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Abstract In order to optimize multi-pass milling process,

selection of optimal values for the parameters of the pro-

cess is of great importance. The mathematical model for

optimization of multi-pass milling process is a multi-con-

strained nonlinear programing formulation which is hard to

be solved. Therefore, a novel robust meta-heuristic algo-

rithm named Robust Grey Wolf Optimizer (RGWO) is

proposed. In order to develop a RGWO, a robust design

methodology named Taguchi method is utilized to tune the

parameters of the algorithm. Therefore, in contradiction to

previous researches, there is no need to design costly

experiments to obtain the optimal values of the parameters

of the GWO. In addition, an efficient constraint handling

approach is implemented to handle complex constraints of

the problem. A real-world problem is adopted to show the

effectiveness and efficiency of the proposed RGWO in

optimizing the milling process within different strategies.

The results indicated that the RGWO outperforms the other

solution methods in the literature as well as two novel

meta-heuristic algorithms by obtaining better and feasible

solutions for all cutting strategies.

Keywords Multi-pass milling � Robust design � Grey Wolf

Optimizer � Taguchi method � Constraint handling

1 Introduction

Solving real-world optimization problems is one of the

most challenging tasks. Most of the real-world optimiza-

tion problems are complex; therefore, many researchers

paid attention to propose new optimization methods. In

recent years, different meta-heuristic algorithms are

developed inspiring from nature, mathematics, physics or

even animal behaviour to solve complex real-world prob-

lems, efficiently. Mirjalili et al. [1] proposed a novel meta-

heuristic algorithm named multi-verse optimizer (MVO)

which mimics the physic laws in universe. It uses the

definition of black holes and white holes to perform opti-

mization. Mirjalili et al. [1] investigated the performance of

the MVO against different state-of-the-art algorithms and

showed that the MVO is able to provide very competitive

results even in challenging composite benchmark func-

tions. In a different research, Saremi et al. [2] presented a

chaos version of the biogeography-based optimization

(BBO). They showed that their modification significantly

improved the performance of the algorithm. Salimi [3]

presented a new meta-heuristic algorithm named stochastic

fractal search (SFS). The SFS is based on strong mathe-

matical concepts such as Levy flight and Gaussian walks.

He showed that the SFS is very competitive with other

algorithms and outperforms them in majority of the

benchmark functions. Since most of the optimization

problems deal with different types of decision variables

such as binary variables, many researchers paid attention to

modify existing algorithms to solve various complex

problems. For example, Mirjalili et al. [4] proposed a

binary bat algorithm to solve complex binary optimization

problems. For more information, see [5].

One of the most recently developed algorithms is Grey

Wolf Optimizer (GWO). The GWO first proposed by
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Mirjalili et al. [6]. GWO mimics the hunting behaviour of

the grey wolves in nature. GWO is designed very intelli-

gently, which enables it to make an appropriate trade-off

between exploration and exploitation abilities of the algo-

rithm. Mirjalili et al. [6] compared the performance of the

GWO against state-of-the-art meta-heuristic algorithms and

showed that the GWO is able to outperform other algo-

rithms in most of the benchmark functions. Since the GWO

performed very efficient in solving complex benchmark

functions, many researches started to implement it to solve

complex optimization problems in different fields of study.

Jayakumar et al. [7] used GWO for optimization of com-

bined heat and power dispatch with cogeneration systems.

They showed that the GWO is able to solve the problem,

efficiently. Song et al. [8] implemented GWO for param-

eter estimation in surface waves and demonstrated the

superiority of the GWO. Pradhan et al. [9] showed that

GWO performs very effective in solving economic load

dispatch problem. By solving different problems, Medja-

hed er al. [10] showed that the GWO is able to solve the

hyperspectral band selection problem efficiently. In addi-

tion to above researches, which aimed to develop new

techniques to solve complex problems or to show the

efficiency of the novel algorithms, some researchers aimed

to optimize the performance of the existing algorithms.

One of the most commonly used approaches to optimizing

the efficiency of the meta-heuristic algorithms is to cali-

brate the values of input parameters of the algorithms using

a robust design methodology. One of the most widely used

robust design methods is Taguchi method [11, 12]. Najafi

et al. [13] used Taguchi method to tune the parameters of

the genetic algorithm (GA) to solve a complex resource

investment problem. Sadeghi et al. [14] utilized Taguchi

method to calibrate the parameters of the GA to solve a

constrained nonlinear programming model of the vendor-

managed inventory (VMI) problem. To show the efficiency

of the Taguchi method, Sadeghi et al. [15] used Taguchi

method to design a robust GA to solve a NP-hard hybrid

problem.

