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Abstract There have been many studies on the runtime

analysis of evolutionary algorithms in discrete optimiza-

tion, and however, relatively few homologous results have

been obtained on continuous optimization, such as evolu-

tionary programming (EP). This paper presents an analysis

of the running time (as approximated by the mean first

hitting time) of two EP algorithms based on Gaussian and

Cauchy mutations, using an absorbing Markov process

model. Given a constant variation, we analyze the running-

time upper bound of special Gaussian mutation EP and

Cauchy mutation EP, respectively. Our analysis shows that

the upper bounds are impacted by individual number,

problem dimension number, searching range, and the

Lebesgue measure of the optimal neighborhood. Further-

more, we provide conditions whereby the mean running

time of the considered EPs can be no more than a poly-

nomial of n. The condition is that the Lebesgue measure of

the optimal neighborhood is larger than a combinatorial

computation of an exponential and the given polynomial of

n. In the end, we present a case study on sphere function,

and the experiment validates the theoretical result in the

case study.

Keywords Evolutionary algorithm � Running-time

analysis � Evolutionary programming � Lebesgue measure �
Optimal e neighborhood

1 Introduction

The running time to optimum is a key factor in determining

the success of an evolutionary programming (EP)

approach. Ideally, an implementation of an EP approach

should run for a sufficient number of generations when the

probability of achieving an optimum is greater than some

desired value. However, few results on the running times of

EP approaches can be found in the current literature.

As a technique of finite state machine, EP was first

proposed for continuous optimization [1]. It has since been

widely adopted as a powerful optimizing framework for

solving continuous optimization problems [2–4]. More

recently, EP research has mainly concentrated on the

function of its parameters and its improvement by adaptive

strategies. As a result, several EP variants have been pro-

posed, distinguishing from each other mainly with different

mutation schemes based on different probability

distributions.

Arguably, the first EP algorithm that was widely con-

sidered successful was the one with Gauss mutation that

has been termed as classical evolutionary programming

(CEP) [2]. CEP has been intensively analyzed by Fogel

[3, 4], Bäck and Schwefel [5, 6]. Subsequently, Yao et al.

proposed a fast evolutionary programming algorithm

(FEP) with a new mutation scheme based on the Cauchy

distribution [7]. Computational experiments showed that

& Han Huang

hhan@scut.edu.cn

Yushan Zhang

scuthill@163.com

1 School of Mathematics and Statistics, Guangdong University

of Finance and Economics, Guangzhou 510320, China

2 School of Software Engineering, South China University of

Technology, Guangzhou 510006, China

3 Department of Computer Science, Guangdong Polytechnic

Normal University, Guangzhou 510665, China

4 School of Mathematics and Big Data, Foshan University,

Foshan 528000, China

123

Neural Comput & Applic (2018) 30:617–626

https://doi.org/10.1007/s00521-016-2651-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2651-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2651-7&amp;domain=pdf
https://doi.org/10.1007/s00521-016-2651-7


FEP is superior to CEP when tackling the optimization

problems of multimodal and dispersed peak functions.

Another EP variant [8] was later proposed by using the

Lévy distribution-based mutation, which we call L�evy

evolutionary programming (LEP) in this paper. Empirical

analyses show that, overall, LEP exceeds CEP and FEP

when solving the benchmark problems of multimodal and

highly dispersed peak functions.

CEP [2], FEP [7], and LEP [8] can be considered as

classical evolutionary programming algorithms. Several

modified EPs have since been designed based on these

three basic approaches [2, 7, 8].

The performances of EP approaches such as CEP,

FEP, and LEP have oftentimes been verified experi-

mentally rather than theoretically. The theoretical foun-

dations of EP have been an open problem ever since it

was first put forward [1, 2]. In particular, Bäck and

Schwefel [5, 6] suggested the convergence analysis of

EP algorithms as a research topic in their surveys of

evolutionary algorithms. Fogel [2–4] presented an initial

proof of EP convergence on the basis of the discrete

solution space. Rodolph [9–11] then showed that CEP

and FEP can converge with an arbitrary initialization;

this result is more general since it applies to a contin-

uous solution space.

Previous convergence studies only considered whether

an EP algorithm is able to find an optimum within infinite

iteration, but did not mention the speed of convergence,

i.e., lacking of running-time analysis. To date, running-

time analyses have mainly focused on Boolean-individual

EAs like (1þ 1)EA [12], (N þ N)EA [13], multi-objective

EA [14–16]. Alternative theoretical measures for evaluat-

ing the running times of Boolean-individual EA approa-

ches have also been proposed [17, 18]. Recently, the

impact of particular components of EA on runtime has also

been studied on mutation, selection [19], and population

size [18, 20, 21]. In addition to these studies on EAs

solving Boolean functions, some results of runtime analysis

have been obtained on some combinatorial optimization

problems [22–24]. Lehre and Yao [25] completed the

runtime analysis of the (1þ 1)EA on computing unique

input output sequences. Zhou et al. presented a series of EA

analysis results for discrete optimization like the minimum

label spanning tree problem [26], the multiprocessor

scheduling problem [27], and the maximum cut problem

[28]. Other proposed studies are on the topics of tight

bounds on the running time of EA and randomized search

heuristic [29–31].

