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Abstract The selection of third-party logistics (TPL)

providers can greatly influence the development of a

company, and it has therefore become a hot topic for

research. The process of selecting TPL providers is com-

plicated because it includes fuzzy information that can be

depicted by single-valued neutrosophic numbers (SVNNs).

This paper establishes a new method for selecting TPL

providers under single-valued neutrosophic environments.

This method simultaneously takes into account the inter-

relationships among criteria and the different priority levels

of criteria. To construct the method, we first introduce

Frank operations of SVNNs, considering that extant oper-

ations for SVNNs lack flexibility and robustness. Then, we

develop the single-valued neutrosophic Frank normalized

prioritized Bonferroni mean (SVNFNPBM) operator uti-

lizing the proposed Frank operations. The SVNFNPBM

operator considers the interrelationships among criteria and

their distinct priority levels by combining the Bonferroni

mean and the prioritized average operators. Subsequently,

we construct a method for selecting TPL providers based

on the proposed operator. Finally, we describe a numerical

example of selecting a TPL provider and conduct a com-

parative analysis to verify the applicability and feasibility

of the proposed method.

Keywords Single-valued neutrosophic set � Frank
operation � Prioritized average operator � Bonferroni mean �
Selecting third-party logistics providers

1 Introduction

Many companies consider logistics seriously because of the

great influence it exerts on economic development.

Sometimes, companies choose to outsource logistics to

third-party logistics (TPL) providers, mainly because TPL

providers can render professional services at lower costs

compared with internal logistics. The process of selecting

TPL providers has attracted the attention of researchers

[1, 2]. In essence, the problem of selecting a TPL provider

involves multi-criteria decision-making (MCDM). Several

criteria must be considered when selecting a TPL provider,

including the cost of service, operational experience in the

industry, customer satisfaction, and market reputation. In

this respect, methods for selecting TPL providers can be

described through MCDM models.

The process of selecting TPL providers involves fuzzy

information that cannot be addressed by crisp values.

Zadeh [3] developed fuzzy logic and fuzzy sets (FSs) to

handle fuzzy information. However, FSs have some limits;

for example, they cannot depict uncertain information.

Numerous extensions of FSs have been proposed [4–6] to

tackle the deficiencies of FSs. To address the issue that FSs

cannot depict information uncertainty, Turksen [7] devel-

oped interval-valued FSs. Basing the work on FSs, Ata-

nassov [8] introduced the notion of nonmembership and

proposed intuitionistic fuzzy sets (IFSs). Subsequently,

Atanassov and Gargov [9] presented interval-valued IFSs

based on IFSs. Furthermore, Torra and Narukawa [10, 11]

defined hesitant fuzzy sets (HFSs) to depict decision

makers’ hesitancy, which cannot be expressed by FSs.

Chen et al. [12] then developed interval-valued HFSs

(IVHFSs). However, HFSs and IVHFSs are unable to deal

with indeterminacy in decision-making processes. To

overcome this problem, Smarandache [13, 14] introduced
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neutrosophic sets (NSs), which depict fuzzy information

using the functions of truth, indeterminacy, and falsity.

Notably, the function of indeterminacy is independent of

the functions of truth and falsity [15]. Nevertheless, NSs

are hard to apply in practical problems because the values

of the truth, indeterminacy and falsity functions lie within

]0-, 1?[ [16]. Therefore, Wang et al. [17] presented single-

valued neutrosophic sets (SVNSs), in which truth, inde-

terminacy, and falsity functions lie between zero and one.

Since then, SVNSs have been studied [18, 19] and exten-

ded by combining them with other theories [20–24]. In

addition, SVNSs and various other extensions of FSs have

been applied in various fields, including decision-making

[25–33], medical diagnosis [34–37], green product devel-

opment [38], tourists’ restaurant selection [39], and cloud

service selection [40].

The aggregation operator represents an important tool

for constructing MCDM methods [41]. Numerous

researchers [42, 43] have studied aggregation operators

under all sorts of fuzzy environments, including single-

valued neutrosophic environments. Most aggregation

operators suppose that the elements integrated are mutually

independent. However, criteria may be correlative in some

practical problems, like the selection of TPL providers. In

these situations, operational experience in the industry and

market reputation may influence the cost of service, and

customer satisfaction may both depend on and affect

operational experience in the industry. In solving these

kinds of practical problems, it is important to consider

interrelationships among criteria, which can be accom-

plished by the strategy of the Bonferroni mean (BM)

operator [44]. Researchers have studied the BM and

weighted BM (WBM) operators in several fuzzy environ-

ments [45], including intuitionistic fuzzy environments

[46–48], hesitant fuzzy environments [49], and neutro-

sophic environments [50]. However, Zhou and He [51]

pointed out that WBM operators do not satisfy reducibility;

to conquer this shortcoming, they developed the normal-

ized WBM (NWBM) operator [51] for intuitionistic fuzzy

environments. Subsequently, the NWBM operator has been

applied in a few other fuzzy environments, like hesitant

fuzzy environments [52] and single-valued neutrosophic

environments [53].

In some practical MCDM problems, criteria have dif-

ferent priority levels. For instance, the four criteria

involved in selecting TPL providers can have distinct

degrees of priority. A company may attach more impor-

tance to customer satisfaction than the other three criteria.

That company may set the cost of service as the second

most important criterion, followed by operational experi-

ence in the industry. In this situation, market reputation

represents the least significant criterion. When tackling this

kind of problem, the distinct priorities of the criteria should

be taken into consideration. This necessitates the intro-

duction of the prioritized average (PA) operator [54],

which considers criteria priority levels by assigning each

criterion a weight calculated according to its priority. The

higher the priority of a criterion is, the greater its weight

will be. The PA operator has been applied in a variety of

fuzzy environments, including intuitionistic fuzzy envi-

ronments [55–57], hesitant fuzzy environments [58, 59],

2-tuple fuzzy environments [60, 61], and interval-valued

neutrosophic environments [62].

All the aggregation operators described above are

defined on the basis of algebraic product and sum. How-

ever, the algebraic operational laws lack flexibility and

robustness. Frank operational laws [63] can be utilized to

address this defect. Frank operational laws are general-

izations of algebraic operational laws, but they are more

flexible for involving a parameter. Researchers have stud-

ied Frank operational laws under fuzzy environments. For

example, Zhang et al. [64] explored Frank operational laws

in the context of IFSs and presented several intuitionistic

fuzzy power aggregation operators along with the proposed

laws. Zhang [65] further proposed Frank operational laws

for interval-valued IFSs and defined two Frank aggregation

operators for interval-valued IFSs. Similarly, Qin et al. [66]

defined Frank operational laws for HFSs and developed

several aggregation operators based on the proposed laws.

However, Frank operational laws have barely been studied

in the context of NSs.

SVNSs can depict fuzzy information in the process of

selecting TPL providers as fully as possible. Criteria for

selecting TPL providers are correlative and have different

priorities. BM operators can consider the interrelationships

among criteria, and PA operators can take into account the

criteria’s distinct priorities. Furthermore, as mentioned

above, Frank operational laws are flexible and robust.

However, Frank operational laws for SVNSs have not been

studied, and BM and PA operators based on Frank opera-

tional laws under single-valued neutrosophic environments

have not been developed. In addition, extant methods for

the selection of TPL providers cannot simultaneously take

into consideration the interrelationships among criteria and

their different priorities. To overcome these shortcomings,

this paper puts forth a comprehensive method for selecting

TPL providers. To achieve this goal, we first define Frank

operational laws for SVNSs. Then, we develop a single-

valued neutrosophic Frank normalized prioritized BM

(SVNFNPBM) operator by combining PA and BM opera-

tors with the proposed Frank operational laws. Finally, we

establish a method for selecting TPL providers based on

the proposed SVNFNPBM operator.

The remainder of this paper is organized as follows.

Section 2 reviews some basic concepts concerning SVNSs,

Frank operations, and PA and BM operators. Section 3
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defines Frank operations for single-valued neutrosophic

numbers (SVNNs) and explores some properties of the

proposed operations. Section 4 develops the SVNFNPBM

operator and discusses its properties. Section 5 constructs a

novel method for selecting TPL providers under single-

valued neutrosophic environments. Section 6 describes a

numerical example of selecting TPL providers and con-

ducts a comparative analysis to demonstrate the applica-

bility and feasibility of the proposed method. Section 6

also discusses the influence of parameters on the final

ranking order. Finally, Sect. 7 outlines conclusions and

suggests several directions for future research.

2 Preliminaries

This section reviews some basic concepts about SVNSs,

Frank operations, and PA and BM operators, which will be

utilized throughout the rest of the paper.

2.1 SVNSs

Definition 1 [13, 14] Let X be a finite set of points (ob-

jects), and let x denote a generic element in X. An NS A in

X is characterized by a truth-membership function TA(x), an

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). For any arbitrary x in X,

TA(x) 2 ]0-, 1?[, IA(x) 2 ]0-, 1?[, and FA(x) 2 ]0-, 1?[.

There is no constraint on the sum of TA(x), IA(x), and FA(x),

that is, 0- B TA(x) ? IA(x) ? FA(x) B 3?.

However, NSs are difficult to apply in practical prob-

lems. To overcome this challenge, Wang et al. [17] defined

SVNSs.

Definition 2 [17] Let X be a finite set of points (objects),

and let x denote a generic element in X. An SVNS A in X is

characterized by a truth-membership function TA(x), an

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). For any arbitrary x in X,

TA(x) 2 [0, 1], IA(x) 2 [0, 1], and FA(x) 2 [0, 1]. An SVNS

A can be defined as:

A ¼ x; TAðxÞ; IAðxÞ;FAðxÞh ijx 2 Xf g:

An SVNS is a subclass of NS. The sum of TA(x), IA(x),

and FA(x) lies between zero and three, that is,

0 B TA(x) ? IA(x) ? FA(x) B 3.

For convenience, we use x = (Tx, Ix, Fx) to represent an

SVNN, which is an element in an SVNS.

Definition 3 [17] Let A ¼ hx; TAðxÞ; IAðxÞ;FAðxÞijf x 2
Xg be an SVNS. The complement Ac of A is defined as

Ac ¼ fhx;FA xð Þ; 1� IAðxÞ; TAðxÞijx 2 Xg:

In order to compare two SVNNs, Şahin [42] defined a

comparison method with the proposed score and accuracy

functions.