In this research, the aim is to optimize the milling pro-

cess which is one of the most widely used machining

processes. In milling process, to enhance the final quality

of machined products, many researches focused on the

optimization of the total production cost, total production

time, final surface roughness and material removal rate. In

this category, the input parameters of the machining pro-

cess must be selected attentively to achieve the favourable

outcomes. Instead of single pass, multi-pass machining has

been utilized in turning, boring and face milling processes

to decrease the power consumption, machining forces,

chatter phenomena and depreciation rate of the machine

tools. Many experimental and analytical methods have

been developed to optimize multi-pass milling parameters

considering operational constraints such as permissible

cutting force, power and tool life. The main parameters of

the problem include the number of passes, depth of cut,

cutting speed and feed rate. Therefore, there are different

variables and operational constraints that must be consid-

ered in multi-pass milling process which results in a con-

strained nonlinear programing (NLP) model. Due to

nonlinearity and complexity of the problem, traditional

optimization algorithms usually obtain local optimal solu-

tions. Conversely, meta-heuristic algorithms based on their

exploration ability can obtain better solutions comparing to

the traditional optimization techniques. In recent decades,

scholars utilized meta-heuristic algorithms to optimize

multi-pass milling process.

To specify the number of passes and optimum values of

the input parameters in multi-pass milling process, Sonmez

et al. [16] developed a dynamic programming (DP) and

utilized geometric programming (GP) to determine the

optimal cutting variables. The results demonstrated that

different depths of cut are better than equal depths for

multi-pass milling process. Wang et al. [17] proposed a

combinational optimization method using GA and simu-

lated annealing (SA). The archived values for the cutting

speed, feed rate and machining time have been compared

with the DP and conventional parallel GA (PGA). The

results showed the high capability of the presented method

to find proper values for milling parameters. Onwubolu

[18] utilized various depths of cut to minimize production

time with a new optimization method called Tribes.

To find the maximum total profit rate in the process,

Baskar et al. [19] introduced a new algorithm using the

genetic algorithm and hill climbing algorithm for opti-

mization of the milling parameters. Yildiz [20] proposed a

combinational optimization method to find maximum value

of the total profit rate in milling processes and compared

the results with genetic algorithm in the literature. Gao

et al. [21] used cellular particle swarm optimization

(CPSO) technique to optimize multi-pass milling process.

The comparison showed that their approach was better than

other optimization algorithms in obtaining more proper

values for milling parameters. Other algorithms have been

introduced by Rao and Pawar [22] and Pawar and Rao [23]

named the artificial bee colony (ABC) and teaching–

learning-based optimization algorithm (TLBO) to optimize

machining processes, respectively. Yang et al. [24] used a

plain method to predict the optimum values of the multi-

pass milling parameters. Recently, Mellal and Williams

[25] suggested a cuckoo search optimization algorithm

approach to minimizing the total production time in the

milling process. The results compared to the previous

researches in the literature and showed that cuckoo algo-

rithm is an appropriate optimization method to specify

minimum total production time considering process
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constraints and variables. In different research, Mellal and

Williams [26] used a cuckoo optimization algorithm to

optimize machining process parameters. They showed that

the CS is able to provide very competitive results. In more

recent research, Mellal and Williams [27] utilized a cuckoo

optimization algorithm to optimize production costs in

multi-pass milling process. Beside the wide application of

meta-heuristic algorithms, many researchers aimed to

optimize machining, turning and grinding processes using

hybrid methods which use neural networks and meta-

heuristic algorithms, simultaneously. For more informa-

tion, see [28–32].

Most of the researches in the literature proposed a meta-

heuristic algorithm to optimize the parameters of the mil-

ling process and find better solutions. Since the proposed

mathematical formulation is a nonlinear programing for-

mulation (NLP) and hard to be solved [33], a meta-

heuristic algorithm is needed to solve the problem which

can make a proper trade-off between exploration and

exploitation phrases of the algorithm to avoid trapping in

local optima and fast convergence, simultaneously.

In this paper, a robust nature inspired algorithm named

Robust Grey Wolf Optimizer (RGWO) is developed to

optimize multi-pass milling process parameters. Since the

values of the main parameters of meta-heuristic algorithms

significantly affect the performance, therefore Taguchi

method is utilized to obtain the optimal values of the main

parameters of the algorithm to increase its efficiency, while

in previous researches in the literature, the values of the

main parameters of the developed algorithms are deter-

mined by trial and error. In addition, an effective constraint

handling technique is used to handle complex operational

constraints of the problem. Efficiency and effectiveness of

the proposed RGWO is investigated by solving a real-

world problem proposed by Sonmez et al. [16]. The results

are compared to the previous researches and demonstrated

that the RGWO can find significantly better solutions

comparing to other solution methodologies in the literature.

2 Mathematical model

In this research, the mathematical formulation presented by

Sonmez et al. [16] is implemented to optimize the multi-

pass milling process parameters, where the main parame-

ters of the milling process are considered as decision

variables of the problem include: feed per tooth and cutting

speed. The depth of cut (a) as one of the main parameters

of the process is considered to be known. Using different

strategies, the value of depth of cut is given in the problem

for each pass. The goal of this research is to minimize total

production time in multi-pass milling process. The nota-

tions are presented in Table 1.