As summarized above, the majority of runtime analyses

are limited to discrete search space; analyses for continu-

ous search space require a more sophisticated modeling

and remain relatively few, which is unsatisfactory from a

theoretical point of view. Jägerskpper conducted a rigorous

runtime analysis on (1þ 1)ES, (1þ k)ES minimizing the

sphere function [32, 33]. Agapie et al. modeled the

(1þ 1)ES as a renewal process under some reasonable

assumptions and analyzed the first hitting time on inclined

plane [34] and sphere function [35]. Chen et al. [36] pro-

posed general drift conditions to estimate the upper bound

of the first hitting time for EAs to find �-approximation

solutions. Inspired by the studies above, especially the

estimating approach [17] for discrete situation, this paper

presents an analytical framework for the running time of

evolutionary programming. We also discuss whether the

running time of CEP and FEP is influenced by individual

number, problem dimension number, searching range, and

the Lebesgue measure of the optimal neighborhood in the

target problem. Furthermore, we give the approximate

conditions under which the EPs can converge in a timespan

less than a polynomial of n.

2 EP algorithms and their stochastic process
model

2.1 Introduction to EP algorithms

This section introduces the two EP algorithms CEP [2] and

FEP [7] that are studied in this paper. The skeleton of EP

algorithms analyzed in this paper is given in Algorithm 1;

the sole difference among CEP, FEP, and LEP lies in their

treatments of step 3.

Algorithm 1 Framework of EP algorithms.
1: Generate individuals randomly;
2: Calculate the fitness of each individual;
3: Generate offspring by mutation;
4: Evaluate the offspring;
5: Select individuals by a tournament rule;
6: If the terminal condition is satisfied, output the
    best-so -far solution found and exit; otherwise,
    go back to Step 3.

In step 1, the generated k individuals are denoted by a

couple of real vectors vi ¼ ðxi; riÞ, i ¼ 1; 2; . . .; k, where

the elements xi ¼ ðxi1; xi2; . . .; xinÞ are the variables to be

optimized, and the elements ri ¼ ðri1; ri2; . . .; rinÞ are

variation variables that affect the generation of offspring.

We set the iteration number t ¼ 0 and the initial rij � 2ðj ¼
1; . . .; nÞ as proposed in reference [8]

The fitness values in steps 2 and 4 are calculated

according to the objective function of the target problem.

In step 3, a single �vi ¼ ð�xi; �riÞ is generated for each

individual vi, where i ¼ 1; . . .; k. For j ¼ 1; . . .; n,

�rij ¼ VðrijÞ ð1Þ
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where VðrijÞ denotes a renewing function of variation

variable rij. The renewing function �rij ¼ VðrijÞ may have

various forms, and a representative implementation of it

can be found in reference [7]. However, for ease of theo-

retical analysis, we will consider a kind of simple renewing

function, i.e., constant function, in our case studies (see

Sect. 4).

VðrijÞ ¼ r ð2Þ

The three EP algorithms differ in how �xi is derived, which

can be explained as follows(in this paper, we only consider

CEP and FEP).

CEP : �xij ¼xij þ �rijNjð0; 1Þ ð3Þ

FEP : �xij ¼xij þ �rijdj ð4Þ

where Njð0; 1Þ is a newly generated random variable by

Gaussian distribution for each j, dj is a Cauchy random

number produced anew for jth dimension, whose density

function is

C/¼1ðyÞ ¼ p�1 � ð1þ y2Þ�1 �1\y\þ1 ð5Þ

In step 5, for each individual in the set of all parents and

offsprings, q different opponent individuals are uniformly

and randomly selected to be compared. If the selected

individual’s fitness value is more than the opponent’s, the

individual obtains a ‘‘win.’’ The top k individuals with the

most ‘‘wins’ are selected to be the parents in the next

iteration, breaking ties by greater fitness.

2.2 Target problem of EP algorithms

Without loss of generality, we assume that the EP

approaches analyzed in this study aim to solve a mini-

mization problem in a continuous search space, defined as

follows.

Definition 1 (minimization problem) Let S � Rn be a

finite subspace of the n-dimensional real domain Rn, and

let f : S ! R be an n-dimensional real function. A mini-

mization problem, denoted by the 2-tuple ðS; f Þ, is to find

an n-dimensional vector xmin 2 S such that

8x 2 S; f ðxminÞ� f ðxÞ.

Without loss of generality, we can assume that S ¼
Qn

i¼1½�bi; bi� where bi ¼ b[ 0. The function f : S ! R is

called the objective function of the minimization problem.

We do not require f to be continuous, but it must be

bounded. Furthermore, we only consider the unconstrained

minimization.

The following properties are assumed, and we will make

use of them in our analyses.

1. The subset of optimal solutions in S is non-empty.

2. Let f � ¼ minff ðxÞjx 2 Sg be the fitness value of an

optimal solution, and let S�ðeÞ ¼ fx 2 Sjf ðxÞ\f � þ eg
be the optimal epsilon neighborhood. Every element of

S�ðeÞ is an optimal solution of the minimization

problem.

3. 8e[ 0, m
�
S�ðeÞ

�
[ 0, where we denote the Lebesgue

measure of S�ðeÞ as m
�
S�ðeÞ

�
.

The first assumption describes the existence of optimal solu-

tions to the problem. The second assumption presents a rig-

orous definition of optimal solution for continuous

minimization optimization problems. The third assumption

indicates that there are always solutions whose objective

values are distributed continuously and arbitrarily close to the

optimal, which makes the minimization problem solvable.

2.3 Stochastic process model of EP algorithms

Our running-time analyses are based on representing the

EP algorithms as Markov processes. In this section, we

explain the terminologies and notations used throughout

the rest of this study.

Definition 2 (stochastic process of EP) The stochastic

process of an evolutionary programming algorithm EP is

denoted by fnEPt gþ1
t¼0 ; nEPt ¼ ðvðtÞ1 ; v

ðtÞ
2 ; . . .; v

ðtÞ
k Þ, where

v
ðtÞ
i ¼ ðxðtÞi ; r

ðtÞ
i Þ is the ith individual at the tth iteration.