Definition 4 [42] Let x = (Tx, Ix, Fx) be an SVNN. The

score function sc of SVNN x can be defined as follows:

scðxÞ ¼ 1þ Tx � 2Ix � Fx

2
; ð1Þ

where sc(x) 2 [-1, 1].

Definition 5 [42] Let x = (Tx, Ix, Fx) be an SVNN. The

accuracy function l of SVNN x can be defined as follows:

l xð Þ ¼ Tx � Ix 1� Txð Þ � Fx 1� Ixð Þ; ð2Þ

where l(x) 2 [-1, 1].

Definition 6 [42] Let x = (Tx, Ix, Fx) and y = (Ty, Iy, Fy)

be two SVNNs. The comparison method between x and

y can be defined as follows:

(1) when sc(x)\ sc(y), x � y;

(2) when sc(x) = sc(y) and l(x)\ l(y), x � y; and

(3) when sc(x) = sc(y) and l(x) = l(y), x * y.

Furthermore, the algebraic operations of SVNNs have

been defined as follows.

Definition 7 [53] Let x = (Tx, Ix, Fx) and y = (Ty, Iy, Fy)

be two SVNNs, and k[ 0. The algebraic operations can be

defined as follows:

(1) x � y = (Tx ? Ty - TxTy, IxIy, FxFy);

(2) x � y = (TxTy, Ix ? Iy - IxIy, Fx ? Fy - FxFy);

(3) kx = (1 - (1 - Tx)
k, Ix

k, Fx
k); and

(4) xk = (Tx
k, 1 - (1 - Ix)

k, 1 - (1 - Fx)
k).

2.2 Frank operations

Frank operations include the Frank product and Frank sum.

The Frank product �F is a triangular norm, and the Frank

sum �F is a triangular conorm.

Definition 8 [63] Let u and z be two real numbers. The

Frank product �F and Frank sum �F between u and z are

defined as follows:

u �F z ¼ 1� logc 1þ c1�u � 1ð Þ c1�z � 1ð Þ
c� 1

� �

8 u; zð Þ 2 0; 1½ � � 0; 1½ �; ð3Þ

u �F z ¼ logc 1þ cu � 1ð Þ cz � 1ð Þ
c� 1

� �

8 u; zð Þ 2 0; 1½ � � 0; 1½ �; ð4Þ

where c[ 1.
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Wang and He [67] discussed some properties of the

Frank product and Frank sum:

u �F zð Þ þ u �F zð Þ ¼ uþ z; ð5Þ
o u �F zð Þ

ou
þ o u �F zð Þ

ou
¼ 1: ð6Þ

Based on the limit theory, it can be proved that when

c ? 1, u �F z ? u ? z - uz and u �F z ? uz [67]. The

Frank product and Frank sum reduce to the probabilistic

product and probabilistic sum.

2.3 PA and BM operators

Yager [54] proposed the PA operator, which considers the

priority levels of criteria. The PA operator is defined as

follows.

Definition 9 [54] Let C = {C1, C2, …, Cn} be a set of

criteria, and a prioritization C1 	 C2 	 ��� 	 Cn exists

among the criteria. The performance value of object y

under criterion Ci is denoted by Ci(y) (i = 1, 2, …, n), and

Ci(y) 2 [0, 1]. The PA operator is defined as follows:

PA C1 yð Þ;C2 yð Þ; . . .;Cn yð Þð Þ ¼
Xn
i¼1

wiCi yð Þ; ð7Þ

where wi ¼ HiPn

t¼1
Ht

;Hi ¼
Qi�1

k¼1 CkðyÞ i
 2ð Þ, and H1 = 1.

In some practical situations, criteria are interdependent.

In order to consider the interrelationships among criteria,

Bonferroni [44] developed the BM operator.

Definition 10 [44] Let p, q[ 0 and bi (i = 1, 2, …, n)

be a collection of nonnegative real numbers. The BM

operator is defined as follows:

BMp;q b1; b2; . . .; bnð Þ ¼ 1

n n� 1ð Þ
Xn
i;j¼1;

i6¼j

b
p
i b

q
j

0
BB@

1
CCA

1=pþq

: ð8Þ

Considering the different relative importance of each

element, Xu and Yager [68] further defined the WBM

operator on the basis of the BM operator.

Definition 11 [68]Letp, q[ 0 andbi (i = 1, 2, …, n) be a

collection of nonnegative real numbers. w = (w1, w2, …,

wn)
T is the weight vector of bi (i = 1, 2, …, n),

Pn
i¼1 wi ¼ 1,

and wi 2 [0, 1]. The WBM operator is defined as follows:

WBMp;q b1; b2; . . .; bnð Þ ¼ 1

n n� 1ð Þ
Xn
i;j¼1;

i6¼j

wibið Þp wjbj
� �q

0
BB@

1
CCA

1=pþq

:

ð9Þ

Nevertheless, the WBM operator does not have the

reducibility. To address this defect, Zhou and He [51]

proposed the NWBM operator as follows.

Definition 12 [51] Let p, q[ 0 and bi (i = 1, 2, …, n)

be a collection of nonnegative real numbers. w = (w1, w2,

…, wn)
T is the weight vector of bi (i = 1, 2, …, n),Pn

i¼1 wi ¼ 1, and wi 2 [0, 1]. The NWBM operator is

defined as

NWBMp;q b1; b2; . . .; bnð Þ ¼
Xn
i;j¼1;

i 6¼j

wiwj

1� wi

b
p
i b

q
j

0
BB@

1
CCA

1=pþq

: ð10Þ

3 Frank operations of SVNNs

This section introduces Frank operations of SVNNs based

on the algebraic operations of SVNNs described in Defi-

nition 7 and the Frank operations described in Definition 8.

Furthermore, this section discusses some properties of the

proposed Frank operations of SVNNs.

Definition 13 Let x = (Tx, Ix, Fx) and y = (Ty, Iy, Fy) be

two SVNNs, c[ 1, and k[ 0. Frank operations of SVNNs

are defined as follows:

(1) x �F y ¼ 1� logc 1þ c1�Tx�1ð Þ c1�Ty�1ð Þ
c�1

� �
;

�

logc 1þ cIx�1ð Þ cIy�1ð Þ
c�1

� �
; logc 1þ cFx�1ð Þ cFy�1ð Þ

c�1

� ��
;

(2) x �F y ¼ logc 1þ cTx�1ð Þ cTy�1ð Þ
c�1

� �
;

�

1� logc 1þ c1�Ix�1ð Þ c1�Iy�1ð Þ
c�1

� �
;

1� logc 1þ c1�Fx�1ð Þ c1�Fy�1ð Þ
c�1

� ��
;

(3) k �F x ¼ 1� logc 1þ c1�Tx�1ð Þk
c�1ð Þk�1

� �
;

�

logc 1þ cIx�1ð Þk

c�1ð Þk�1

� �
; logc 1þ cFx�1ð Þk

c�1ð Þk�1

� �
;

and

(4) x^Fk ¼ logc 1þ cTx�1ð Þk

c�1ð Þk�1

� �
;

�
1� logc

1þ c1�Ix � 1ð Þk

c� 1ð Þk�1

 !
; 1� logc 1þ c1�Fx � 1ð Þk

c� 1ð Þk�1

 !
:

Example 1 Let x = (0.4, 0.2, 0.3) and y = (0.6, 0.1, 0.2)

be two SVNNs. Suppose c = 2, then by the Frank opera-

tions listed in Definition 13, we have x �F y =

(1 - log2 (1 ? (21-0.4 - 1)(21-0.6 - 1)), log2 (1 ?

(20.2 - 1)(20.1 - 1)), log2 (1 ? (20.3 - 1)(20.2 - 1))) =
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(0.7799, 0.0153, 0.0488), and x �F y = (log2(1 ?

(20.4 - 1)(20.6 - 1)), log2(1 ? (21-0.2 - 1)(21-0.1 -

1)), log2 (1 ? (21-0.3 - 1)(21-0.2 - 1))) = (0.2201,

0.7153, 0.0.5488).

Moreover, the Frank operations of SVNNs in Definition

13 have the following properties.

Theorem 1 Let x, y, and z be three SVNNs, and

k1, k2[ 0. The Frank operations of SVNNs satisfy the

following properties:

(FP1) x �F y = y �F x;

(FP2) x �F y = y �F x;

(FP3) k1 �F (x �F y) = k1 �F x �F k1 �F y;

(FP4) x �F yð Þ^Fk1¼ x^Fk1 �F y^Fk1 ;

(FP5) k1 �F x �F k2 �F x = (k1 ? k2) �F x;

(FP6) x^Fk1 �F x^Fk2 ¼ x^F k1þk2ð Þ;
(FP7) k1 �F k2 �F xð Þ ¼ k2 �F k1 �F xð Þ ¼ k1k2ð Þ �F x; and

(FP8) x�F yð Þ �F z ¼ x�F y�F zð Þ:

Proof Assume that x = (Tx, Ix, Fx), y = (Ty, Iy, Fy), and

z = (Tz, Iz, Fz).

(FP1) Based on operation (1) in Definition 13, it is true

that

x �F y ¼ 1� logc 1þ c1�Tx � 1ð Þ c1�Ty � 1ð Þ
c� 1

� �
;

�

logc 1þ cIx � 1ð Þ cIy � 1ð Þ
c� 1

� �
;

logc 1þ cFx � 1ð Þ cFy � 1ð Þ
c� 1

� ��

¼ 1� logc 1þ c1�Ty � 1ð Þ c1�Tx � 1ð Þ
c� 1

� �
;

�

logc 1þ cIy � 1ð Þ cIx � 1ð Þ
c� 1

� �
;

logc 1þ cFy � 1ð Þ cFx � 1ð Þ
c� 1

� ��

¼ y�F x:

Therefore, x �F y = y �F x holds.