2.1 Objective function

The total production time in the multi-pass milling process

is the sum of the required times for machining the work-

piece with several single passes as presented in Eq. (1).
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2.2 Constraints

Multi-pass milling process has some experimental and

operational constraints which depend on the material and

geometry of the workpiece. These operational constraints

significantly reduce the feasible solution space of the

problem and make the problem hard to be solved.

2.2.1 Arbour stability

The optimal values of the decision variables should satisfy

the arbour stability constraint as presented in Eq. (2).
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where the first phrase of Eq. (2) shows the mean peripheral

cutting force and the second phrase presents permissible

force.

2.2.2 Arbour deflection

The arbour deflection constraint should be satisfied by the

optimal values of the decision variables. Equation (3)

presents the arbour deflection constraint.

CzpZara
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� 4Ed4a
� � e

L3a
� 0 ð3Þ

where the second phrase of Eq. (3) shows the permissible

force with regard to the arbour deflection.

2.2.3 Power constraint

The following constraint ensures that the power required

for the cutting operation is less or equal to the effective

transmitted power to the cutting point which is given by

Eq. (4).
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The last constraints present the lower and upper bound

constraints of the decision variables.

fzmin
� fzi � fzmax

ð5Þ
Vmin �Vi �Vmax ð6Þ

3 Solution methodology

The proposed mathematical model in the previous section is

a constrained nonlinear programming (CNLP) model, which

is hard to be solved using exact methods [33]. In last decade,

many meta-heuristic algorithms have been proposed and

commonly used to optimize complex NLP problems. Most

of them are inspired from the nature such as water cycle

algorithm [34–36], or animal’s behaviour such as particle

swarm optimization [37, 38], or other physical phenomena

such as gravitational search algorithm [39]. In order to solve

the above model, a new meta-heuristic algorithm named

GWO is utilized [6]. As mentioned earlier, the GWO is

widely used to solve engineering problems, while in this

research GWO is used to optimize machining process

parameters for the first time. GWO uses intelligent beha-

viour of the grey wolves in hunting and attacking prey in

nature which helps the algorithm to perform well in solving

complex problems. In this paper, a robust GWO is devel-

oped using Taguchi method.

3.1 Grey Wolf Optimizer

The GWO is inspired from grey wolves and their behaviour

in nature. Grey wolves are one of the most famous

predators in nature. They usually live in pack with five to

twelve members. One of the most interesting behaviours of

grey wolves is their social dominant hierarchy [6]. The

hierarchy of the wolves and their responsibilities are pre-

sented in Fig. 1.

The alpha wolf is known as the leader of the pack, and

his/her responsibility is to make decisions about hunting

and other activities in the pack such as find a place for

sleep. The beta wolf helps the alpha wolf in making

decisions. The omega wolves are the lowest in ranking in

the pack. Omegas are responsible to submit information to

alpha, beta and delta wolves. All other wolves are called

delta. The delta wolves should respect to alpha and beta,

and they dominate omega wolves. There are three steps in

hunting process of grey wolves as described in following

[6].

• Tracking the prey.

• Encircling the prey.

• Attacking to the prey.

GWO is a mathematical representation of the hunting

method of the grey wolves. GWO uses the hunting process

of the grey wolves to solve complex optimization prob-

lems. For this purpose, the optimal solution of the problem

is considered as prey. In each iteration of the GWO, first

three best solutions are considered as alpha, beta and delta,

Table 1 Parameters and decision variables

Parameter Definition Parameter Definition

ai Depth of cut in each pass (mm) Nb Total number of components in the batch

ar Milling width (mm) Np Total number of passes

Bm; Bh; Bp; Bt Constant coefficients Pc Cutting power (W)

Czp Constant of the cutting force equation Pm Nominal motor power (W)

Cv A constant ks Cutting inclination angle (�)
D Arbour deflection values (mm) Vi Cutting speed (m/min)

da Arbour diameter (mm) Ta Process set-up time (min/part)

E Arbour material modulus of elasticity (kg/mm2) Td Tool changing time (min)

e Values of arbour deflection (mm) TL Loading and unloading time (min)

ev; ez; uv; uz Empirical exponents Tpr Total production time (min)

La Arbour length (mm) Ts Machine set-up time for a new batch (min)

fzi Feed per tooth (mm/tooth) Z Number of teeth on the cutter

kb Bending stress (arbour material) (kg/mm2) g Efficiency of the machine tool

kt Torsional stress of the arbour material (kg/mm2) Tx ¼ TS
Nb
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respectively. The rest of the solutions are considered as

omega. Hunting is leaded by alpha, beta and delta wolves,

and the omegas follow these dominant wolves.