The stochastic status nEPt represents the individuals of

the tth iteration population for the algorithm EP. All

stochastic processes examined in this paper are discrete

time, i.e., t 2 Zþ.

Definition 3 (status space) The status space of EP is XEP

¼ fðv1; v2; . . .; vkÞj vi ¼ ðxi; riÞ; xi 2 S; rij � 2; j ¼ 1; . . .;

ng.

XEP is the set of all possible population statuses for EP.

Intuitively, each element of XEP is associated with a pos-

sible population in the implementation of EP. Let x� 2
S�ðeÞ be an optimal solution. We define the optimal status

space as follows:

Definition 4 (optimal status space) The optimal status

space of EP is the subset X�
EP � XEP such that 8n�EP 2 X�

EP,

9ðx�;rÞ 2 n�EP, where r ¼ ðr; r; . . .; rÞ, and r[ 0.

Hence, all members of X�
EP contains at least one optimal

solution represented by individual x�.

Definition 5 (Markov process) A stochastic process

fntgþ1
t¼0 with status space X is a Markov process if 8 ~X � X,

Pfntþ1 2 ~Xjn0; . . .; ntg ¼ Pfntþ1 2 ~Xjntg.

Lemma 1 The stochastic process fnEPt gþ1
t¼0 of EP is a

Markov process.
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Proof The proof is given in ‘‘Appendix’’ section.

fnEPt gþ1
t¼0

We now show that the stochastic process of EP is an

absorbing Markov process, defined as follows. h

Definition 6 (absorbing Markov process to optimal status

space) A Markov process fntgþ1
t¼0 is an absorbing Markov

process to X� if 9X� � X, such that Pfntþ1 62 X�jnt 2
X�g ¼ 0 for t ¼ 0; 1; . . ..

Lemma 2 The stochastic process fnEPt gþ1
t¼0 of EP is an

absorbing Markov process to X�
EP.

Proof The proof is given in ‘‘Appendix’’ section. h

This property implies that once an EP algorithm attains

an optimal state, it will never leave optimality.

3 General running-time analysis framework
for EP algorithms

The analysis of EP algorithms has usually been approxi-

mated using a simpler measure known as the first hitting

time [13, 17], which is employed in this study.

Definition 7 (first hitting time of EP) lEP is the first

hitting time of EP if lEP ¼ minft	 0 : nEPt 2 X�
EPg.

If an EP algorithm is modeled as an absorbing Markov

chain, the running time of the EP can be measured by its

first hitting time lEP. We denote its expected value by ElEP
which can be calculated by Theorem 1. Hereinafter, we use

the term running time and first hitting time interchangeably.

Let kEPt ¼ PfnEPt 2 X�
EPg ¼ PflEP � tg be the proba-

bility that EP has attained an optimal state by time t.

Theorem 1 If limt!þ1 kEPt ¼ 1, the expected first hitting

time ElEP ¼
Pþ1

i¼0 ð1� kEPi Þ.

Corollary 1 The expected hitting time can also be

expressed as ElEP ¼ ð1� kEP0 Þ
Pþ1

t¼0

Qt
i¼1ð1� PfnEPi 2

X�
EPjn

EP
i�1 62 X�

EPgÞ.

Proof The proof is given in ‘‘Appendix’’ section. h

The conclusions of Theorem 1 and Corollary are a direct

approach to calculating the first hitting time of EP. How-

ever, Corollary 1 is more practical than Theorem 1 for this

purpose since pi ¼ PfnEPi 2 X�
EPjnEPi�1 62 X�

EPg, which is the

probability that the process first finds an optimal solution at

time i, is dependent on the mutation and selection tech-

niques of the EP. Hence, the framework of Corollary 1 is

similar to the one in [17]. However, the estimating method

[17] is based on a probability qi in discrete optimization

qi ¼
P

y 62X�
EP
PfnEPi 2 X�

EPjn
EP
i�1 ¼ ygPfnEPi�1 ¼ yg.

pi is a probability for continuous status while qi is for the

discrete one. In general, the exact value of pi is difficult to

calculate. Alternatively, first hitting time can also be ana-

lyzed in terms of an upper and a lower bound of pi, as

shown by the following Corollaries 2 and 3:

Corollary 2 If at �PfnEPt 2 X�
EPjn

EP
t�1 62 X�

EPg� bt,

1.
Pþ1

t¼0 ½ð1� kEP0 Þ
Qt

i¼1ð1� biÞ��ElEP �
Pþ1

t¼0 ½ð1�
kEP0 Þ

Qt
i¼1ð1� aiÞ� where 0\at; bt\1.

2. b�1ð1� kEP0 Þ�ElEP � a�1ð1� kEP0 Þ when at ¼ a and

bt ¼ b.

Proof The proof is given in ‘‘Appendix’’ section. h

Corollary 2 indicates that ElEP can be studied by the

lower bound and upper bound of PfnEPt 2 X�
EPjn

EP
t�1

62 X�
EPg. Therefore, the theorem and corollaries introduce

a first-hitting-time framework for the running-time

analysis of EP. The running times of EPs based on

Gaussian and Cauchys mutation are studied following

the framework.

4 Running-time upper bounds of CEP and FEP

In this section, we use the framework proposed in Sect. 3 to

study the running times of EPs based on Gaussian and

Cauchy mutations, i.e., CEP and FEP. Moreover, our

running-time analysis aims at a class of EPs with constant

variation, as shown in Eq. (2).