(FP2) Based on operation (2) in Definition 13, it follows

that

x �F y ¼ logc 1þ cTx � 1ð Þ cTy � 1ð Þ
c� 1

� �
;

�

1� logc 1þ c1�Ix � 1ð Þ c1�Iy � 1ð Þ
c� 1

� �

1� logc 1þ c1�Fx � 1ð Þ c1�Fy � 1ð Þ
c� 1

� ��

¼ logc 1þ cTy � 1ð Þ cTx � 1ð Þ
c� 1

� �
;

�

1� logc 1þ c1�Iy � 1ð Þ c1�Ix � 1ð Þ
c� 1

� �
;

1� logc 1þ c1�Fy � 1ð Þ c1�Fx � 1ð Þ
c� 1

� ��

¼ y�F x:

Hence, x �F y = y �F x is proven to be right.

(FP3) Based on operations (1) and (3) in Definition 13,

x �F y ¼ 1� logc 1þ c1�Tx � 1ð Þ c1�Ty � 1ð Þ
c� 1

� �
;

�

logc 1þ cIx � 1ð Þ cIy � 1ð Þ
c� 1

� �
;

logc 1þ cFx � 1ð Þ cFy � 1ð Þ
c� 1

� ��
;

k1 �F x ¼ 1� logc 1þ c1�Tx � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

logc 1þ cIx � 1ð Þk1

c� 1ð Þk1�1

 !
;

logc 1þ cFx � 1ð Þk1

c� 1ð Þk1�1

 !!
;

and

k1 �F y ¼ 1� logc 1þ c1�Ty � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

logc 1þ cIy � 1ð Þk1

c� 1ð Þk1�1

 !

logc 1þ cFy � 1ð Þk1

c� 1ð Þk1�1

 !!
:

Therefore, we have
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k1 �F x �F yð Þ ¼ 1� logc 1þ c1�Tx � 1ð Þk1 c1�Ty � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

 

logc 1þ cIx � 1ð Þk1 cIy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

logc 1þ cFx � 1ð Þk1 cFy � 1ð Þk1

c� 1ð Þ2k1�1

 !!
;

and

k1 �F x �F k1 �F y ¼ 1� logc 1þ c1�Tx � 1ð Þk1 c1�Ty � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

 

logc 1þ cIx � 1ð Þk1 cIy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

logc 1þ cFx � 1ð Þk1 cFy � 1ð Þk1

c� 1ð Þ2k1�1

 !!
:

Hence, k1 �F (x �F y) = k1 �F x �F k1 �F y.

(FP4) Based on operations (2) and (4) in Definition 13,

x �F y ¼ logc 1þ cTx � 1ð Þ cTy � 1ð Þ
c� 1

� �
;

�

1� logc 1þ c1�Ix � 1ð Þ c1�Iy � 1ð Þ
c� 1

� �
;

1� logc 1þ c1�Fx � 1ð Þ c1�Fy � 1ð Þ
c� 1

� ��
;

x^Fk1 ¼ logc 1þ cTx � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1

c� 1ð Þk1�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1

c� 1ð Þk1�1

 !!
;

and

y^Fk1 ¼ logc 1þ cTy � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

1� logc 1þ c1�Iy � 1ð Þk1

c� 1ð Þk1�1

 !
;

1� logc 1þ c1�Fy � 1ð Þk1

c� 1ð Þk1�1

 !!
:

Therefore,

x �F yð Þ^Fk1 ¼ logc 1þ cTx � 1ð Þk1 cTy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1 c1�Iy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1 c1�Fy � 1ð Þk1

c� 1ð Þ2k1�1

 !!
;

and

x^Fk1 �F y^Fk1 ¼ logc 1þ cTx � 1ð Þk1 cTy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1 c1�Iy � 1ð Þk1

c� 1ð Þ2k1�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1 c1�Fy � 1ð Þk1

c� 1ð Þ2k1�1

 !!
:

This makes it clear that x �F yð Þ^Fk1¼ x^Fk1 �F y^Fk1 :
(FP5) Based on operations (1) and (3) in Definition 13,

we have

k1 �F x ¼ 1� logc 1þ c1�Tx � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

logc 1þ cIx � 1ð Þk1

c� 1ð Þk1�1

 !
;

logc 1þ cFx � 1ð Þk1

c� 1ð Þk1�1

 !!
;

k2 �F x ¼ 1� logc 1þ c1�Tx � 1ð Þk2

c� 1ð Þk2�1

 !
;

 

logc 1þ cIx � 1ð Þk2

c� 1ð Þk2�1

 !
;

logc 1þ cFx � 1ð Þk2

c� 1ð Þk2�1

 !!
;

and

k1 þ k2ð Þ �F x ¼ 1� logc 1þ c1�Tx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

 

logc 1þ cIx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

logc 1þ cFx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !!
:
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Therefore,

k1 �F x �F k2 �F x ¼ 1� logc 1þ c1�Tx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

 

logc 1þ cIx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

logc 1þ cFx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !!

¼ k1 þ k2ð Þ �F x:

Hence, k1 �F x �F k2 �F x = (k1 ? k2) �F x holds.

(FP6) Based on operations (2) and (4) in Definition 13,

x^Fk1 ¼ logc 1þ cTx � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1

c� 1ð Þk1�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1

c� 1ð Þk1�1

 !!
;

x^Fk2 ¼ logc 1þ cTx � 1ð Þk2

c� 1ð Þk2�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk2

c� 1ð Þk2�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk2

c� 1ð Þk2�1

 !!
;

and

x^F k1þk2ð Þ ¼ logc 1þ cTx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !!
:

Hence,

x^Fk1 �F x^Fk2 ¼ logc 1þ cTx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

 

1� logc 1þ c1�Ix � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !
;

1� logc 1þ c1�Fx � 1ð Þk1þk2

c� 1ð Þk1þk2�1

 !!

¼ xF̂ k1þk2ð Þ:

Therefore, x^Fk1 �F x^Fk2 ¼ x^F k1þk2ð Þ is true.

(FP7) Based on operation (3) in Definition 13,

k2 �F x ¼ 1� logc 1þ cTx � 1ð Þk2

c� 1ð Þk2�1

 !
;

 

logc 1þ c1�Ix � 1ð Þk2

c� 1ð Þk2�1

 !
;

logc 1þ c1�Fx � 1ð Þk2

c� 1ð Þk2�1

 !!
;

k1 �F x ¼ 1� logc 1þ cTx � 1ð Þk1

c� 1ð Þk1�1

 !
;

 

logc 1þ c1�Ix � 1ð Þk1

c� 1ð Þk1�1

 !
;

logc 1þ c1�Fx � 1ð Þk1

c� 1ð Þk1�1

 !!
;

and

k1k2ð Þ �F x ¼ 1� logc 1þ cTx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

 

logc 1þ c1�Ix � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

logc 1þ c1�Fx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !!
:

Therefore,

k1 �F k2 �F xð Þ ¼ 1� logc 1þ cTx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

 

logc 1þ c1�Ix � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

logc 1þ c1�Fx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !!

¼ k1k2ð Þ �F x;

and

k2 �F k1 �F xð Þ ¼ 1� logc 1þ cTx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

 

logc 1þ c1�Ix � 1ð Þk1k2

c� 1ð Þk1k2�1

 !
;

logc 1þ c1�Fx � 1ð Þk1k2

c� 1ð Þk1k2�1

 !!

¼ k1k2ð Þ �F x:

Hence, k1 �F (k2 �F x) = k2 �F (k1 �F x) = (k1k2) �F x.
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(FP8) Based on operation (1) in Definition 13,

x �F y ¼ 1� logc 1þ c1�Tx � 1ð Þ c1�Ty � 1ð Þ
c� 1

� �
;

�

logc 1þ cIx � 1ð Þ cIy � 1ð Þ
c� 1

� �
;

logc 1þ cFx � 1ð Þ cFy � 1ð Þ
c� 1

� ��
;

and

y �F z ¼ 1� logc 1þ c1�Ty � 1ð Þ c1�Tz � 1ð Þ
c� 1

� �
;

�

logc 1þ cIy � 1ð Þ cIz � 1ð Þ
c� 1

� �
;

logc 1þ cFy � 1ð Þ cFz � 1ð Þ
c� 1

� ��
:

Therefore, we have

ðx �F yÞ�F z¼ 1� logc 1þ c1�Tx � 1ð Þ c1�Ty � 1ð Þ c1�Tz � 1ð Þ
c� 1ð Þ

� �
;

�

logc 1þ cIx � 1ð Þ cIy � 1ð Þ cIz � 1ð Þ
c� 1ð Þ

� �
;

logc 1þ cFx � 1ð Þ cFy � 1ð Þ cFz � 1ð Þ
c� 1ð Þ

� ��
;

and

x�F y�F zð Þ ¼ 1� logc 1þ c1�Tx � 1ð Þ c1�Ty � 1ð Þ c1�Tz � 1ð Þ
c� 1ð Þ

� �
;

�

logc 1þ cIx � 1ð Þ cIy � 1ð Þ cIz � 1ð Þ
c� 1ð Þ

� �
;

logc 1þ cFx � 1ð Þ cFy � 1ð Þ cFz � 1ð Þ
c� 1ð Þ

� ��
:

Hence, (x �F y) �F z = x �F (y � Fz) is true.

Thus, Theorem 1 holds.

4 SVNFNPBM operator

This section presents the definition of the single-valued

neutrosophic Frank BM (SVNFBM) operator. Subse-

quently, we define the SVNFNPBM operator on the basis

of the PA and NWBM operators. The SVNFNPBM

operator simultaneously considers the priority levels of

aggregated elements and the interrelationships among

these elements by integrating the PA and WBM operators.

Then, we discuss several properties of the SVNFNPBM

operator.

Definition 14 Let p, q[ 0, and xi = (Ti, Ii, Fi)

(i = 1, 2, …, n) be a set of SVNNs. The SVNFBM oper-

ator is defined as follows:

SVNFBMp;q x1; x2; . . .; xnð Þ

¼ 1

n n� 1ð Þ �F �F

n

i;j¼1;

i6¼j

xið Þ^Fp�F xj
� �^Fq

� �0
B@

1
CA

^F
1

pþq

:
ð11Þ

This paper develops the SVNFNPBM operator based

on the PA and NWBM operators as defined in Eqs. (7)

and (10). The SVNFNPBM operator is defined as

follows.