3.1.1 Encircling prey

The first step in hunting process is encircling prey. The

mathematical formulation to mimic the encircling process

is given in the following.

Dis~¼ C~ � X~pðtÞ � X~ðtÞ
			 			 ð7Þ

�Xðt þ 1Þ ¼ X~pðtÞ � A~ � D~ ð8Þ

where C~ and A~ are coefficient vectors, t is the current

iteration, while X~p and X~ are the position of prey and a

randomly chosen grey wolf, respectively [6]. The coeffi-

cients C~ and A~ are determined using following formulas.

A~¼ 2a~ � r~1 � a~ ð9Þ

C~ ¼ 2 � r~2 ð10Þ

where the a~ vector decreases over the iterations of the

GWO from two to zero and r~1, r~2 are randomly generated

parameters between 0 and 1. Equations (9) and (10) allow

the grey wolves to change their positions around the prey.

This allows the GWO to search the n-dimensional solution

space of the problem more efficiently.

3.1.2 Hunting

As mentioned above, the alpha, beta and delta wolves

guide hunting process and rest of the wolves in the pack

follow them. Mathematically speaking, the wolves update

their position using the following equations.

D~a ¼ C~1:X~a � X~
			 			; D~b ¼ C~2 � X~b � X~

			 			;
D~d ¼ C~3 � X~d � X~

			 			 ð11Þ

�X1 ¼ X~a � A~1 � D~a; �X2 ¼ X~b � A~2 � D~b;

�X3 ¼ X~d � A~3 � D~d

ð12Þ

�Xðt þ 1Þ ¼ X~1 þ X~2 þ X~3

3
ð13Þ

3.1.3 Attacking prey

Decreasing the value of a~ over the iterations from 2 to 0

decreases the value of A~ over the iterations as well. As the

value of a~ decreases, the grey wolves are more likely to

attack towards the prey and get closer and closer to the prey

over the last iterations of the GWO. In other words, the

search radius of the grey wolves decreases over the course

of iterations. This makes a proper trade-off in exploration

and exploitation by focusing on exploration at first itera-

tions and exploitation in last iterations.

Actually, the proposed basic GWO is to solve uncon-

strained problems and no version is developed to solve

constrained problems. Therefore, we modified the GWO to

obtain the optimal values of the decision variables of the

constrained NLP model. The pseudo-code of the developed

GWO is given in Table 2.

3.1.4 Constraint handling

During constrained optimization, both inequality and

equality constraints should be satisfied. In this process,

solutions are divided into two solutions, feasible and

infeasible solutions [40]. As classified by Coello [41], five

methods have been used to handle constraints during

constrained optimization process: penalty functions, repair

algorithms, hybrid methods, special operators and separa-

tion of objective functions and constraints. The penalty

functions are the simplest technique to handle constraints

which penalize the infeasible solutions. Consider a NLP

problem as follows:

Fig. 1 Grey wolves’ hierarchy and their responsibilities
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Min z ¼ f ðx~Þ
s:t:

giðxÞ� 0

hjðxÞ ¼ 0

ð14Þ

The penalty functions convert a constrained optimiza-

tion model to an unconstrained one. The general formula-

tion of the penalty functions can be presented as follows

[41]:

bðx~Þ ¼ f ðx~Þ �
Xn
i¼1

ri �max 0; giðxÞ½ �bþ
Xp
j¼1

cj � hjðxÞ
		 		

" #

ð15Þ

where bðx~Þ shows the modified objective function and ri, cj
are positive penalty factors [41]. There are different pen-

alty function techniques which aim to handle the con-

straints in different manners such as dynamic penalty, static

penalty, adaptive co-evolutionary penalty, annealing pen-

alty and death penalty functions [42].

Most of the researchers in the literature used death

penalty method to handle constraints in solving parameter

optimization problems. Death penalty technique assigns a

big positive number in minimization problems to objective

function value of any infeasible solution. In other words,

this technique does not use any information of infeasible

solutions. This point makes the death penalty a weak

technique to handle complex constraints in an optimization

problem, that is why the algorithm needs more time to find

the feasible solution space. Besides, the information of the

infeasible solutions can help the algorithm to find the

feasible solution space much faster. For this purpose, in

this research static penalty technique is used to handle

complex constraints of the proposed mathematical model.

This method uses the information of the infeasible solu-

tions (violation of each constraint) to reach to the feasible

solution space. In the constraint handling approach pro-

posed by Homaifar et al. [43], the user determines different

levels of violation, and penalty constants for all constraints

in a way that the penalty coefficient increases as the

algorithm reaches higher violations [44–46].

fitness ðx~Þ ¼ objective function ðx~Þ

þ
Xn
i¼1

Rk;i �max 0; giðx~Þ½ �2 ð16Þ

where Rk;i are user defined positive penalty coefficients.