4.1 Mean running time of CEP

CEP [2] is a classical EP, from which several continuous

evolutionary algorithms are derived. This subsection mainly

focuses on the running time of CEP proposed by Fogel [3],

Bäck and Schwefel [5, 6]. The mutation of CEP is based on

the standard normal distribution indicated by Eq. (3).

According to the running-time analysis framework, the

probability pt ¼ PfnCt 2 X�
EPjn

C
t�1 62 X�

EPg for CEP is a

crucial factor, and its property is introduced by the following.

Theorem 2 Let the stochastic process of CEP be denoted

by fnCt g
þ1
t¼0 . Let k be the population size of CEP with

solution space S ¼
Qn

i¼1½�bi; bi� where bi ¼ b[ 0. Then

8e[ 0, we have

1. For fixed individual ðx; �rÞ, Pf�x 2 S�ðeÞg	
m
�
S�ðeÞ
�

ð
ffiffiffiffi
2p

p
Þn ð
Qn

j¼1
1
rÞ expf�

Pn
j¼1

2b2

r2 g where the renewing

function VðrijÞ ¼ r.
2. The right part of the inequality of conclusion (1) is

maximum when r ¼ 2b.
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3. PfnCt 2 X�
EPjn

C
t�1 62 X�

EPg	 1� ð1� m
�
S�ðeÞ
�

ð4
ffiffi
e

p
pbÞnÞ

k
if

r ¼ 2b.

Proof The proof is given in ‘‘Appendix’’ section. h

In Theorem 2, Part (1) indicates a lower bound of the

probability that an individual x can be renewed to be the �x

in the optimal neighborhood S�ðeÞ. As a result, the lower

bound is a function of variation r. Part (2) presents the

lower bound that Part (1) will be tightest if r ¼ 2b. By this,

the key factor of Corollary 2PfnCt 2 X�
EPjnCt�1 62 X�

EPg may

have a tight lower bound shown by Part (3).

Theorem 2 indicates that a larger m
�
S�ðeÞ

�
leads to

faster convergence for CEP since PfnCt 2 X�
EPjnCt�1 62 X�

EPg
becomes larger when m

�
S�ðeÞ

�
is larger. Moreover, The-

orem 2 produces the lower bound of PfnCt 2 X�
EP

jnCt�1 62 X�
EPg, with which the first hitting time of CEP can

be estimated following Corollary 2. Corollary 3 indicates

the convergence capacity and running-time upper bound of

CEP.

Corollary 3 Supposed conditions of Theorem 2 are

satisfied,

1. limt!þ1 kCt ¼ 1 ðkCt ¼ PfnCt 2 X�
EPgÞ and

2. 8e[ 0,

ElC �ð1� kC0 Þ
�
1� ð1�

m
�
S�ðeÞ

�

ð4
ffiffiffi
e

p
pbÞnÞ

k
��1 ð6Þ

Proof The proof is given in ‘‘Appendix’’ section. h

Corollary 3 shows that CEP converge globally and that

the upper bound of CEP’s running time decreases as the

Lebesgue measure of the optimal e neighborhood m
�
S�ðeÞ

�

of S�ðeÞ increases. A larger m
�
S�ðeÞ

�
translates to a larger a

larger optimal e neighborhood 8e[ 0, which allows the

solution of CEP more easily. Moreover, an increase in

problem dimension number can increase the upper bound,

and enlarging the individual number will make the upper

bound smaller.

According to Eq. (6), ElC has a smaller upper bound

when the population size k increases. Approximately,

ElC �ð1� kC0 Þ
ð4

ffiffiffi
e

p
pbÞn

km
�
S�ðeÞ

� ð7Þ

since
�
1� m

�
S�ðeÞ
�

ð4
ffiffi
e

p
pbÞn
�k


 1� k
m
�
S�ðeÞ
�

ð4
ffiffi
e

p
pbÞn when k is large.

Furthermore, the running time of CEP is similar to an

exponential order function of size n, if m
�
S�ðeÞ

�
	C0 [ 0

where C0 is a positive constant. Hence, the running time of

CEP is nearly O
�
ð4

ffiffiffi
e

p
pbÞn

�
.

Moreover, we can give an approximate condition under

which CEP can converge in time polynomial to n when

m
�
S�ðeÞ

�
	 cC

ð4
ffiffi
e

p
pbÞn

Pn
, where cC ¼ ð1�kC0 Þ

Pn
[ 0.

Suppose Eq. (7) holds. Then, m
�
S�ðeÞ

�
	 ð1�kC0 Þð4

ffiffi
e

p
pbÞn

P2
n

[ 0 , ElC �
ð1�kC0 Þð4

ffiffi
e

p
pbÞn

Pn�m
�
S�ðeÞ
� �Pn: Thus, the running time

of CEP can be polynomial to n, under the constraint that

8e[ 0, m
�
S�ðeÞ

�
	 ð1�kC0 Þ

k
� ð4

ffiffi
e

p
pbÞn

Pn
, where S�ðeÞ ¼ fx 2

Sjf ðxÞ\f � þ eg.

4.2 Mean running time of FEP

FEPwas proposed byYao [7] as an improvement to CEP. The

mutation forFEP is basedon theCauchydistribution indicated

by Eq. (4). The property of the probability pt ¼ PfnFt 2
X�

EPjn
F
t�1 62 X�

EPg is discussed by Theorem 3ðt ¼ 0; 1; . . .Þ.