Definition 15 Let p, q[ 0, and C = {C1, C2, …, Cn} be

a set of criteria, such that a prioritization C1 	 C2

	 ��� 	 Cn exists among the criteria. The performance

value of object x under criterion Ci is denoted by SVNN

xi = (Ti, Ii, Fi) (i = 1, 2, …, n). The SVNFNPBM opera-

tor is defined as follows:

SVNFNPBMp;q x1; x2; . . .; xnð Þ

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

; ð12Þ

where wi ¼ HiPn

t¼1
Ht

;Ht ¼
Qt�1

k¼1 sc xkð Þ t
 2ð Þ, H1 = 1, and

sc(xk) is the score value of SVNN xk obtained by Eq. (1).

Theorem 2 Let p, q[ 0, and let C = {C1, C2, …, Cn}

be a set of criteria, such that a prioritization C1 	 C2

	 ��� 	 Cn exists among the criteria. The performance

value of object x under criterion Ci is denoted by SVNN

xi = (Ti, Ii, Fi) (i = 1, 2, …, n). The aggregated value of

xi (i = 1, 2, …, n) by SVNFNPBM operator in Eq. (12) is

still an SVNN, and
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where wi ¼ HiPn

t¼1
Ht

;Ht ¼
Qt�1

k¼1 sc xkð Þ t
 2ð Þ, H1 = 1, and

sc(xk) is the score value of SVNN xk obtained by Eq. (1).

Theorem 2 can be proved by mathematical induction as

follows.

Proof (1) Firstly, the following equation can be proved.

SVNFPBMp;q x1; x2; . . .; xnð Þ

¼ logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� cTxi�1ð Þp c
Txj�1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi�1ð Þp c
Txj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i6¼j

c�1ð Þpþq� cTxi �1ð Þp c
Txj�1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi�1ð Þp c
Txj �1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA
;

0
BBBBBBBB@

1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA
;

1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA

1
CCCCCCCCA
;

ð13Þ

�F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ 1� logc 1þ c� 1ð Þ
Yn
i;j¼1;

i6¼j

c� 1ð Þpþq� cTxi � 1ð Þp cTxj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ cTxi � 1ð Þp cTxj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA;

0
BB@

logc 1þ c� 1ð Þ
Yn
i;j¼1;

i 6¼j

c� 1ð Þpþq� c1�Ixi � 1ð Þp c1�Ixj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixi � 1ð Þp c1�Ixj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA;

logc 1þ c� 1ð Þ
Yn
i;j¼1;

i6¼j

c� 1ð Þpþq� c1�Fxi � 1ð Þp c1�Fxj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxi � 1ð Þp c1�Fxj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA
1
CCA:

ð14Þ
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(a) When n = 2, based on operations (2) and (4) in

Definition 13, we can determine that

x1ð Þ^Fp ¼ logc 1þ cTx1 � 1ð Þp

c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ix1 � 1
� �p
c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fx1 � 1
� �p
c� 1ð Þp�1

 !!
;

x1ð Þ^Fq ¼ logc 1þ cTx1 � 1ð Þp

c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ix1 � 1
� �q
c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fx1 � 1
� �q
c� 1ð Þq�1

 !!
;

x2ð Þ^Fp ¼ logc 1þ cTx2 � 1ð Þp

c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ix2 � 1
� �p
c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fx2 � 1
� �p
c� 1ð Þp�1

 !!
;

x2ð Þ^Fq ¼ logc 1þ cTx2 � 1ð Þq

c� 1ð Þq�1

 !
;

 

1� logc 1þ
c1�Ix2 � 1
� �q
c� 1ð Þq�1

 !
;

1� logc 1þ
c1�Fx2 � 1
� �q
c� 1ð Þq�1

 !!
;

x1ð Þ^Fp �F x2ð Þ^Fq ¼ logc 1þ cTx1 � 1ð Þp cTx2 � 1ð Þq

c� 1ð Þpþq�1

 !
;

 

1� logc 1þ
c1�Ix1 � 1
� �p

c1�Ix2 � 1
� �q

c� 1ð Þpþq�1

 !
;

1� logc 1þ
c1�Fx1 � 1
� �p

c1�Fx2 � 1
� �q

c� 1ð Þpþq�1

 !!
;

and

x2ð Þ^Fp �F x1ð Þ^Fq ¼ logc 1þ cTx2 � 1ð Þp cTx1 � 1ð Þq

c� 1ð Þpþq�1

 !
;

 

1� logc 1þ
c1�Ix2 � 1
� �p

c1�Ix1 � 1
� �q

c� 1ð Þpþq�1

 !
;

1� logc 1þ
c1�Fx2 � 1
� �p

c1�Fx1 � 1
� �q

c� 1ð Þpþq�1

 !!
:

Therefore, based on operation (3) in Definition 13, we can

determine that

w1w2

1� w1

�F x1ð Þ^Fp�F x2ð Þ^Fq
� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx1 � 1ð Þp cTx2 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx1 � 1ð Þp cTx2 � 1ð Þq
� �w1w2

1�w1

 !
;

 

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix1 � 1

� �p
c1�Ix2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix1 � 1
� �p

c1�Ix2 � 1
� �q

 !w1w2
1�w1

0
@

1
A;

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Fx1 � 1

� �p
c1�Fx2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx1 � 1
� �p

c1�Fx2 � 1
� �q

 !w1w2
1�w1

0
@

1
A
1
A;

808 Neural Comput & Applic (2018) 30:799–823

123



and

Then,

w1w2

1� w2

�F x2ð Þ^Fp�F x1ð Þ^Fq
� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx2 � 1ð Þp cTx1 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx2 � 1ð Þp cTx1 � 1ð Þq
� �w1w2

1�w2

 !
;

 

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix2 � 1

� �p
c1�Ix1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix2 � 1
� �p

c1�Ix1 � 1
� �q

 !w1w2
1�w2

0
@

1
A

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Fx2 � 1

� �p
c1�Fx1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx2 � 1
� �p

c1�Fx1 � 1
� �q

 !w1w2
1�w2

0
@

1
A
1
A:

�F

2

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ w1w2

1� w1

�F x1ð ÞF̂p�F x2ð ÞF̂q
� �� �

�F

w1w2

1� w2

�F x2ð ÞF̂p�F x1ð ÞF̂q
� �� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx1 � 1ð Þp cTx2 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx1 � 1ð Þp cTx2 � 1ð Þq
� �w1w2

1�w1

  

c� 1ð Þpþq� cTx2 � 1ð Þp cTx1 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx2 � 1ð Þp cTx1 � 1ð Þq
� �w1w2

1�w2

!
;

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix1 � 1

� �p
c1�Ix2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix1 � 1
� �p

c1�Ix2 � 1
� �q

 !w1w2
1�w1

0
@

c� 1ð Þpþq� c1�Ix2 � 1
� �p

c1�Ix1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix2 � 1
� �p

c1�Ix1 � 1
� �q

 !w1w2
1�w2

1
A;

logc c� 1ð Þ
c� 1ð Þpþq� c1�Fx1 � 1

� �p
c1�Fx2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx1 � 1
� �p

c1�Fx2 � 1
� �q

 !w1w2
1�w1

0
@

c� 1ð Þpþq� c1�Fx2 � 1
� �p

c1�Fx1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx2 � 1
� �p

c1�Fx1 � 1
� �q

 !w1w2
1�w2

1
A
1
A:

Neural Comput & Applic (2018) 30:799–823 809

123



In other words, when n = 2, Eq. (14) holds.

(b) Assuming Eq. (14) holds for n = k, we can obtain

the following equation:

When n = k ? 1, based on property (FP8) in Theo-

rem 1, we have

�F

kþ1

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ �F

k

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

þ�F

k

i¼1

wiwkþ1

1� wi

�F xið Þ^Fp�F xkþ1ð Þ^Fq
� �� �

þ�F

k

j¼1

wkþ1wj

1� wkþ1

�F xkþ1ð Þ^Fp�F xj
� �^Fq

� �� �
:

The following equation can be proven to calculate the

value of �F

kþ1

i;j¼1;

i 6¼j

wiwj

1�wi
�F

�
xið Þ^Fp�F xj

� �^Fq
� �

Þ:

Equation (16) can be proven using mathematical

induction.

(i) When k = 2, based on operations (2) and (4) in

Definition 13, we can determine that

x1ð Þ^Fp ¼ logc 1þ cTx1 � 1ð Þp

c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ix1 � 1
� �p
c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fx1 � 1
� �p
c� 1ð Þp�1

 !!
;

�F

k

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ 1� logc 1þ c� 1ð Þ
Yk
i;j¼1;

i6¼j

c� 1ð Þpþq� cTxi � 1ð Þp cTxj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ cTxi � 1ð Þp cTxj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA;

0
BB@

logc 1þ c� 1ð Þ
Yn
i;j¼1;

i 6¼j

c� 1ð Þpþq� c1�Ixi � 1ð Þp c1�Ixj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixi � 1ð Þp c1�Ixj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA;

logc 1þ c� 1ð Þ
Yn
i;j¼1;

i6¼j

c� 1ð Þpþq� c1�Fxi � 1ð Þp c1�Fxj � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxi � 1ð Þp c1�Fxj � 1
� �q

 !wiwj
1�wi

0
BB@

1
CCA
1
CCA:

ð15Þ

�F

k

i¼1

wiwkþ1

1� wi

�F xið Þ^Fp�F xkþ1ð Þ^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� cTxi � 1ð Þp cTxkþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Txi � 1ð Þp c1�Txkþ1 � 1
� �q

 !wiwkþ1
1�wi

0
@

1
A;

0
@

logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� c1�Ixi � 1ð Þp c1�Ixkþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixi � 1ð Þp c1�Ixkþ1 � 1
� �q

 !wiwkþ1
1�wi

0
@

1
A;

logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� c1�Fxi � 1ð Þp c1�Fxkþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxi � 1ð Þp c1�Fxkþ1 � 1
� �q

 !wiwkþ1
1�wi

0
@

1
A
1
A:

ð16Þ
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x2ð Þ^Fp ¼ logc 1þ cTx2 � 1ð Þp

c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ix2 � 1
� �p
c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fx2 � 1
� �p
c� 1ð Þp�1

