð7Þ
xiþ1 ¼ xi þ viþ1 ð8Þ

where x is the inertia weight; ac1 and ac2 are the accel-

eration coefficients; r1 and r2 are two randomly generated

numbers in the range [0, 1].

Step 4: Termination. Stop the algorithm if the number of

iteration reaches the predetermined maximum number of

iterations; or return to step 2 otherwise.

2.3 Accuracy assessment

The accuracy of the models is measured using the root

mean square error (RMSE), the mean absolute error

(MAE), and the correlation coefficient (R2) [1] as follows:

RMSE ¼ Sqrt
Xn

i¼1

pri � yið Þ2=n
� �

;

MAE ¼
Pn

i¼1 pri � yij j
n

ð9Þ

Fig. 1 A general architecture of an adaptive neural fuzzy inference

system

Neural Comput & Applic (2018) 29:1495–1506 1497

123



R2 ¼ SAPffiffiffiffiffiffiffiffiffiffi
SASP

p ; SAP ¼
Pn

i¼1 ðpri � prÞðyi � yÞ
n� 1

; SA

¼
Pn

i¼1 ðpri � prÞ2

ðn� 1Þ ; SP ¼
Pn

i¼1 ðyi � yÞ2

ðn� 1Þ ð10Þ

where yi and y are the measure and the mean values of the

horizontal displacement, respectively; pri and pr are pre-

dicted values and mean predicted value from the model,

respectively.

3 Study area and data used

3.1 General description of the Hoa Binh

hydropower dam

The Hoa Binh hydropower dam (Fig. 2) is situated on the

Da River (a tributary of the Red River) in the Hoa Binh

Province, about 75 km west of Hanoi city. This is an earth–

rock fill dam that was constructed in an arch where the

slopes of the banks are from 20� to 40�. The construction of
the dam was started in 1981 and was completed in 1990

[35]. The total length of the dam is 970 m, and the maxi-

mum height of the dam crest is 128 m. Other characteris-

tics of the dam are shown in Table 1.

The Hoa Binh hydropower dam is the second largest dam

in Vietnam with the installed capacity of 1920 MW. Cur-

rently, the hydropower produces around 10 billion kWh

electricity per year. The total water can be held by the dam

is around 9.45 billion m3. The minimum water level for the

operation of the hydropower is 80 m whereas the maximum

water level is 120 m [36]. Other detailed descriptions of the

dam can be found in Vladimirov et al. [35].

3.2 Time series of monitoring data

The geodetic monitoring system of the Hoa Binh hydro-

power dam was established with 12 stations on the down-

stream side of the dam at the heights of 75 and 123 m. The

aim is to monitor and assess horizontal and vertical

Fig. 2 Location of the Hoa Binh hydropower dam

Table 1 Characteristics of the Hoa Binh hydropower dam

No Characteristics Value (m)

1 The top height of the dam crest 128.0

2 Length of the dam crest 600.0

3 Width of the dam crest 20.0

4 Width of the core foundation 50.0

5 Width of the core crest 10.0
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displacements of the dam. Geodetic raw data were recorded

in detailed hand-written reports for each epoch, including the

date of measurement, horizontal and vertical deflections. In

addition, other measured quantities were included such as

rainfall, reservoir water level, and air temperature.

For this work, the available time series data of the

PVM12 station are used for modeling. These data cover a

period of 11 years (from 24/9/1999 to 14/12/2010 with 131

epochs) and consist of reservoir water level, air tempera-

tures, and horizontal displacement (Fig. 3).

4 Proposed hybrid artificial intelligence approach
for horizontal displacement modeling at the Hoa
Binh hydropower dam (Vietnam)

This section describes the hybrid artificial intelligence

approach based on a neural fuzzy inference system and

PSO (SONFIS). SONFIS is used for the horizontal dis-

placement modeling of the Hoa Binh hydropower dam. It

is noted that the hybrid SONFIS model is programed by

the authors in the Matlab@2014 environment. The struc-

ture of the proposed hybrid SONFIS approach for hori-

zontal displacement modeling is shown in Fig. 4. First, an

initial SONFIS model is generated for the study area

using the training dataset. Then, PSO is adopted to opti-

mize the model by searching the best parameter values of

the premise and consequent parameters. Once the opti-

mized parameters are found, the hybrid SONFIS regres-

sion model is derived and can be used to forecast dam

displacements.