Theorem 3 Let fnFt g
þ1
t¼0 be the stochastic process of

FEP,

1. Pf�x 2 S�ðeÞg	 m
�
S�ðeÞ
�

ðpÞn ðrþ 4b2

r Þ
�n

2. The right part of the inequality of conclusion (1) is

maximum when r ¼ 2b

3. PfnFt 2 X�
EPjnFt�1 62 X�

EPg	 1� ð1� m
�
S�ðeÞ
�

ð4pbÞn Þk if

r ¼ 2b.

Proof The proof is given in ‘‘Appendix’’ section. h

Similarly to Theorem 2, FEP with r ¼ 2b may lead to a

tight lower bound of the probability in Part (1) and (3).

Theorem 3 indicates that m
�
S�ðeÞ

�
affects the convergence

of FEP directly. A larger m
�
S�ðeÞ

�
allows FEP to more

easily arrive at a status in the optimal state space (Defini-

tion 4). Conversely, a bigger b (the bounds of search space)

increases the difficulty of the problem for FEP. Given this

convergence time framework, Corollary 4 summarizes the

convergence capacity and running-time upper bound of

FEP.

Corollary 4 Supposed conditions of Theorem 3 are

satisfied,

1. limt!þ1 kFt ¼ 1 ðkFt ¼ PfnFt 2 X�
EPgÞ and

2. for 8e[ 0, ElF �ð1� kF0 Þ
�
1� ð1� m

�
S�ðeÞ
�

ð4bpÞn Þk
�
.

Proof The proof is given in ‘‘Appendix’’ section. h

Corollary 4 proves the convergence of FEP and indi-

cates that a larger m
�
S�ðeÞ

�
can make FEP converge faster.

Using a similar analysis to that for CEP, a larger dimension
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number of problem n can increase the upper bound of FEP,

but larger individual number k can lead to a smaller upper

bound. Furthermore, [�b; b] is the maximum interval

bound for each dimension of the variables to be optimized

(Definition 1). As a result, the second conclusion of

Corollary 4 also implies that a larger search space will

increase the upper bound of ElEP.

If k becomes large enough, we have
�
1� m

�
S�ðeÞ
�

ð4bpÞn
�k


 1� k
m
�
S�ðeÞ
�

ð4bpÞn such that

ElF �
1� kF0

km
�
S�ðeÞ

� ð4bpÞn ð8Þ

Hence, the running time of FEP is nearly Oðð4bpÞnÞ when
m
�
S�ðeÞ

�
is a constant greater than zero.

Moreover, we can give an approximate condition where

FEP can converge in polynomial time P(n), i.e.,

m
�
S�ðeÞ

�
	 1�kF0

k
� ð4bpÞ

n

PðnÞ , 8e[ 0 when Eq. (8) is true. The

analysis is similar to the one for CEP at the end of Sect. 4.1.

4.3 Case study: simple EPs for sphere function

problem

In this section, we analyzed the running time of simple EPs

for a concrete problem presented by Definition 8.

Definition 8 A sphere function problem is to minimize

the value of function f ðyÞ ¼
Pn

i¼1 y
2
i where yi 2 ½�1; 1�.

Obviously, the optimal solution of sphere function

problem is the vector ð0; 0; . . .; 0Þ.

Definition 9 A simple EP is an EP algorithm such that

r ¼ ð1; 1; . . .; 1Þ,there is only one individual in the popu-

lation and the variation renewing function VðrjÞ ¼ 1 where

j ¼ 1; . . .; n.

Then, we have

Simple CEP:

�xj ¼ xj þ Njð0; 1Þ ð9Þ

Simple FEP:

�xj ¼ xj þ dj ð10Þ

We will use the proposed theories of running time to

analyze simple CEP and FEP to investigate which algo-

rithm may have a smaller upper bound of running time.

Given the solution space S ¼
Qn

j¼1½�1; 1�, optimal

neighborhood S�ðeÞ ¼ fy 2 Sjf ðyÞ\eg; e� 1. Let
~S ¼ fzjz ¼ �x� x; �x 2 S�ðeÞ; x 2 Sg. We have the follow-

ing results.

Theorem 4 Let l1 and l2 be the first hitting time of

simple CEP and FEP, then

1. El1 �ð
ffiffiffiffiffiffi
2pe

p

e Þn

2. El2 �ð2pe Þ
n

Proof The proof is given in ‘‘Appendix’’ section. h

As a result, we find simple CEP has a little smaller upper

bound than simple FEP. CEP was proved to be a little

better than FEP in solving sphere function problem by

experimental data [7], respectively. Therefore, Theorem 4

might also reveal that Gauss distribution is better for sphere

function problem than Cauchy distribution.

5 Experiment

Theorem 4 gives the upper bounds of the expected first

hitting time for simple CEP and FEP on n-dimensional

sphere function problem. We conduct experiment to vali-

date the theoretical result, the experiment settings: fix the

error e ¼ 0:1; fix the initial solution x0 ¼ ð1; 1; . . .; 1Þ; for
simple CEP and FEP, respectively, we conduct 500 runs

and denote Ti as the first hitting time at the ith run, then
P500

i¼1
Ti

500
is considered to be the estimation of the expected

first hitting time.