 !!
;

x3ð Þ^Fq ¼ logc 1þ cTx3 � 1ð Þq

c� 1ð Þq�1

 !
;

 

1� logc 1þ
c1�Ix3 � 1
� �q
c� 1ð Þq�1

 !
;

1� logc 1þ
c1�Fx3 � 1
� �q
c� 1ð Þq�1

 !!
;

x1ð Þ^Fp�F x3ð Þ^Fq ¼ logc 1þ cTx1 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþq�1

 !
;

 

1� logc 1þ
c1�Ix1 � 1
� �p

c1�Ix3 � 1
� �q

c� 1ð Þpþq�1

 !
;

1� logc 1þ
c1�Fx1 � 1
� �p

c1�Fx3 � 1
� �q

c� 1ð Þpþq�1

 !!
;

and

x2ð Þ^Fp�F x3ð Þ^Fq ¼ logc 1þ cTx2 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþq�1

 !
;

 

1� logc 1þ
c1�Ix2 � 1
� �p

c1�Ix3 � 1
� �q

c� 1ð Þpþq�1

 !
;

1� logc 1þ
c1�Fx2 � 1
� �p

c1�Fx3 � 1
� �q

c� 1ð Þpþq�1

 !!
:

Therefore, based on operation (3) in Definition 13, we can

determine that

and

w1w3

1� w1

�F x1ð Þ^Fp�F x3ð Þ^Fq
� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx1 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx1 � 1ð Þp cTx3 � 1ð Þq
� �w1w3

1�w1

 !
;

 

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix1 � 1

� �p
c1�Ix3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix1 � 1
� �p

c1�Ix3 � 1
� �q

 !w1w3
1�w1

0
@

1
A;

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Fx1 � 1

� �p
c1�Fx3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx1 � 1
� �p

c1�Fx3 � 1
� �q

 !w1w3
1�w1

0
@

1
A
1
A;

w2w3

1� w3

�F x2ð Þ^Fp�F x3ð Þ^Fq
� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx2 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx2 � 1ð Þp cTx3 � 1ð Þq
� �w2w3

1�w2

 !
;

 

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix2 � 1

� �p
c1�Ix3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix2 � 1
� �p

c1�Ix3 � 1
� �q

 !w2w3
1�w2

0
@

1
A

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Fx2 � 1

� �p
c1�Fx3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx2 � 1
� �p

c1�Fx3 � 1
� �q

 !w2w3
1�w2

0
@

1
A
1
A:
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Then,

in other words, when k = 2, Eq. (16) holds.

(ii) Assuming Eq. (16) holds for k = h, we can deter-

mine that

�F

2

i¼1

wiw3

1� wi

�F xið Þ^Fp�F x3ð Þ^Fq
� �� �

¼ w1w3

1� w1

�F x1ð Þ^Fp�F x3ð Þ^Fq
� �� �

�F

w2w3

1� w2

�F x2ð Þ^Fp�F x3ð Þ^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ c� 1ð Þpþq� cTx1 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx1 � 1ð Þp cTx3 � 1ð Þq
� �w1w3

1�w1

  

c� 1ð Þpþq� cTx2 � 1ð Þp cTx3 � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTx2 � 1ð Þp cTx3 � 1ð Þq
� �w2w3

1�w2

!
;

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ix1 � 1

� �p
c1�Ix3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix1 � 1
� �p

c1�Ix3 � 1
� �q

 !w1w3
1�w1

0
@

c� 1ð Þpþq� c1�Ix2 � 1
� �p

c1�Ix3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ix2 � 1
� �p

c1�Ix3 � 1
� �q

 !w2w3
1�w2

1
A;

logc c� 1ð Þ
c� 1ð Þpþq� c1�Fx1 � 1

� �p
c1�Fx3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx1 � 1
� �p

c1�Fx3 � 1
� �q

 !w1w3
1�w1

0
@

c� 1ð Þpþq� c1�Fx2 � 1
� �p

c1�Fx3 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fx2 � 1
� �p

c1�Fx3 � 1
� �q

 !w2w3
1�w2

1
A
1
A;

�F

h

i¼1

wiwkþ1

1� wi

�F xið Þ^Fp�F xhþ1ð Þ^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ
Yh
i¼1

c� 1ð Þpþq� cTxi � 1ð Þp cTxhþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ cTxi � 1ð Þp cTxhþ1 � 1
� �q

 !wiwhþ1
1�wi

0
@

1
A;

0
@

logc 1þ c� 1ð Þ
Yh
i¼1

c� 1ð Þpþq� c1�Ixi � 1ð Þp c1�Ixhþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixi � 1ð Þp c1�Ixhþ1 � 1
� �q

 !wiwhþ1
1�wi

0
@

1
A;

logc 1þ c� 1ð Þ
Yh
i¼1

c� 1ð Þpþq� c1�Fxi � 1ð Þp c1�Fxhþ1 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxi � 1ð Þp c1�Fxhþ1 � 1
� �q

 !wiwhþ1
1�wi

0
@

1
A
1
A:
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Moreover, it is true that

�F

hþ1

i¼1

wiwhþ2

1� wi

�F xið Þ^Fp�F xhþ2ð Þ^Fq
� �� �

¼ �F

h

i¼1

wiwhþ2

1� wi

�F xið Þ^Fp�F xhþ1ð Þ^Fq
� �� �

�F

whþ1whþ2

1� wi

�F xhþ1ð Þ^Fp�F xhþ2ð Þ^Fq
� �� �

:

Based on operations (2) and (4) in Definition 13,

xhþ1ð Þ^Fp ¼ logc 1þ
cTxhþ1 � 1
� �p
c� 1ð Þp�1

 !
;

 

1� logc 1þ
c1�Ixhþ1 � 1
� �p

c� 1ð Þp�1

 !
;

1� logc 1þ
c1�Fxhþ1 � 1
� �p

c� 1ð Þp�1

 !!
;

xhþ2ð Þ^Fq ¼ logc 1þ
cTxhþ2 � 1
� �q
c� 1ð Þq�1

 !
;

 

1� logc 1þ
c1�Ixhþ2 � 1
� �q

c� 1ð Þq�1

 !
;

1� logc 1þ
c1�Fxhþ2 � 1
� �q

c� 1ð Þq�1

 !!
;

xhþ1ð Þ^Fp�F xhþ2ð Þ^Fq

¼ logc 1þ
cTxhþ1 � 1
� �p

cTxhþ2 � 1
� �q

c� 1ð Þpþq�1

 !
;

 

1� logc 1þ
c1�Ixhþ1 � 1
� �p

c1�Ixhþ2 � 1
� �q

c� 1ð Þpþq�1

 !
;

1� logc 1þ
c1�Fxhþ1 � 1
� �p

c1�Fxhþ2 � 1
� �q

c� 1ð Þpþq�1

 !!
:

Hence, it is clear that

Hence, it is clear that

whþ1whþ2

1� whþ1

�F xhþ1ð Þ^Fp�F xhþ2ð Þ^Fq
� �

¼ 1� logc 1þ c� 1ð Þ
c� 1ð Þpþq� cTxhþ1 � 1

� �p
cTxhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ cTxhþ1 � 1
� �p

cTxhþ2 � 1
� �q

 !whþ1whþ2
1�whþ1

0
@

1
A;

0
@

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Ixhþ1 � 1

� �p
c1�Ixhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixhþ1 � 1
� �p

c1�Ixhþ2 � 1
� �q

 !whþ1whþ2
1�whþ1

0
@

1
A;

logc 1þ c� 1ð Þ
c� 1ð Þpþq� c1�Fxhþ1 � 1

� �p
c1�Fxhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxhþ1 � 1
� �p

c1�Fxhþ2 � 1
� �q

 !whþ1whþ2
1�whþ1

0
@

1
A
1
A:

�F

hþ1

i¼1

wiwhþ2

1� wi

�F xið Þ^Fp�F xhþ2ð Þ^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ
Yhþ1

i¼1

c� 1ð Þpþq� cTxi � 1ð Þp cTxhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ cTxi � 1ð Þp cTxhþ2 � 1
� �q

 !wiwhþ2
1�wi

0
@

1
A;

0
@

logc 1þ c� 1ð Þ
Yhþ1

i¼1

c� 1ð Þpþq� c1�Ixi � 1ð Þp c1�Ixhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Ixi � 1ð Þp c1�Ixhþ2 � 1
� �q

 !wiwhþ2
1�wi

0
@

1
A;

logc 1þ c� 1ð Þ
Yhþ1

i¼1

c� 1ð Þpþq� c1�Fxi � 1ð Þp c1�Fxhþ2 � 1
� �q

c� 1ð Þpþqþ c� 1ð Þ c1�Fxi � 1ð Þp c1�Fxhþ2 � 1
� �q

 !wiwhþ2
1�wi

0
@

1
A
1
A;
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in other words, it is true that Eq. (16) holds for k = h ? 1.

Therefore, Eq. (16) is true for all k.

The following equation can be proven in a similar

fashion.

Therefore, based on Eqs. (15), (16), and (17), we can

determine that

�F

kþ1

i;j¼1;
i6¼j

wiwj

1�wi
�F xið Þ^Fp�F xj

� �^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ
Qkþ1

i;j¼1;

i6¼j

c�1ð Þpþq� cTxi �1ð Þp c
Txj �1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi�1ð Þp c
Txj �1ð Þq

� �wiwj
1�wi

0
BB@

1
CCA;

0
BB@

logc 1þ c� 1ð Þ
Qkþ1

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi �1ð Þp c
1�Ixj �1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi �1ð Þp c
1�Ixj �1ð Þq

� �wiwj
1�wi

0
BB@

1
CCA;

logc 1þ c� 1ð Þ
Qkþ1

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi�1ð Þp c
1�Fxj �1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi �1ð Þp c
1�Fxj �1ð Þq

� �wiwj
1�wi

0
BB@

1
CCA
1
CCA;

in other words, it is true that Eq. (14) holds for k = h ? 1.

Therefore, Eq. (14) is also true for all k.