This methodology is utilized in this paper to handle com-

plex operational constraints of the problem.

Table 2 Pseudo-code of the

GWO set the parameters of GWO α, A and C as obtained from Taguchi method
for i=1:number of search agents

Create a randomly generated solution
Calculate the objective function value of each search agent
Use static penalty function to handle the constraints

end for
set the best solution as alpha
set the second best solution as beta
set the third best solution as delta
i=1;
While     i < max it

for i=1:number of search agents
update the position of each wolf
end for

Iteratively decrease the value of α from 2 to 0
decrease A and C parameters
Calculate objective function value of each grey wolf

Update αX , βX and δX
i=i+1;
end while
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4 Tuning the parameters of the GWO

In all of the meta-heuristic algorithms, the values of input

parameters of the algorithms play a prominent role in the

performance of the algorithms. As mentioned above,

GWO, as a meta-heuristic algorithm, has three main input

parameters which effect the performance of the algorithm.

The first one is the number of grey wolves (number of

search agents). Consider a milling process where the aim is

to minimize the total production time considering four

passes, three rough millings at first and one finish milling at

the end. Figure 2 presents the convergence curve of the

GWO with different numbers of wolves in solving the

problem.

From Fig. 2, it is obvious that the efficiency of the GWO

is significantly influenced by the number of grey wolves.

The second parameter, which changes the performance of

the GWO, is the convergence constant. The convergence

constant is the most important parameter in the GWO,

since it determines the search radius of the grey wolves and

makes an appropriate trade-off between exploration and

exploitation in GWO. To show the effect of change in this

parameter, Fig. 3 is presented.

The third parameter (MaxIt) determines the maximum

number of iterations. This parameter not only affects the

performance of the GWO, but also effects the perfor-

mance of all the meta-heuristic algorithms. Figure 4

depicts the effect of this parameter on the performance of

the GWO.

As mentioned above, the performance of the GWO is

directly influenced by the main parameters of the GWO.

Therefore, determining the best values of the main

parameters of the GWO results in better solutions. Differ-

ent methodologies are proposed by the researchers to

obtain the optimal level of the parameters of a meta-

heuristic algorithm such as Taguchi method and response

surface methodology. In this research, the Taguchi method

approach is utilized to develop a robust GWO.

Factorial designs are known as design of experiments

(DOE) proposed by Fisher and aim to determine the effect

of several factors on a response [11, 12]. In this research,

the objective function value is considered as the response

and the factors are the main parameters of the GWO.

Therefore, the effect of change in main parameters of the

GWO on objective function value is investigated to

determine the optimal values of the main parameters of the

algorithm. In the Taguchi method, the main factors are

Fig. 2 Effect of change in the number of search agents on the

performance of the GWO

Fig. 3 Effect of change in the convergence constant on the perfor-

mance of the GWO

Fig. 4 Effect of change in the maximum number of iterations on the

performance of the GWO
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classified into two groups: controllable factors (S) and

uncontrollable factors or noise factors (N). Taguchi method

aims to determine control factors by minimizing the effect

of noise factors to reduce the variation around response and

to obtain a robust design [13–15].

4.1 Taguchi method

The main parameters of the GWO are tuned using Taguchi

method to obtain better solutions and as fast as possible

without trapping in local minima.

4.2 Grey Wolf Optimizer parameter tuning

Four levels of possible values are considered for each

parameter of the GWO. Table 3 presents the levels of the

parameters of the GWO.

The L9 orthogonal array of the Taguchi method is used

to find the optimal level of the parameters of the GWO.

GWO is utilized to solve a milling process where the aim is

to minimize the total production time considering four

passes including three rough millings and one finish mil-

ling at the end to obtain the optimal values of the GWO

parameters. For this purpose, a real case provided by

Sonmez et al. [16] is utilized to develop RGWO. The

values of required parameters of the case are presented in

Table 4.

The problem is solved five times using GWO. Each

repetition is shown by yi. Table 5 presents the objective

function values in five runs.

Figure 5 depicts the performance of the GWO in fourth,

eighth, twelfth, thirteenth and fifteenth orders.

The first column of Fig. 5 presents the best solution over

the course of iterations. The second column of Fig. 5 shows

the average objective function value of grey wolves which

are in the feasible solution space of problem. The third

column of Fig. 5 presents the average penalty values of the

wolves that are out of the feasible solution space of the

problem. The last column of Fig. 5 presents the conver-

gence constant value over the iterations.