From Fig. 1, we can see that the expected first hitting

time of simple CEP and FEP grows exponentially when the

dimension n of the sphere function problem increases, and

the time complexity of the FEP is higher than that of CEP,

which validates the theoretical analysis in Sect. 4.3. We

need to point out that the time complexity of CEP and FEP

grows so fast that when the dimension n[ 7, the calcula-

tion of the first hitting time is too long to obtain a result on

our computer, so we only present the case of n� 7.
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Fig. 1 Expected first hitting time for simple CEP and FEP on n-

dimensional sphere function problem
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6 Conclusion

In this paper, we propose a running-time framework to

calculate the mean running time of EP and present a case

study and experiment. Based on this framework, the con-

vergence and mean running time of CEP and FEP with

constant variation are studied. We also obtain some results

at the worst running time of the considered EPs, although

the results show that the upper bounds can be tighter if the

variation r ¼ 2b where 2b is the length of the searching

interval per dimension. It is shown that the individual

number, problem dimension number, searching range, and

the Lebesgue measure of the optimal neighborhood of the

optimal solution have a direct impact on the bounds of the

expected convergence times of the considered EPs.

Moreover, the larger the Lebesgue measure of the optimal

neighborhood of the optimum, the lower the upper bound

of the mean convergence time. In addition, the conver-

gence time of the EPs can be polynomial on average on the

condition that the Lebesgue measure is greater than a value

that is exponential to b.

However, it is possible to make an improvement on the

running-time framework and analysis given in this study.

The deduction process in the proofs for Theorems 2 and 3

uses few properties of the distribution functions of the

mutations, and so it is possible to tighten the results. By

introducing more information on the specific mutation

operations, more sound theoretical conclusions may be

derivable. More importantly, unlike the rigorous conditions

under which CEP and FEP can converge in polynomial

time, the running-time analysis of specific EP algorithms

for real-world and constructive problems would have a

more significant and practical impact. Future research

could also focus on the runtime analysis of specific case

studies of EPs.

The proposed framework and results can be considered

as a first step for analyzing the running time of evolu-

tionary programming algorithms. We hope that our results

can serve as a basis for further theoretical studies.
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Appendix: Proof of the Lemmas, Theorems
and Corollaries

Proof of Lemma 1 Recall that nEPt ¼ ðvðtÞ1 ; v
ðtÞ
2 ; . . .; v

ðtÞ
k Þ is a

real vector and the status space XEP of EP is continuous.

Furthermore, nEPt is only dependent on nEPt�1 for t ¼ 0; 1; . . .,

as evidenced by steps 3–6 of the EP process. Hence,

fnEPt gþ1
t¼0 is a Markov process.

Proof of Lemma 2 nEPt 2 X�
EP when 9ðx�ðtÞi ; rðtÞi Þ 2 nEPt

where x
�ðtÞ
i is an optimal solution. Given steps 5 and 6 of

EP, x
�ðtÞ
i will have the most ‘‘wins’’ as well as the highest

fitness, so x
�ðtÞ
i will be selected for the next iteration with

probability one if there are less than k optimal solutions in

the tournament. x
�ðtÞ
i might be lost, but other optimal

solutions will be selected if there are more than k optimal

solutions in the parent and offspring. Thus,

PfnEPtþ1 62 X�
EPjn

EP
t 2 X�

EPg ¼ 0, and fnEPt gþ1
t¼0 is an

absorbing Markov process to X�
EP.

Proof of Theorem 1 Observe that kEPt � kEPt�1 ¼ PflEP � tg
�PflEP � t � 1g ¼ PflEP ¼ tg. Therefore, we have

ElEP ¼
Xþ1

t¼1

t � ðkEPt � kEPt�1Þ ¼ lim
N!þ1

XN

t¼1

t � ðkEPt � kEPt�1Þ

¼ lim
N!þ1

XN

i¼1

ðkEPN � kEPi�1Þ¼
Xþ1

i¼1

ð1� kEPi�1Þ

¼
Xþ1

i¼0

ð1� kEPi Þ

Proof of Corollary 1 Let pi ¼ PfnEPi 2 X�
EPjn

EP
i�1 62 X�

EPg.
Based on the total probability equation, kEPt ¼
ð1� kEPt�1Þpt þ kEPt�1ð1� ptÞ. Substituting it into Theo-

rem 1, we have ElEP ¼
Pþ1

t¼0 ½ð1� kEP0 Þ
Qt

i¼1ð1� piÞ�.

Proof of Corollary 2 According to Corollary 1,

ElEP 	
Pþ1

t¼0 ½ð1� kEP0 Þ
Qt

i¼1ð1� biÞ�. Similarly, we have

ElEP �
Pþ1

t¼0 ½ð1� kEP0 Þ
Qt

i¼1ð1� aiÞ�. Thus, b�1ð1�
kEP0 Þ�ElEP � a�1ð1� kEP0 Þ when at ¼ a and bt ¼ b.

Proof of Theorem 2 For fixed individual ðx; �rÞ,
�x ¼ xþ ub �r, where r ¼ ð�r1; �r2; . . .; �rnÞ is a n-dimen-

sion variation variable and the stochastic disturbance u ¼
ðu1; u2; . . .; unÞ follows n-dimensional standard Gaussian

distribution. Let z ¼ ðz1; z2; . . .; znÞ, that is, z ¼ ub �r ¼
ðu1 �r1; u2 �r2; . . .; un �rnÞ. According to Expressions (1) and

(2), zj ¼ lj �rj ¼ ljr. Then, we have zj �Nð0; �r2j Þ since

uj �Nð0; 1Þ, where j ¼ 1; . . .; n. Therefore, �x ¼ xþ ub �r

¼ xþ z:

Given S ¼
Qn

j¼1½�bj; bj�; S�ðeÞ � S: Let ~S ¼ fzjz ¼
�x� x; �x 2 S�ðeÞ; x 2 Sg. According to the property of

measure, m
�
S�ðeÞ

�
¼ mð~SÞ. Pf�x 2 S�ðeÞg ¼ Pfz 2 ~Sg ¼

R
� � �
R
~S

Qn
j¼1

1ffiffiffiffiffiffiffi
2p�rj

p expf� z2j
2�r2

j

gdz1. . .dzn:
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Note that �x; x 2 S and z ¼ �x� x, so we have jzjj ¼
j�xj � xjj � 2bj ¼ 2b (j ¼ 1; . . .; n), which leads to the

following inequality:

Z

� � �
Z

~S

Yn

j¼1

1
ffiffiffiffiffiffiffiffiffi
2p�rj

p exp �
z2j

2�r2j

( )

dz1. . .dzn

	
Z

� � �
Z

~S

Yn

j¼1

1
ffiffiffiffiffiffiffiffiffi
2p�rj

p exp �ð2bjÞ2

2�r2j

( )

dz1. . .dzn

¼ mð~SÞ
Yn

j¼1

1
ffiffiffiffiffiffi
2p

p
r
exp �

2b2j

r2

( )

¼ mð~SÞ 1
ffiffiffiffiffiffi
2p

p
� �n Yn

j¼1

1

r

 !

exp �
Xn

j¼1

2b2

r2

( )

That is, we obtain a lower bound of Pf�x 2 S�g as follows:

Pf�x 2 S�ðeÞg	mð~SÞ 1
ffiffiffiffiffiffi
2p

p
� �n Yn

j¼1

1

r

 !

exp �
Xn

j¼1

2b2

r2

( )

:

Noting that m
�
S�ðeÞ

�
¼ mð~SÞ, we also have Pf�x 2

S�ðeÞg	m
�
S�ðeÞ

�
ð 1ffiffiffiffi

2p
p Þnð

Qn
j¼1

1
rÞ expf�

Pn
j¼1

2b2

r2 g (2) Let

f ð�rÞ ¼ log
�Qn

j¼1
1
r expf�

Pn
j¼1

2b2

r2 g
�
¼ �

Pn
j¼1

�
log rþ

aj
1
r2
�
where aj ¼ 2b2. max f ð�rÞ , min

Pn
j¼1

�
log rþ

aj
1
r2
�
,
d
�
log rþaj

1

r2

�

dr ¼ 0 ) 1
r � 2aj

1
r3 ¼ 0 ) r ¼

ffiffiffiffiffiffi
2aj

p
:

Noticing that aj ¼ 2b2j ¼ 2b2, we have r ¼ 2b, which

implies the lower bound of Pf�x 2 S�ðeÞg can be improved

into

m
�
S�ðeÞ

� 1
ffiffiffiffiffiffi
2p

p
� �nYn

j¼1

1

2b
exp �

Xn

j¼1

2b2

ð2bÞ2

( )

¼ m
�
S�ðeÞ

� 1
ffiffiffiffiffiffi
2p

p
� �n

e�
n
2

Yn

j¼1

1

2b

¼ m
�
S�ðeÞ

� 1
ffiffiffiffiffiffi
2p

p
� �n

e�
n
2ð2bÞ�n

¼ m
�
S�ðeÞ

�
4
ffiffiffi
e

p
pb

� ��n

Therefore, Pf�xti 2 S�ðeÞg	m
�
S�ðeÞ

�
ð4

ffiffiffi
e

p
pbÞ�n

.

(3) By the property of X�
EP and m

�
S�ðeÞ

�
in Definition 4,

8e[ 0 and t ¼ 1; 2; . . ., PfnCt 2 X�
EP jnCt�1 62 X�

EPg
¼ 1�

Qk
i¼1

�
1� Pf�xi 2 S�ðeÞg

�

Thus, PfnCt 2 X�
EPjnCt�1 62 X�

EPg	 1�
�
1� mðS�Þ

ð4
ffiffiffi
e

p
pbÞ�n

�k
for 8e[ 0.

Proof of Corollary 3 1. Based on the total probability

equation, we have

kCt ¼ ð1� kCt�1ÞPfn
C
t 2 X�

EPjn
C
t�1 62 X�

EPg
þ kCt�1Pfn

C
t 2 X�

EPjn
C
t�1 2 X�

EPg

Because fnCt g
þ1
t¼0 can be considered as an absorbing Mar-

kov process following Lemma 2, PfnCt 2 X�
EP jnCt�1 2 X�

EPg
¼ 1.kCt ¼ ð1� kCt�1ÞPfn

C
t 2 X�

EPjnCt�1 62 X�
EPg þ kCt�1, we

have 1� kCEPt ¼ ð1� kCt�1Þð1� PfnCt 2 X�
EPjn

C
t�1 62

X�
EPgÞ. According to Theorem 2,

PfnCt 2 X�
EPjnCt�1 62 X�

EPg

	 1�
�
1� m

�
S�ðeÞ

�
ð 1

4
ffiffiffi
e

p
pb

Þn
�k
:

For m
�
S�ðeÞ

�
ð 1
4
ffiffi
e

p
pbÞ

n [ 0, d ¼ 1�
�
1� m

�
S�ðeÞ

�

ð 1
4
ffiffi
e

p
pbÞ

n
�k

[ 0 and limt!þ1ð1� dÞt ¼ 0. Thus, 1� kCt

�ð1� dÞð1� kCt�1Þ ¼ ð1� kC0 Þð1� dÞt, so limt!þ1 kCt 	
1� ð1� kC0 Þ limt!þ1ð1� dÞt ¼ 1. Since kCt � 1, limt!þ1

kCt ¼ 1.