(2) According to Eq. (14) and operation (4) in Definition

13,

�F

k

i¼1

wkþ1wi

1� wkþ1

�F xkþ1ð Þ^Fp�F xið Þ^Fq
� �� �

¼ 1� logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� cTxkþ1 � 1
� �p

cTxi � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ cTxkþ1 � 1
� �p

cTxi � 1ð Þq

 !wiwkþ1
1�wkþ1

0
@

1
A;

0
@

logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� c1�Ixkþ1 � 1
� �p

c1�Ixi � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ c1�Ixkþ1 � 1
� �p

c1�Ixi � 1ð Þq

 !wiwkþ1
1�wkþ1

0
@

1
A;

logc 1þ c� 1ð Þ
Yk
i¼1

c� 1ð Þpþq� c1�Fxkþ1 � 1
� �p

c1�Fxi � 1ð Þq

c� 1ð Þpþqþ c� 1ð Þ c1�Fxkþ1 � 1
� �p

c1�Fxi � 1ð Þq

 !wiwkþ1
1�wkþ1

0
@

1
A
1
A:

ð17Þ

SVNFNPBMp;qðx1; x2; . . .; xnÞ ¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

¼ logc 1þ c� 1ð Þ
1�

Qn
i¼1

c�1ð Þpþq� cTxi �1ð Þp c
Txj�1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi �1ð Þp c
Txj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn
i¼1

c�1ð Þpþq� cTxi�1ð Þp c
Txj �1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi �1ð Þp c
Txj�1ð Þq

� �wiwj
1�wi

0
BBBB@

1
CCCCA

1
pþq

0
BBBBB@

1
CCCCCA
;

0
BBBBB@

1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi�1ð Þp c
1�Ixj �1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi �1ð Þp c
1�Ixj �1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj �1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA
;

1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi �1ð Þp c
1�Fxj �1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi�1ð Þp c
1�Fxj �1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i6¼j

c�1ð Þpþq� c1�Fxi �1ð Þp c
1�Fxj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi �1ð Þp c
1�Fxj �1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA

1
CCCCCCCCA
:
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In addition, the following inequalities are correct:

and

which meet the requirements of an SVNN.

Therefore, Theorem 2 holds.

Example 2 Let x1 = (0.4, 0.2, 0.3) and x2 = (0.6, 0.1,

0.2) be two SVNNs, and let p = q = 1 and C1 	 C2.

Based on Eq. (1),

H2 ¼ s x1ð Þ ¼ 1þ 0:4� 0:4� 0:3

2
¼ 0:35:

Therefore,

w1 ¼
1

1þ 0:35
¼ 0:741

and

w2 ¼
0:35

1þ 0:35
¼ 0:259:

0� logc 1þ c� 1ð Þ
1�

Qn
i¼1

c�1ð Þpþq� cTxi�1ð Þp c
Txj�1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi�1ð Þp c
Txj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn
i¼1

c�1ð Þpþq� cTxi�1ð Þp c
Txj �1ð Þq

c�1ð Þpþqþ c�1ð Þ cTxi�1ð Þp c
Txj�1ð Þq

� �wiwj
1�wi

0
BBBB@

1
CCCCA

1
pþq

0
BBBBB@

1
CCCCCA

� 1;

0� 1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi �1ð Þp c
1�Ixj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Ixi �1ð Þp c
1�Ixj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Ixi�1ð Þp c
1�Ixj�1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA

� 1;

0� 1� logc 1þ c� 1ð Þ

1�
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi �1ð Þp c
1�Fxj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

� �wiwj
1�wi

1þ c� 1ð Þ
Qn

i;j¼1;

i 6¼j

c�1ð Þpþq� c1�Fxi�1ð Þp c
1�Fxj�1ð Þq

c�1ð Þpþqþ c�1ð Þ c1�Fxi�1ð Þp c
1�Fxj �1ð Þq

� �wiwj
1�wi

0
BBBBBBB@

1
CCCCCCCA

1
pþq

0
BBBBBBBB@

1
CCCCCCCCA

� 1;
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Suppose that c = 2, then, according to Eq. (13),

SVNFPBM1;1 x1; x2ð Þ

¼ log2 1þ
1� 1� 2Tx1 �1ð Þ 2Tx2�1ð Þ

1þ 2Tx1 �1ð Þ 2Tx2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

1þ 1� 2Tx1 �1ð Þ 2Tx2�1ð Þ
1þ 2Tx1 �1ð Þ 2Tx2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

0
BBBB@

1
CCCCA

1
2

0
BBBBB@

1
CCCCCA
;

0
BBBBB@

1� log2 1þ
1� 1� 21�Ix1�1ð Þ 21�Ix2�1ð Þ

1þ 21�Ix1�1ð Þ 21�Ix2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

1þ 1� 21�Ix1�1ð Þ 21�Ix2�1ð Þ
1þ 21�Ix1�1ð Þ 21�Ix2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

0
BBBB@

1
CCCCA

1
2

0
BBBBB@

1
CCCCCA
;

1� log2 1þ
1� 1� 21�Fx1�1ð Þ 21�Fx2�1ð Þ

1þ 21�Fx1�1ð Þ 21�Fx2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

1þ 1� 21�Fx1�1ð Þ 21�Fx2�1ð Þ
1þ 21�Fx1�1ð Þ 21�Fx2�1ð Þ

� �w1w2
1�w1

þw1w2
1�w2

0
BBBB@

1
CCCCA

1
2

0
BBBBB@

1
CCCCCA

1
CCCCCA

¼ log2 1þ
1� 1� 20:4�1ð Þ 20:6�1ð Þ

1þ 20:4�1ð Þ 20:6�1ð Þ

� �

1þ 1� 2Tx1 �1ð Þ 2Tx2�1ð Þ
1þ 2Tx1 �1ð Þ 2Tx2�1ð Þ

� �
0
BB@

1
CCA

1
2

0
BBB@

1
CCCA;

0
BBB@

1� log2 1þ
1� 1� 20:8�1ð Þ 20:9�1ð Þ

1þ 20:8�1ð Þ 20:9�1ð Þ

� �

1þ 1� 20:8�1ð Þ 20:9�1ð Þ
1þ 20:8�1ð Þ 20:9�1ð Þ

� �
0
BB@

1
CCA

1
2

0
BBB@

1
CCCA;

1� log2 1þ
1� 1� 20:7�1ð Þ 20:8�1ð Þ

1þ 20:7�1ð Þ 20:8�1ð Þ

� �

1þ 1� 20:7�1ð Þ 20:8�1ð Þ
1þ 20:7�1ð Þ 20:8�1ð Þ

� �
0
BB@

1
CCA

1
2

0
BBB@

1
CCCA

1
CCCA

¼ 0:492; 0:151; 0:251ð Þ:

The following section investigates some additional

properties of the SVNFNPBM operator.

Theorem 3 (Reducibility) Let C1, C2, …, Cn have the same

priority level; that is, wi ¼ 1
n

(i = 1, 2, …, n). Then,

SVNFNPBMp,q (x1, x2, …, xn) = SVNFBMp,q (x1, x2, …,

xn).

Proof When wi ¼ 1
n
(i = 1, 2, …, n), based on Eq. (12),

we can determine that

SVNFNPBMp;q x1; x2; . . .; xnð Þ

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

¼ �F

n

i;j¼1;

i6¼j

1

n n� 1ð Þ �F xið Þ^Fp�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

:

Based on the property (FP3) in Theorem 1,

�F

n

i;j¼1;

i6¼j

1

n n� 1ð Þ �F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ 1

n n� 1ð Þ �F �F

n

i;j¼1;

i 6¼j

xið Þ^Fp�F xj
� �^Fq

� �
:

Therefore,

SVNFNPBMp;q x1; x2; . . .; xnð Þ

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^F�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

¼ 1

n n� 1ð Þ �F �F

n

i;j¼1;

i6¼j

xið Þ^Fp�F xj
� �^Fq

� �0
B@

1
CA

^F
1

pþq

¼ SVNFBMp;q x1; x2; . . .; xnð Þ:

Theorem 4 (Idempotency) Let all SVNNs xi (i = 1, 2,

…, n) be equal, i.e., xi = x. Then, IVNBMp,q(x1, x2,

…, xn) = x.

Proof Since xi = x (i = 1, 2, …, n),

�F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xð Þ^Fp�F xð Þ^Fq
� �� �

:

Based on the property (FP6) in Theorem 1,
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�F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xð Þ^F pþqð Þ
� �

:

By applying Eq. (12) and property (FP5) in Theorem 1, we

can determine that

SVNFNPBMp;q x1; x2; . . .; xnð Þ

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xið Þ^Fp�F xj
� �^Fq

� �� �0
B@

1
CA

^F
1

pþq

¼ �F

n

i;j¼1;

i6¼j

wiwj

1� wi

�F xð Þ^F pþqð Þ
� �� �0

B@
1
CA

^F
1

pþq

¼
Xn
i;j¼1;

i6¼j

wiwj

1� wi

� �0
BB@

1
CCA �F xð Þ^F pþqð Þ

� �
0
BB@

1
CCA

^F
1

pþq

¼ xð Þ^F pþqð Þ
� �^F

1
pþq¼ x:

5 Method for selecting TPL providers

This section establishes a novel method for selecting TPL

providers using SVNNs.

Assume that there are m alternative TPL providers

P = {P1, P2, …, Pm} and n criteria C = {C1, C2, …, Cn}.

The criteria are correlative, the priority levels of the n criteria

are different, and the alternatives will be assessed by e deci-

sion makers. If e = 1, selecting TPL provider is an MCDM

problem. Let U = (aij)m9n be a single-valued neutrosophic

decision matrix where aij ¼ Taij ; Iaij ;Faij

� 	
is an evaluation

value denoted by an SVNN.Moreover, Taij in aij indicates the

degree of truth-membership to which the provider Pi satisfies

criterion Cj, Iaij in aij indicates the degree of indeterminacy-

membership to which the providerPi satisfies criterionCj, and

Faij in aij indicates the degree of falsity-membership to which

the provider Pi satisfies criterion Cj. If e[1, the selection of

the TPL provider becomes a group decision-making problem.

LetUk = (aij
k)m9n be the single-valued neutrosophic decision

matrix provided by the k-th (k = 1, 2, …, e) decision maker,

and akij ¼ Tak
ij
; Iak

ij
;Fak

ij

D E
. Then,x¼ x1;x2; . . .;xeð ÞT will be

the weight vector of the decision makers.