To perform the Taguchi method, first the obtained

objective functions values are normalized using linear

norm. The linear normalization assigns one to the best

solution (minimum objective function value) and positive

values between 0 and 1 to other solutions based on their

deviation from the best solution. Therefore, the solution

with larger normalized value is preferred. Since the aim is

to find solutions with larger normalized value, highest rate

in S/N ratio is suitable, see [11, 12]. The S/N ratio for this

type objective function is calculated as follows:

S=N ¼ �10 log
1

n

Xn
i¼1

1

y2i

 !
ð17Þ

where n is the replications which in our example is five and

yi is the normalized objective function value of the

Table 3 Different levels of the parameters

Algorithm parameters Parameters range Level

Low (1) Medium (2) Medium (3) High (4)

Initial value of a 0.5–3 0.5 1 2 3

Number of search agents (NSA) 30–90 30 50 70 90

Maximum number of iterations (MaxIt) 550–1150 550 750 950 1150

Table 4 Input parameters of

the numerical example
rv 0.1 Cv 35.4 e (finishing) 0.05 mm

ar 50 mm bz -0.86 ez 0.86

Ts 10 min Ta 0.1 (min/part) e (roughing) 0.2 mm

Nb 100 TL 1.5 min g 0.7

Bh 1 Bt 0.8 uv 0.4

Bp 0.8 ev 0.3 Bm 1

L 160 mm Td 5 min Czp 68.2

Z 8 ks 30� D 63 mm

Pm 5500 W kt 120 MPa = 12.23 (kg/mm2) bv 0.45

E 200 Gpa = 20,387 (kg/mm2) kb 140 MPa = 14.27 (kg/mm2) La 210 mm

da 27 mm m 0.33 uz 0.72

nv 0.1 ai [0.5, 4] mm qv 0

fzi [0.000875, 3.571] mm/tooth Vi [6.234, 395.84] m/min
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different combinations of the parameters levels. Table 6

presents the results.

Figure 6 presents the results of the Taguchi method

implementation. As in Fig. 6, the highest value of the S/

N ratio is the best level of the parameter.

From the results, the optimal values of the parameters of

the GWO algorithm can be determined. The optimal value

of the a parameter (convergence constant) is 0.5. The

optimal number of grey wolves in the initial population is

70, and the optimal number of iterations to solve the

problem is 1150.

5 Results and discussion

The real case provided by Sonmez et al. [16] is utilized to

evaluate the efficiency of the developed RGWO in opti-

mizing the multi-pass milling process. Three main strate-

gies are adopted for given values of ai as reported in the

literature. The first two strategies include three rough and

one finish passes. The third strategy contains one rough and

one finish passes. The value of input parameters of the case

is as presented earlier in Table 4. Table 7 presents the three

cutting strategies and the value of the parameter a in each

pass.

To optimize the parameters of the multi-pass milling

process using the RGWO, the initial pack of wolves is

created as shown in Table 8 [44–46], where rand is a

random number between 0 and 1.

Tables 9, 10 and 11 present the computational results of

optimizing the multi-pass milling process using the

developed RGWO within different strategies. In addition,

the results of the RGWO are compared with other meta-

heuristic algorithms in the literature such as particle swarm

optimization, simulated annealing and artificial bee colony

algorithm. To validate the results of the RGWO, the per-

formance of the RGWO is compared to two novel meta-

heuristic algorithms named dragonfly algorithm and multi-

verse optimizer within the same number of function eval-

uations, as well [1, 47].

From Table 9, the proposed RGWO obtains better

solutions which has significantly less production time

comparing to other solution methodologies in the literature.

In addition, the two novel meta-heuristic algorithms

obtained two solutions which are significantly worst than

the solution of the RGWO. A schematic view of the

comparison of RGWO and previous researches is presented

in Fig. 7.

The computational results of the second strategy are

given in Table 10. The second strategy contains three

rough and one finish passes.

From Table 10, it is clear that the RGWO obtained

better solutions with less total process time comparing to

other methods in the literature. In addition, the solution

obtained by the RGWO satisfies all the constraints of the

problem. Figure 8 depicts the comparison of the results of

the RGWO and other solution methods in the literature in a

graphical manner.

Table 11 presents the computation results of the third

strategy. In contradiction with the first two strategies, the

third strategy includes one rough and one finish passes.