2. Given a ¼ 1�
�
1� m

�
S�ðeÞ

�
ð 1
4
ffiffi
e

p
pbÞ

n
�k

[ 0, we

know that PfnCt 2 X�
EPjn

C
t�1 62 X�

EPg	 a based on Theo-

rem 2. According to Corollary 3, 8e[ 0, ElC �ð1� kC0 Þ�
1�

�
1� mðS�ðeÞÞð 1

4
ffiffi
e

p
pbÞ

n
�k
��1

.

Proof of Theorem 3 1. For fixed individual ðx; �rÞ,
�x ¼ xþ db �r, where the stochastic disturbance d follows

n-dimensional standard Cauchy distribution. Let z ¼
db �r, that is, zj ¼ rdj (j ¼ 1; . . .; n). Then, we have �x ¼
xþ z and zj � 1

rC/¼1ðyrÞ since dj �C/¼1ðyÞ (j ¼ 1; . . .; n).

In a manner similar to the Proof of Theorem 2, we

derive

Pf�x 2 S�ðeÞg ¼ Pfz 2 ~Sg

¼
Z

� � �
Z

~S

1

rp

� �n
1

Qn
j¼1 1þ z2

j

r2

� � dz1. . .dzn

¼
Z

� � �
Z

~S

1

rp

� �n
1

Qn
j¼1 1þ z2

j

r2

� � dz1. . .dzn

	
Z

� � �
Z

~S

1

rp

� �n
1

Qn
j¼1 1þ 4b2

r2
� � dz1. . .dzn

¼ 1

rp

� �n m
�
S�ðeÞ

�

1þ 4b2

r2
� �n ¼

m
�
S�ðeÞ

�

ðpÞn rþ 4b2

r

� ��n

(Note that jzjj ¼ j�xj � xjj � 2b (j ¼ 1; . . .; n).)
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2. Letting f ð�rÞ ¼ � logðrþ 4b2

r Þ , we have

max f ð�rÞ , min
�
rþ 4b2

r

�
;

d
�
rþ 4b2

r

�

dr
¼ 0 ) 1� 4b2

r2
¼ 0 ) r ¼ 2b

It can be improved into Pf�x 2 S�g	 m
�
S�ðeÞ
�

ð4bpÞn when r ¼ 2b.

3. Hence, 8e[ 0 and t ¼ 1; 2; . . ., if r ¼ 2b,

PfnFt 62X�
EPjn

F
t�1 2 X�

EPg	 1�
�
1� m

�
S�ðeÞ
�

ð4bpÞn
�k
.

Proof of Corollary 4 1. According to Theorem 3, PfnFt 62

X�
EPjn

F
t�1 2 X�

EPg	 1�
�
1� m

�
S�ðeÞ
�

ð4bpÞn
�k
. 0\

m
�
S�ðeÞ
�

ð4bpÞn \1

due to the second assumption in Sect. 2.2. Let h ¼

1�
�
1� m

�
S�ðeÞ
�

ð4bpÞn
�k

for t ¼ 1; 2; . . .. Then 0\h\1 and

limt!þ1ð1� hÞt ¼ 0.

Thus, limt!þ1 kFt 	 1� ð1� kF0 Þ limt!þ1ð1� hÞt ¼ 1.

limt!þ1 kFt ¼ 1 since kFt � 1.

2. Since limt!þ1 kFt ¼ 1, following Corollary 2 and

Theorem 4, we find that

ElF �
ð1� kF0 Þ

�
1�

�
1� m

�
S�ðeÞ
�

ð4bpÞn
�k
� ; 8e[ 0:

Proof of Theorem 4 1. According to Eq. (9), for the only

individual x per iteration, �x ¼ xþ u , where the stochastic

disturbance u follows n-dimensional standard Gauss dis-

tribution. Then, we have u ¼ �x� x and uj �Nð0; 1Þ
(j ¼ 1; 2; . . .; n). Following the Proof of Theorem 2,

Pf�x 2 S�ðeÞg ¼ Pfu 2 ~Sg

¼
Z

� � �
Z

~S

Yn

j¼1

1
ffiffiffiffiffiffi
2p

p exp �
u2j

2

( )

du1. . .dun

	
Z

� � �
Z

~S

Yn

j¼1

1
ffiffiffiffiffiffi
2p

p exp � 1

2

	 


du1. . .dun

¼
Z

� � �
Z

~S

1
ffiffiffiffiffiffiffiffi
2pe

p
� �n

du1. . .dun

¼ mðS�ðeÞÞ 1
ffiffiffiffiffiffiffiffi
2pe

p
� �n

¼ e
ffiffiffiffiffiffiffiffi
2pe

p
� �n

Based on Corollary 3, El1 �ð
ffiffiffiffiffiffi
2pe

p

e Þn
2. According to Eq. (10), �x ¼ xþ d where the stochastic

disturbance d follows n-dimensional standard Cauchy

distribution. Then, we have d ¼ �x� x and dj �C/¼1ðyÞ
(j ¼ 1; 2; . . .; n).

Following the Proof of Theorem 3,

Pf�x 2 S�ðeÞg ¼ Pfd 2 ~Sg

¼
Z

� � �
Z

~S

Yn

j¼1
C/¼1ðdjÞdd1. . .ddn

¼
Z

� � �
Z

~S

1

p

� �n
1

Qn
j¼1 ð1þ d2j Þ

dd1. . .ddn

	
Z

� � �
Z

~S

1

p

� �n
1

Qn

j¼1

ð1þ 1Þ
dd1. . .ddn

¼
Z

� � �
Z

~S

1

2p

� �n

dd1. . .ddn

¼ e
2p

� �n

Hence, El2 �ð2pe Þ
n
owning to Corollary 4.
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