The following section proposes a method to rank TPL

provider(s) and select the perfect one based upon the

SVNFNPBM operator.

Step 1: Normalize the decision matrix.

Two kinds of different criteria can exist in problems of

selecting TPL providers: benefit criteria and cost criteria.

To unify all criteria, the decision matrix must be

normalized. If e = 1, the normalized decision matrix

N = (gij)m9n can be obtained by

gij ¼
aij; if Cj is a benefit criterion;
acij; else;



ð18Þ

where aij
c is the complement of aij, and aij

c can be cal-

culated according to Definition 3.

If e[ 1, the decision matrices Uk (k = 1, 2, …, e) can

be normalized as Nk = (gij
k)m9n by

gkij ¼
akij; if Cj is a benefit criterion;

akcij ; else;

(
ð19Þ

where gkij ¼ hTgk
ij
; Igk

ij
;Fgk

ij
i; aijkc is the complement of aij

k ,

and aij
kc can be calculated according to Definition 3.

Step 2: Obtain the comprehensive decision matrix.

If e = 1, the decision matrix does not need to be

integrated, and the comprehensive decision matrix is

N* = (bij)m9n = N. If e[ 1, based on the Frank

weighted average operator of SVNSs, the comprehen-

sive decision matrix N* = (bij)m9n can be obtained by

bij = SVNFWA g1ij; g
2
ij; . . .; g

e
ij

� �

¼ 1� logc 1þ

Qe
k¼1

c
1�T

gk
ij � 1

� �xk

c� 1ð Þ
Qe
k¼1

c� 1ð Þxk�1

0
BB@

1
CCA;

0
BB@

logc 1þ

Qe
k¼1

c
I
gk
ij � 1

� �xk

c� 1ð Þ
Qe
k¼1

c� 1ð Þxk�1

0
BB@

1
CCA;

logc 1þ

Qe
k¼1

c
F
gk
ij � 1

� �xk

c� 1ð Þ
Qe
k¼1

c� 1ð Þxk�1

0
BB@

1
CCA
1
CCA:

ð20Þ

Step 3: Obtain the score value scij of each bij (i = 1,

2, …, m; j = 1, 2, …, n).

Using Eq. (1), we can obtain the score value scij of each

bij.

Step 4: Obtain the value of Hij (i = 1, 2, …, m;

j = 1, 2, …, n).

Hij can be calculated based on the score value scij of

each bij using the following equation:

Hij ¼
Yj�1

t¼1

scit; Hi1 ¼ 1: ð21Þ
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Step 5: Obtain the weight wij of each bij (i = 1, 2,

…, m; j = 1, 2, …, n).

wij can be calculated on the basis of Hij using the

following equation:

wij ¼
HijPn
t¼1 Hit

: ð22Þ

Step 6: Obtain the overall performance value ri
(i = 1, 2, …, m) of TPL provider Pi.

The overall performance value ri can be obtained using

the SVNFNPBM operator in Eq. (13).

Step 7: Obtain the score value sci of each ri
(i = 1, 2, …, m).

Using the score function of the SVNN in Eq. (1), we can

obtain the score value sci of each ri.

Step 8: Obtain the accuracy value li of each ri
(i = 1, 2, …, m).

Based on the accuracy function of the SVNN in Eq. (2),

we can obtain the accuracy value li of each ri.

Step 9: Rank TPL providers according to the comparison

method of SVNNs.

Using the comparison method presented in Definition 6,

we can obtain the ranking order of alternative TPL

providers.

6 Numerical example

6.1 The steps of the proposed method

This subsection uses a numerical example of selecting TPL

providers with SVNNs to verify the applicability of the

proposed approach.

The following example of selecting TPL providers is

adapted from Ref. [69].

An electronic commerce retailer intends to find an

appropriate TPL provider with whom to carry out long-

term cooperation. Preliminary selection identifies four

alternative providers {P1, P2, P3, P4}. These TPL provi-

ders are assessed by experts with respect to four criteria:

(1) the cost of service (C1); (2) operational experience in

the industry (C2); (3) customer satisfaction (C3); and (4)

market reputation (C4). C2, C3, and C4 are benefit criteria,

while C1 is a cost criterion. The electronic commerce

retailer identifies the priority relationship of the four cri-

teria as C3 	 C1 	 C4 	 C2. Moreover, these four criteria

are correlative. For the sake of reflecting reality in more

detail and obtaining fuzzy and uncertain information, the

evaluation values provided by one expert are transformed

into SVNNs. Table 1 lists the transformed decision

information.

Step 1: Normalize the decision matrix.

Since C2, C3, and C4 are benefit criteria, while C1 is a

cost criterion, the decision matrix needs to be normal-

ized using Eq. (18). Table 2 presents the normalized

decision information.

Step 2: Obtain the comprehensive decision matrix.

Since e = 1, the decision matrix does not need to be

integrated, and the comprehensive decision matrix is the

same matrix presented in Table 2.

Step 3: Obtain the score value scij of each bij
(i = 1, 2, …, m; j = 1, 2, …, n).

Using Eq. (1), the score value scij of each bij can be

obtained. Table 3 shows the corresponding score values

scij(i = 1, 2, …, m; j = 1, 2, …, n).

Step 4: Obtain the value of Hij (i = 1, 2, …, m; j =

1, 2, …, n).

Using Eq. (21), the value of Hij can be obtained. Table 4

gives the corresponding values.

Step 5: Obtain the weight wij of each bij (i = 1, 2,

…, m; j = 1, 2, …, n).

Using Eq. (22), the weight wij of each bij can be

obtained. Table 5 depicts the corresponding weights wij

(i = 1, 2, …, m; j = 1, 2, …, n).

Step 6: Obtain the overall performance value ri
(i = 1, 2, …, m) of provider Pi.

Table 1 Transformed decision information

C1 C2 C3 C4

P1 h0.3, 0.9, 0.5i h0.5, 0.1, 0.4i h0.7, 0.1, 0.2i h0.3, 0.2, 0.1i
P2 h0.3, 0.8, 0.4i h0.3, 0.2, 0.4i h0.9, 0.0, 0.1i h0.5, 0.3, 0.2i
P3 h0.1, 0.7, 0.4i h0.5, 0.1, 0.3i h0.5, 0.0, 0.4i h0.6, 0.2, 0.2i
P4 h0.2, 0.9, 0.6i h0.2, 0.2, 0.5i h0.4, 0.3, 0.2i h0.7, 0.2, 0.1i

Table 2 Normalized decision information

C1 C2 C3 C4

P1 h0.5, 0.1, 0.3i h0.5, 0.1, 0.4i h0.7, 0.1, 0.2i h0.3, 0.2, 0.1i
P2 h0.4, 0.2, 0.3i h0.3, 0.2, 0.4i h0.9, 0.0, 0.1i h0.5, 0.3, 0.2i
P3 h0.4, 0.3, 0.1i h0.5, 0.1, 0.3i h0.5, 0.0, 0.4i h0.6, 0.2, 0.2i
P4 h0.6, 0.1, 0.2i h0.2, 0.2, 0.5i h0.4, 0.3, 0.2i h0.7, 0.2, .01i

Table 3 The score values
C1 C2 C3 C4

P1 0.5 0.45 0.65 0.4

P2 0.35 0.25 0.9 0.35

P3 0.35 0.55 0.55 0.5

P4 0.6 0.15 0.3 0.6
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According to the SVNFNPBM operator in Eq. (13),

supposing that c = 2 [66] and p = q = 1 [53], the

overall performance value ri of each provider Pi can be

identified as follows: r1 = (0.5394, 0.1167, 0.2255),

r2 = (0.589, 0.1331, 0.2096), r3 = (0.4789, 0.1388,

0.2549), and r4 = (0.4856, 0.2182, 0.2059).

Step 7: Obtain the score value sci of each ri (i = 1, 2,

…, m).

According to Eq. (1), the score value sci of each ri can

be identified as sc1 = 0.5403, sc2 = 0.5566, sc3 =

0.5732, and sc4 = 0.4216.

Step 8: Obtain the accuracy value li of each ri (i = 1, 2,

…, m).

Using Eq. (2), the accuracy value li of each ri can be

identified as l1 = 0.2865, l2 = 0.3525, l3 = 0.1871, and

l4 = 0.2124.

Step 9: Rank the TPL providers using the comparison

method for SVNNs.

Since sc3[ sc2[ sc1[ sc4, according to the compar-

ison method in Definition 6, we can rank the TPL

providers as P3 	 P2 	 P1 	 P4. The most desirable

TPL provider is P3.

6.2 Influence of parameters

To investigate the influence of various parameters, this

subsection calculates the ranking results with varying val-

ues for p, q, and c. Two parts are included in this subsec-

tion. The first part discusses the impact of p and q on the

ranking order, and the second one discusses the influence

of c.
To study the impact of p and q, in the first part, we

determine and compare the ranking results using different

pairs of p and q. The pairs of p and q can be distributed into

three classes. The value of p is smaller than that of q in the

first class, the value of p equals that of q in the second

class, while the value of p is greater than that of q in the

third class. In addition to changing the relationships

between p and q, we also explore the effect of p and q on

the ranking order of the four TPL providers by increasing

the difference between p and q. Table 6 shows the signif-

icant pairs of p and q and their respective final ranking

orders according to the proposed method.