One of the important points in the results of the third

strategy is that in most of the previous researches, the

developed meta-heuristic algorithms could not obtain a

solution which satisfy all constraints; in other words, their

solutions are not feasible. Conversely, the developed

Table 5 Experimental results

of the GWO
Run order a NSA It y1 y2 y3 y4 y5

1 1 1 1 3.3344 3.3359 3.3352 3.3351 3.3348

2 1 2 2 3.3343 3.3347 3.3344 3.3348 3.3344

3 1 3 3 3.3344 3.3344 3.3344 3.3341 3.3344

4 1 4 4 3.3342 3.3341 3.3341 3.3344 3.3343

5 2 1 2 3.3353 3.3352 3.335 3.3345 3.3345

6 2 2 1 3.3348 3.3359 3.3345 3.3348 3.3351

7 2 3 4 3.3344 3.3344 3.3345 3.3348 3.3342

8 2 4 3 3.3348 3.3354 3.3345 3.3342 3.3342

9 3 1 3 3.3347 3.3357 3.3347 3.3348 3.3369

10 3 2 4 3.3348 3.3362 3.3353 3.3352 3.3349

11 3 3 1 3.3349 3.3352 3.3353 3.3351 3.3353

12 3 4 2 3.3353 3.3355 3.3353 3.3354 3.3353

13 4 1 4 3.3356 3.3351 3.3351 3.3361 3.3349

14 4 2 3 3.3349 3.3358 3.335 3.336 3.3352

15 4 3 2 3.3352 3.3349 3.3351 3.3356 3.3352

16 4 4 1 3.335 3.3358 3.3361 3.3366 3.3348
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RGWO in this research determines better feasible solutions

which satisfy all constraint. This shows the efficiency and

applicability of the proposed solution methodology in

optimizing multi-pass milling process. In the GWO, the

omega wolves follow the three leading wolves (alpha, beta

and delta wolves) and update their position in each iteration

Fig. 5 Performance of the GWO in fourth, eighth, twelfth, thirteenth and fifteenth orders
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with respect to the position of these three leading wolves.

In other words, they share the best solution in the algo-

rithm. This approach helps the search agents (omega

wolves) to find the feasible solution space faster and the

best solution as well [44–46]. Figure 9 shows the

comparison of the results of the RGWO in third strategy

and other solution methodologies in the literature, where

points in the red circle are infeasible solutions obtained in

the previous researches.

Fig. 6 Results of the Taguchi

method

Table 7 Three cutting strategies

Strategy # of passes arough1 arough2 arough3 afinish1

1 4 1.5 1.5 1.5 0.5

2 4 2 1 1 1

3 2 3 – – 2

Table 8 Generating the initial population in GWO

Enter the lower bound of the decision variables.
Enter the upper bound of the decision variables.
for i= 1:number of wolves

for j= 1:number of decision variables
Ini pop(i,j)=lb(j)+(ub(j)-lb(j))*rand

end for
end for

Table 6 Normalized values of

the experimental results of

GWO

Run order a NSA It y1 y2 y3 y4 y5 Mean SNRA

1 1 1 1 0.99996 0.99946 0.99968 0.99972 0.99983 0.99973 -0.00234

2 1 2 2 0.99997 0.99984 0.99992 0.99981 0.99993 0.9999 -0.0009

3 1 3 3 0.99994 0.99993 0.99991 1 0.99994 0.99995 -0.00047

4 1 4 4 1 1 1 0.99994 0.99998 0.99998 -0.00014

5 2 1 2 0.99968 0.99967 0.99974 0.99989 0.99991 0.99978 -0.00191

6 2 2 1 0.99983 0.99947 0.99989 0.99981 0.99972 0.99974 -0.00222

7 2 3 4 0.99994 0.99992 0.99987 0.99979 1 0.9999 -0.00083

8 2 4 3 0.99983 0.99961 0.99987 0.99997 0.99999 0.99986 -0.00125

9 3 1 3 0.99986 0.99954 0.99982 0.99979 0.99919 0.99964 -0.00309

10 3 2 4 0.99983 0.99938 0.99963 0.99967 0.99978 0.99966 -0.00295

11 3 3 1 0.99978 0.9996 0.99965 0.99972 0.99967 0.9997 -0.00261

12 3 4 2 0.99968 0.99958 0.99965 0.99962 0.99968 0.99964 -0.0031

13 4 1 4 0.99959 0.99971 0.99969 0.99942 0.99979 0.99964 -0.00311

14 4 2 3 0.99978 0.99951 0.99972 0.99944 0.99969 0.99963 -0.0032

15 4 3 2 0.9997 0.99977 0.99971 0.99957 0.99971 0.99969 -0.00267

16 4 4 1 0.99976 0.9995 0.9994 0.99927 0.99981 0.99955 -0.00392
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As is shown in the above comparison, the performance

of the RGWO is significantly better than other algorithms

in the literature as well as other novel meta-heuristic

algorithms, but why? To perform well, each meta-heuristic

algorithm has to explore and exploit the solution space of

the problem, efficiently. GWO performs very well in

making an appropriate trade-off between exploitation and

exploration using the convergence constant. As mentioned

earlier, the value of the convergence constant decreases

over the course of iterations of the GWO. The convergence

constant is similar to search radius of the grey wolves.

Therefore, in the first iterations, when the value of the

convergence constant is high, the GWO focuses on

exploring of the solution space and finding better solutions.