4.1 Data preparation

Horizontal displacements of hydropower dams have strong

interactions with environmental factors (i.e., the temperature

of the concrete), hydraulic factors (i.e., the reservoir water

level), and aging; therefore, these factors should be taken

into account for displacement analyses [3, 9, 10, 37]. In this

study, reservoir water level (H), air temperature (T), and

aging (t), measured at the Hoa Binh hydropower dam from

24/9/1999 to 14/12/2010 including 131 periods, were used.

The reservoir water level (H) is considered to be a

reversible effect of the load and can be modeled in the form

of a third-order polynomial with terms of H, H2, and H3

[10, 17], whereas the air temperature (T) influences hori-

zontal displacements in the form of delayed actions [2].

Therefore, lagged variables should be used. In this study,

Fig. 3 Reservoir water level, air temperatures, and horizontal displacement recorded at the PVM12 station
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the air temperature (T) components used are (T, T15, T30,

and T60) where 15, 30, and 60 indicate number of days

prior to the measurement. Aging (t) refers to the evolution

of the hydropower dam over time; therefore, the horizontal

displacement influenced by aging could be apportioned as

t and ln(t) [9], where t is the cumulative number of months

from the beginning date of the displacement measurement

(20/6/1990). Consequently, a total of nine variables (H, H2,

H3, T, T15, T30, T60, t, ln(t)) were used as input factors for

the SONFIS model, whereas the horizontal displacement

was the output.

The validation of predictive models is an important

component in the analysis, and without this task, the

models will be useless and have no scientific significance

[38]. Therefore, the time series data were split into two

subsets in a ratio of 70/30 [39], the first one is a training

dataset that consists of 91 samples (from 24/9/1999 to 8/6/

2007) and was used to train the SONFIS regression model

whereas the second one with 40 samples (from 9/7/2007 to

14/12/2010) is a validation dataset that used to validate and

confirm the forecasting accuracy of the model. Since the

fuzzy membership values of the SONFIS model are in the

range of [0, 1] [39], and the values of the nine input factors

were rescaled into the above range. Descriptive statistics of

the time series monitoring data in this study are shown in

Table 2.

4.2 Model configuration

In this step, an initial SONFIS model is generated from the

training dataset, the antecedent and the consequent

parameters of the initial model are not optimized. Since the

performance of neural fuzzy models can be enhanced if the

training data are represented more concisely [39], the fuzzy

c-means clustering [40] was used to transfer 91 samples

into ten clusters. Ten clusters were selected based on a

trial-and-error test between numbers of clusters vs. RMSE

of the SONFIS model. Each cluster is used to generate a

fuzzy If–Then rule of the model and the best values for the

antecedent and the consequent parameters of the rule are

obtained through the optimization process in the next step.

It is noted that the Gaussian fuzzy membership function

was used. The structure of the SONFIS model for this study

is shown in Fig. 5, including nine input variables, one

output, and ten rules.

4.3 Training the SONFIS model using PSO

The aim of this step is to find the best antecedent

parameter and consequent parameters. When an initial

swarm is generated, initial position and velocity of each

particle in the swarm are determined. We used the

inertia weight of 0.9 as stated by Poli et al. [41] due to

Fig. 4 Structure of the proposed SONFIS regression model for the horizontal displacement modeling of the Hoa Binh hydropower dam

Table 2 Descriptive statistics of the time series monitoring data (131 samples) in this study

Descriptive statistics Reservoir water level (m) Air temperature (�C) Aging (month) Horizontal displacement (m)

Lowest value 78.56 13.60 112.77 0.1124

Highest value 117.25 30.70 249.40 0.1739

Mean 104.43 23.99 180.79 0.1470

Median 105.62 25.00 180.43 0.1470

Standard deviation 10.71 4.32 39.19 0.0141
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the ability to get better performance. In the next step, all

particles in the swarm are scattered and then their

positions and their velocities are updated to find the best

position. Accordingly, various combinations of ante-

cedent and consequent parameters were explored by the

PSO algorithm. For each iteration, the fitness evaluation

for each particle was performed based on RMSE (Eq. 9).