As Table 6 shows, these three classes may produce

different ranking orders. Furthermore, different ranking

orders may exist within the same class in the presence of

distinct differences between p and q. The first class yields

two different rankings. When the value of p is smaller than

0.01, TPL provider P3 performs better than TPL provider

P1. Meanwhile, the company prefers P1 to P3 when p is

Table 4 The value of Hij

C1 C2 C3 C4

P1 0.65 0.13 1 0.325

P2 0.9 0.1102 1 0.315

P3 0.55 0.0963 1 0.1925

P4 0.3 0.108 1 0.18

Table 5 The corresponding weight matrix

C1 C2 C3 C4

P1 0.3088 0.0618 0.4751 0.1544

P2 0.3871 0.0474 0.4301 0.1355

P3 0.2991 0.0523 0.5438 0.1047

P4 0.1889 0.068 0.6297 0.1134

Table 6 The ranking orders of

the TPL providers with different

p and q

p, q Score value sci Ranking order

p = 0.001, q = 1 sc1 = 0.5475, sc2 = 0.7249, sc3 = 0.6175, sc4 = 0.4939 P2 	 P3 	 P1 	 P4

p = 0.01, q = 1 sc1 = 0.5469, sc2 = 0.697, sc3 = 0.587, sc4 = 0.4919 P2 	 P3 	 P1 	 P4

p = 0.1, q = 1 sc1 = 0.5426, sc2 = 0.6263, sc3 = 0.525, sc4 = 0.4751 P2 	 P1 	 P3 	 P4

p = 1, q = 2 sc1 = 0.5436, sc2 = 0.5699, sc3 = 0.4804, sc4 = 0.4474 P2 	 P1 	 P3 	 P4

p = 1, q = 5 sc1 = 0.5701, sc2 = 0.6524, sc3 = 0.5313, sc4 = 0.5021 P2 	 P1 	 P3 	 P4

p = 1, q = 10 sc1 = 0.6068, sc2 = 0.7391, sc3 = 0.5984, sc4 = 0.5548 P2 	 P1 	 P3 	 P4

p = 0.1, q = 0.1 sc1 = 0.5365, sc2 = 0.5524, sc3 = 0.4712, sc4 = 0.4148 P2 	 P1 	 P3 	 P4

p = 1, q = 1 sc1 = 0.5403, sc2 = 0.5566, sc3 = 0.4732, sc4 = 0.4216 P2 	 P1 	 P3 	 P4

p = 4, q = 4 sc1 = 0.5594, sc2 = 0.5777, sc3 = 0.4917, sc4 = 0.4505 P2 	 P1 	 P3 	 P4

p = 10, q = 10 sc1 = 0.5822, sc2 = 0.6044, sc3 = 0.5372, sc4 = 0.4945 P2 	 P1 	 P3 	 P4

p = 0.1, q = 0 sc1 = 0.5704, sc2 = 0.7629, sc3 = 0.6199, sc4 = 0.4054 P2 	 P3 	 P1 	 P4

p = 0.5, q = 0 sc1 = 0.5712, sc2 = 0.7642, sc3 = 0.6203, sc4 = 0.4066 P2 	 P3 	 P1 	 P4

p = 1, q = 0 sc1 = 0.5736, sc2 = 0.7682, sc3 = 0.6216, sc4 = 0.4099 P2 	 P3 	 P1 	 P4

p = 10, q = 0 c1 = 0.6293, sc2 = 0.8488, sc3 = 0.6744, sc4 = 0.5204 P2 	 P3 	 P1 	 P4
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greater than 0.1. In the second class, the ranking orders are

the same, and P1 is consistently preferred to P3. The third

class also produces the same ranking order, which is dif-

ferent from the order in the second class. In these three

classes, the best TPL provider is always P2 and the worst is

always P4.

These results suggest that the values of p and q can

influence the ranking order of TPL providers. From this

perspective, the proposed method for selecting TPL pro-

viders is a flexible one.

To investigate the influence of c, in the second part, we

determine and compare the ranking orders using different

values of c. Table 7 presents the significant values of c and
the respective ranking orders according to the proposed

method.

As Table 7 shows, the score values on an individual

criterion differ as the value of c varies. The bigger the

value of c, the higher the score for an individual criterion.

However, the ranking orders remain the same as the cor-

responding values of c differ; in other words, the value of c
does not influence the ranking order of TPL providers. The

worst provider is always P4, and the best is always P2.

Decision makers can determine an appropriate value for c
based on their own preferences. In practice, the value of c
can be calculated using regression analysis and previous

data provided by the decision makers.

6.3 Comparative analysis

This subsection compares the proposed method with four

extant methods to verify its feasibility. Sahin [42] devel-

oped the first two methods, which make use of the

weighted arithmetic average (WAA) operator and the

weighted geometric average (WGA) operator, respectively,

to aggregate values under every criterion. Furthermore, the

two methods proposed by Sahin [42] rank alternatives

using a score function that is identical to that in Eq. (1). Ye

[70] detailed the third method, which was constructed with

the proposed cross-entropy method for SVNSs. Liu and

Wang [53] proposed the fourth method, which utilizes the

SVNNWBM operator developed based on the algebraic

operational laws. Table 8 lists the ranking orders according

to these five methods.

Table 8 demonstrates that the proposed method produces

a different ranking order from those obtained by the four

extant methods. According to the method using WAA [42],

the best TPL provider is P2, while the other four methods

identify P3. The worst TPL provider is P4 across the five

methods. The method using WGA [42], the method using

cross-entropy [70], and the method using SVNNWBM [53]

produce the same ranking orders. Meanwhile, the method

using WAA [42] and the proposed method produce two

different ranking orders, which are also distinct from the

ranking order obtained by the other three methods.

The reasons why these differences exist in Table 8 are

as follows. The differences exist between the ranking order

of the proposed method and those of the first three methods

because of three possible reasons. The first one is that the

first three methods do not take into account the interrela-

tionships among criteria, while the proposed method con-

siders these interrelationships using the BM operator. The

second one lies in the criteria’s priority levels. The pro-

posed method considers the criteria’s different priorities,

while the first three methods assume that the criteria all

have the same priority levels. The last one can be traced

back to the fact that the proposed method is constructed

based on Frank operations, while the first three methods

use algebraic operational laws. Therefore, it is reasonable

Table 7 The ranking order of

TPL providers with different c
c Score value sci Ranking order

c ? 1 sc1 = 0.5393, sc2 = 0.5513, sc3 = 0.4706, sc4 = 0.4198 P2 	 P1 	 P3 	 P4

c = 2 sc1 = 0.5403, sc2 = 0.5566, sc3 = 0.4732, sc4 = 0.4216 P2 	 P1 	 P3 	 P4

c = 5 sc1 = 0.5415, sc2 = 0.5621, sc3 = 0.4757, sc4 = 0.4237 P2 	 P1 	 P3 	 P4

c = 10 sc1 = 0.5423, sc2 = 0.5652, sc3 = 0.477, sc4 = 0.4251 P2 	 P1 	 P3 	 P4

c = 50 sc1 = 0.5437, sc2 = 0.5694, sc3 = 0.4784, sc4 = 0.4276 P2 	 P1 	 P3 	 P4

Table 8 The ranking orders of

these five methods
Method Ranking order The best provider(s) The worst provider(s)

Method using WAA [42] P2 	 P3 	 P1 	 P4 P2 P4

Method using WGA [42] P3 	 P1 	 P2 	 P4 P3 P4

Method using cross-entropy [70] P3 	 P1 	 P2 	 P4 P3 P4

Method using SVNNWBM [53] P3 	 P1 	 P2 	 P4 P3 P4

The proposed method P3 	 P2 	 P1 	 P4 P3 P4
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that the ranking orders of the first three methods differ from

that of the proposed method. Meanwhile, we discuss two

main reasons for the dissimilarities existing between the

ranking orders respectively obtained by the method using

the SVNNWBM [53] and the proposed method, even

though both methods consider the interrelationships among

criteria. One main reason is that different weight vectors of

criteria are involved in two methods. The weights for the

criteria in the method using the SVNNWBM [53] are

subjectively provided by decision makers lacking of

objectivity. Conversely, the proposed method takes the

criteria priorities into account by objectively obtaining the

weight vector of the criteria through the weight method

using the PA operator. And the other main reason lies in

the difference of operational laws. The proposed method

utilizes Frank operational laws, while the SVNNWBM [53]

method makes use of algebraic operational laws. As dis-

cussed in Sect. 1, Frank operational laws are more robust

than algebraic operational laws.

Generally speaking, the proposed method can be suc-

cessfully utilized to select TPL providers. By combining

the BM operator and the PA operator, this method takes

into consideration the interrelationships among criteria and

their varying priority levels. In addition, the proposed

method is more robust than extant methods based on

algebraic operational laws. Compared with extant methods,

the proposed method using the SVNFNPBM operator is

more suitable for tackling practical problems in which

criteria are independent and have different priority levels.

The ranking order of the proposed method can identify a

TPL provider that is more in line with decision makers’

preferences than the providers selected by other methods.

7 Conclusion

SVNNs can comprehensively depict fuzzy information

involved in the process of selecting TPL providers. This paper

established a method based on the proposed Frank operations

for selecting TPL providers under single-valued neutrosophic

environments. The method took into account the interrela-

tionships among criteria and the different priority levels of

criteria.Todo that,wedeveloped anSVNFNPBMoperator by

combining the NWBM and PA operators. Moreover, we

demonstrated the applicability and feasibility of the proposed

method using a numerical example and a comparative anal-

ysis. In addition, this paper discussed the influence of the all

involved parameters on ranking order.

The major contributions of this paper can be summa-

rized as follows. First of all, this paper introduces Frank

operations of SVNNs that are more flexible and robust than

the extant algebraic operations of SVNNs. In addition, this

paper presents and proves some properties of the proposed

Frank operations. Secondly, this paper proposes a novel

single-valued neutrosophic aggregation operator that

combines the BM and PA operators to consider simulta-

neously the interrelationships among criteria and their

distinct priority levels. The proposed aggregation operator

is based on Frank operations, while most of the previous

single-valued neutrosophic aggregation operators are based

on algebraic operations. Last but not least, this paper

constructs a decision-making method for the selection of

TPL providers based on the proposed aggregation operator.

The new method is then proven to be useful in selecting a

TPL provider. The proposed MCDM method using the

SVNFNPBM operator is more effective than extant meth-

ods in addressing situations with independent criteria that

have different priority levels, which occur in most practical

problems. In other words, the proposed method using the

SVNFNPBM operator has a higher practical value than

extant methods.

Several directions for future research may be promising.

First, the aggregation operator proposed in this paper can

be introduced into interval-valued neutrosophic environ-

ments. Second, applications of the proposed MCDM

method can be explored to tackle practical problems in

other areas, such as selecting hotels, cloud services, or

renewable energy sources. The common feature of these

practical problems is that multiple criteria involved are

interdependent and have different priority levels. Third, the

complexity of the proposed method can be improved with

the help of computer technology. In the future, we will

devote ourselves to reducing the complexity of the method

as well as increasing accuracy.
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