Then, the GWO starts to decrease the convergence con-

stant, and this process decreases the search radius of the

grey wolves. Thus, GWO aims to exploit the solution space

more efficiently as the iterations go on. By making this

appropriate trade-off, GWO is able to explore and exploit

the solution space effectively and this helps the GWO to

obtain better solutions. The second reason is that the GWO

can reach the feasible solution space of the problem very

fast. In the first iterations, most of the randomly generated

solutions are infeasible, and the static penalty approach

calculates the violation level of each infeasible solution and

chooses the best infeasible solution as alpha. Therefore, the

omega wolves move towards a solution which is the best

infeasible solution with least violation level. Thus, all the

wolves in the pack move very fast towards the feasible

solution space, and when alpha becomes feasible, all other

wolves start to follow him instantly towards the feasible

solution space.

As is known, the values of the main parameters of the

meta-heuristic algorithms significantly affect their per-

formance. In this research, the main parameters of the

GWO were tuned using a robust design approach within

five repetitions to obtain the best possible solution. One of

the most critical parameters of the GWO is convergence

constant. The optimal value of this parameter is also

obtained using Taguchi method. As mentioned earlier,

this parameter makes the appropriate trade-off between

exploration and exploitation abilities of the GWO. Thus,

by obtaining the optimal value of this parameter, the

GWO reached its maximum efficiency in solving the

Table 11 Computational results of the third strategy

Researchers Method fz (mm/tooth) V (m/min) Tx (min) Tu (min) Tpr (min) Constraint violation

1 2 3

Sonmez et al. [16] GP (0.338, 0.570) (26.40, 25.16) 1.801 0.813 2.614 Yes Yes Yes

Wang et al. [17] GA (0.366, 0.5667) (24.69, 25.16) 1.7998 0.8102 2.61 Yes Yes Yes

Wang et al. [17] PGSA (0.3693, 0.5886) (24.25, 24.58) 1.80 0.80 2.6 Yes Yes No

Onwubolu [18] Tribes (0.587, 0.902) (36.27, 30.16) 1.7005 0.512 2.2125 Yes Yes Yes

Mellal and Williams [25] COA (0.14915, 0.08303) (57.63565, 82.10743) 1.80 1.55480 3.35480 No No No

This research DA (0.14915, 0.08303) (63.1735, 77.4000) 1.80 1.5633 3.36328 No No No

This research MVO (0.149085, 0.08302) (56.1955, 81.8732) 1.80 1.5546 3.3546 No No No

This research RGWO (0.149158, 0.08303) (57.3707, 82.40126) 1.80 1.5540 3.35395 No No No

Fig. 7 Comparison of RGWO and other researches in the first strategy
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problem, since it makes the best possible trade-off

between exploration and exploitation. All the above-

mentioned three reasons make the GWO a powerful

algorithm in solving the problem.

As is clear, the other algorithms in the literature lack

from an efficient exploration and exploitation abilities. The

best values of the main parameters of those algorithms are

obtained by trial and error which does not guarantee the

optimality of the values of the main parameters. In addi-

tion, they may lack from an efficient constraint handling

procedure.

Note that in all the simulations, the number of function

evaluations (NFE) of the RGWO was 80,500, while the

computation time was \10 s. Although the NFE of the

RGWO is high, it can solve the problem accurately and

very fast.

6 Conclusion

This paper aims to minimize total production time in a

multi-pass milling process. Since the mathematical model

of the multi-pass milling process is nonlinear program-

ming, traditional techniques cannot solve the problem

efficiently. Therefore, in this research a novel RGWO

developed to solve the optimization problem. A robust

design methodology named Taguchi method was imple-

mented to tune the parameters of the GWO. Thus, in

contradiction to previous researches, costly experiments

are not required to calibrate the values of input parameters

of the algorithm. The optimal values of the main parame-

ters of the GWO guarantee the best appropriate trade-off

between exploration and exploitation abilities of the algo-

rithm. Also, an efficient constraint handling technique was

utilized to handle complex operational constraints of the

problem. By solving an experimental example, the effec-

tiveness and applicability of the proposed RGWO was

investigated. The performance of the RGWO was com-

pared to the other solution methods in the literature as well

as two novel meta-heuristic algorithms named dragonfly

Fig. 8 Comparison of RGWO and other researches in second

strategy

Fig. 9 Comparison of RGWO and other researches in third strategy
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algorithm and multi-verse optimizer. The results indicated

that the RGWO outperforms the other solution methods in

the literature as well as novel meta-heuristic algorithms in

minimizing total production time. Using the robust design

methodology and efficient constraint handling approach,

the RGWO was able to obtain the best feasible solution for

different cutting strategies.

For future research, it is very interesting to consider

some of the main parameters of the mathematical model

under uncertainty and develop more realistic models.

Considering different other operational constraints of the

multi-pass milling process as well as multiple objectives

will absolutely help the decision-maker to choose the best

possible solution. Developing other efficient solution

methodologies to solve the problem would be worthwhile.

Using other constraint handling techniques to solve the

problem is another extension of this research.
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