And then pbest for all particles were updated and com-

pared to obtain the optimized position (gbest) of the

swarm.

4.4 Stopping criteria

Maximum number of iterations is used as the stopping

criteria and when the optimization process is terminated,

the best position of the swarm is determined. With the best

position, RMSE is the smallest; therefore, the optimized

values for the antecedent and consequent parameters are

determined for the SONFIS regression model. The final

model is then validated using the validation dataset to

confirm accuracy and then use for forecasting horizontal

displacements of the dam.

5 Results and discussion

Using the Gaussianmembership function, the SONFISmodel

was trained with 1000 epochs. The size of the swarm influ-

ences the diversity of the population; therefore, a trial-and-

error testwas used to determine the swarm size, and as result, a

population with 22 particles is the best for this study. The

structure of the SONFIS model with ten rules is shown in

Fig. 5. It could be seen that the model consists of 18 ante-

cedent parameters and 100 consequence parameters (see

Eqs. 2, 5) that havebeenoptimizedby thePSOalgorithm.The

optimized fuzzy membership curves obtained from the opti-

mization process for this study are shown in Fig. 6, whereas

the best values for the antecedent and consequent parameters

are shown in Tables 3 and 4, respectively.

The training result (Table 5) shows that RMSEs of the

SONFIS model are 0.306 cm in the training dataset and

0.294 cm in the validation dataset, respectively (Table 5).

These values are significantly smaller than the standard

deviation (1.249) that estimated from the measured dis-

placement values indicating high performance of the model

with these data. Since RMSE that shows overall informa-

tion on the error distribution is a quadratic scoring index,

therefore, RMSE is sensitive to some few large errors and

outliers [42]. For this reason, MAE is a better choice [1]

and is used interchangeably for estimating the model error

in this study.

In addition, the difference between RMSE and MAE

could be used to diagnose the variation of the model errors.

The results (Table 5) show that MAEs of the SONFIS

model are 0.238 cm and 0.237 cm for the training dataset

and the validation dataset, respectively, indicating that the

SONFIS model performs well. The difference of MAEs

and RMSEs of the SONFIS model on the two datasets is

0.68 mm and 0.57 mm indicating a low variance of indi-

vidual errors. R2 for the training dataset is 0.960 and for the

Fig. 5 SONFIS model for this study
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validation dataset is 0.869 indicating satisfactory results.

Horizontal displacement and residual plots of this study are

shown in Fig. 7.

The usability of the SONFIS model was further assessed

through a comparison with those obtained from benchmark

methods using the same data: Support vector regression

(SVR) and MLP Neural Nets, and Random forest. These

methods are selected because they outperformed conven-

tional methods in various dam deformation studies

[2, 4, 12, 15–17]. In addition, several state-of-the-art soft

computing methods that have seldom been used for dam

deformation analysis are included, such as the Gaussian

Processes, and the neural fuzzy model with Different

evolution optimization (DE-FIS).

Since explanations of SVR, MLP Neural Nets, and Ran-

dom forest algorithms for dam behavior modeling have been

well documented, such as in Salazar et al. [2], therefore we

only address briefly how these methods were used in this

study. For the case of SVR, the radial basis kernel (RBF)

function and the Sequential minimal optimization (SMO)

algorithm were selected to solve the quadratic optimization

problem [43]. The best parameters (the regularization = 6.6

and the kernel width = 0.0283) were found using the grid

searchmethod [44–46]. For the case ofMLPNeural Nets, the

structure with nine input neurons, one hidden layer with two

neurons, and an output layer was determined using the

method suggested in Tien Bui et al. [47]. Accordingly, the

logistic sigmoid was selected as the activation function

whereas the learning rate, the momentum, and the training

epoch were used as 0.3, 0.2, and 500, respectively.

Regarding the Random forest, the model was built with

500 trees as suggested in Beck et al. [48]. Regarding the

Gaussian processes, the method has been recently reported

to be a powerful regression tool [49], and for the Hoa Binh

dam displacement analysis, the RBF function was used,

with the best kernel parameter that was found of 0.0056.

Detailed explanations of the application of the Gaussian

processes can be seen in Grbić et al. [50]. For the case of

the DE-FIS, the same neural fuzzy model as in SONFIS

was used, but the antecedent and consequent parameters

were optimized using the DE technique.

Fig. 6 Optimized fuzzy membership curves obtained from the PSO for this study

Table 3 Optimized fuzzy parameters for the nine input variables in

the SONFIS model

Input variable Gaussian fuzzy membership

function parameter

d c

Variable 1 (H) 0.16479682 0.05420686

Variable 2 (H2) 0.11341594 0.94604036

Variable 3 (H3) 0.11083054 0.93398094

Variable 4 (T) 0.13378548 0.35756191

Variable 5 (T15) 0.10854647 0.54531438

Variable 6 (T30) 0.11002275 0.53855110

Variable 7 (T60) 0.10155999 0.85528916

Variable 8 (t/100) 0.11591654 0.95298775

Variable 9 (ln(t/100)) 0.09753939 0.35592464
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Table 4 Optimized consequent parameters of ten rules of the SONFIS model

Rule Output membership function parameters

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

1 51.97314 0.92915 -0.48175 -554.25736 1033.97950 -554.25973 0.00041 -0.10328 0.13884 -0.45023

2 51.97321 0.92942 -0.48176 -554.25764 1033.97260 -554.25600 0.00041 -0.10328 0.13884 -0.45023

3 51.97330 0.92946 -0.48176 -554.25984 1033.97488 -554.25591 0.00041 -0.10328 0.13884 -0.45022

4 51.97333 0.92946 -0.48176 -554.25957 1033.97236 -554.25600 0.00041 -0.10332 0.13884 -0.45023

5 51.97170 0.92946 -0.48176 -554.25712 1033.97503 -554.24352 0.00041 -0.10328 0.13246 -0.45023

6 51.96853 0.92945 -0.48176 -554.25276 1033.97128 -554.25596 0.00041 -0.10328 0.13884 -0.45022

7 51.97190 0.92946 -0.48036 -554.26661 1033.97153 -554.25222 0.00041 -0.10329 0.13884 -0.45023

8 51.97334 0.92946 -0.48175 -554.25893 1033.97240 -554.25372 0.00041 -0.10669 0.13884 -0.45020

9 51.97341 0.93114 -0.46637 -554.25838 1033.96748 -554.25604 0.00041 -0.10328 0.13884 -0.45019

10 51.97146 0.92946 -0.48175 -554.25552 1033.99201 -554.24706 0.00041 -0.10328 0.13884 -0.45557

Table 5 Performance

comparison of the SONFIS

model with the Support vector

regression model, the MLP

Neural Nets model, the

Gaussian processes model, and

Random forest model, and the

DE-FIS model

Regression model Training dataset Validation dataset

RMSE (cm) MAE (cm) R2 RMSE (cm) MAE (cm) R2

SONFIS 0.306 0.238 0.960 0.294 0.237 0.869

Support vector regression 0.404 0.292 0.939 0.528 0.443 0.826

MLP Neural Nets 0.596 0.516 0.925 0.616 0.563 0.875

Gaussian processes 0.419 0.328 0.927 0.365 0.302 0.883

Random forest 0.340 0.270 0.951 1.175 1.094 0.507

DE-FIS 0.377 0.301 0.939 0.323 0.258 0.849

Fig. 7 Measured and output horizontal displacement values derived from the SONFIS model using the training dataset and the validation dataset

for this study
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The performances of the five benchmark models on both

the training and the validation datasets are shown in

Table 5. It could be seen that RMSEs of the five models are

higher than the SONFIS model on both the training dataset

and the validation dataset (the SVR model (0.404, 0.528),

the Gaussian processes model (0.419, 0.365), the MLP

Neural Nets model (0.596, 0.606), the Random forest

model (0.340, 1.175), and the DE-FIS model (0.377,

0.323). This is also the case for MAE (Table 5). The dif-

ferences of RMSE and MAE representing the variance of

individual errors show that the SONFIS model has the

lowest one (RMSE-MAE = 0.068) in the training dataset,

whereas in the validation dataset the variance is almost

equal to the MLP Neural Nets model, but lower than the

other models. Regarding to R2, except the Random forests

model, there is not much difference among the five models.

Based on the above analysis, it could be concluded that the

proposed SONFIS model performs better than the other

models in this study.

6 Concluding remarks

This paper has proposed a novel hybrid artificial intelli-

gence approach, namely SONFIS, for horizontal displace-

ment modeling with a case study at the Hoa Binh

hydropower dam (Vietnam). SONFIS is an integration of

the PSO and the neural fuzzy inference system. The

monitoring data with 131 periods cover a period of

11 years (1999–2010) and have been used to construct and

validate the proposed model. The goodness-of-fit and pre-

diction accuracy of the model were assessed using RMSE,

MAE, and R2. Five benchmark models (Support vector

regression, MLP Neural Nets, Gaussian processes, Random

forests, and DE-FIS) have been used for the comparison

and confirmation of the usability of the proposed approach.

The case study results show that the SONFIS is capable of

providing prediction results with high accuracy. In other

words, the accuracy of horizontal modeling of hydropower

dams can be improved with the proposed method.

It is well known that model performance is dependent on

the selection of input variables and it is common that the

selection is based on engineering judgement [1]. In this

research, the reservoir water level, the air temperature, and

the aging are the measured data at the Hoa Binh dam site

and therefore used as input data. Water level, air temper-

ature, and aging are widely used for horizontal displace-

ment modeling of dams. As a result, the high performance

of the proposed method indicates that the selection, pro-

cessing, and coding of the input variables have been carried

out successfully.

One of the critical problems in building prediction

models based on machine learning is that the models are

prone to overfitting, such as in Ranković et al. [51] where

MAE and MSE in the validation dataset were much higher

compared to those in the training dataset. In general, it is

not easy to eliminate the overfitting. In this study, both

RMSE and MAE values of the proposed SONFIS model

are almost equal in the training and validation datasets

indicating that the overfitting is eliminated. On contrast, the

Random forests model presents some degree of overfitting

due to a large difference of MAE in the training and the

validation data (Table 5). The reason is that the prediction

of the Random forests model is made from the weighted

average [52, 53] of the observed displacements in the

training data, and as result, the prediction values were in

the range of the observed displacements. In other words,

the Random forests model has difficulties in extrapolation

of values outside its known values.

Horizontal displacement modeling of hydropower dams

is a real-world problem where time series monitoring data

with sufficient length has seldom been available. There-

fore, the size of the training and validation datasets should

be considered properly. Although there is no thumb rule

for defining the minimum amount of data, however, at

least 5 years of data have been recommended as a mini-

mum for training models in most cases in order to obtain

high accuracy [2, 54, 55], whereas data of around

2–3 years of normal operations could be used for the

model validation [56]. In this study, the time series spans

around 7 years (from 24/9/1999 to 8/6/2007) were used to

build models, whereas more than 3 years of data (9/7/

2007 to 14/12/2010) were used for model validation.

These indicate that the data for modeling in this study

have a reasonable time span.

Overall, the major contributions of this study to the

body of knowledge of dam displacement analysis are

highlighted as follows: (1) the high performance of the

SONFIS model, both on the training and validation

datasets, implies that the SONFIS has successfully mod-

eled a typical complex nonlinear problem of hydropower

dam displacement; (2) the SONFIS model is constructed

autonomously where the optimized antecedent and con-

sequent parameters of the model were found autono-

mously with the use of the PSO algorithm; (3) overall, the

SONFIS model outperforms the five benchmark methods;

therefore, the proposed approach is a promising tool that

could be an alternative method for modeling of horizontal

displacements of hydropower dams.

Acknowledgements This research was funded by the China Schol-

arship Council (CSC) and partially supported by the Project 322

(Vietnam). The data analysis and write-up were carried out as a part

of the first author’s Ph.D. studies at the School of Geodesy and

Geomatics, Wuhan University, P. R. of China. We would like to thank

two anonymous reviewers for their constructive and valuable com-

ments on the earlier version of the manuscript.

1504 Neural Comput & Applic (2018) 29:1495–1506

123



Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

1. Salazar F, Morán R, Toledo M, Oñate E (2015) Data-based
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