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Abstract For robot trajectory tracking control, it is nec-

essary to model inverse dynamics system sufficiently well

to allow high-performance control. However, for complex

robots such as wheeled mobile manipulators (WMMs), it is

often difficult to model the dynamics system owing to

system uncertainties, nonlinearity, and coupling. In this

paper, we propose an effective tracking control method

based on fuzzy neural network (FNN) and extended Kal-

man filter (EKF) to achieve WMM followed reference

trajectory efficiently. The FNN is trained to generate a

feedforward torque. In order to increase the computational

efficiency and precision of the training algorithm, the EKF

is used to sequentially update both the output weights and

centers of the FNN. The effectiveness of the proposed

control algorithm is confirmed through system

experiments.

Keywords Trajectory tracking � Wheeled mobile

manipulator � Fuzzy neural network � Extended Kalman

filter

1 Headings

Traditionally, the trajectory tracking problem either in a

kinematic or in a dynamic control level is well known that

under the assumption of the model is appropriate

simplification. However, for complex robots such as

wheeled mobile manipulators (WMMs), it is more realistic

to consider the tracking problem with system uncertainties,

nonlinearity, and coupling to realize high-performance

control. In kinematic control level, authors have studied the

tracking problem using adaptive controls and robust con-

trols considering system uncertainties and nonlinearity as

disturbances [1–5]. However, the dynamics usually cannot

be neglected if accurate motion is required. Some adaptive

controls and robust controls have been developed to con-

front the uncertainties and nonlinearity in the dynamics of

the systems. In [6, 7], adaptive control techniques were

employed to solve the tracking problem of WMM with

unknown inertia parameters. In [8, 9], a robust adaptive

controller was designed for robot systems with model

uncertainties. Dong et al. [10] have studied the motion/-

force control for a mobile manipulator. In addition, they

have proposed some adaptive robust control strategies. In

[11], robust adaptive controllers were proposed for

dynamic systems with parametric and nonparametric

uncertainties, in which adaptive control techniques were

used to compensate for the parametric uncertainties and

sliding mode control was used to suppress the bounded

disturbances. In [12–16], robust control strategies were

presented systematically in the presence of uncertainties

and disturbances. However, the major problem of the

adaptive robust control approach is that certain functions

must satisfy the assumption of ‘‘linearity in the parame-

ters,’’ and tedious preliminary computation is required to

determine ‘‘regression matrices.’’

In the past decade, great progress has been achieved in

the study of using neural networks to control nonlinear

systems with uncertain. Extensive works demonstrate that

adaptive neural control is particularly suitable for con-

trolling highly uncertain, nonlinear, and complex systems
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[17–20]. In these neuro-adaptive control schemes, the

neural network is used to study dynamic system or com-

pensate the effects of system nonlinearity and uncertainties.

Therefore, the stability, convergence, and robustness of the

control system can be improved. A multilayer perception

network-based controller was suggested by Fierro and

Lewis [21] to deal with parametric or nonparametric

uncertainties for a mobile robot without any prior knowl-

edge of the uncertainties. Other neural networks, such as

radial basis function (RBF) neural network [22], wavelet

network [23, 24], and fuzzy neural network (FNN), were

also adopted for the robust control of mobile manipulators.

The FNN has been widely used for trajectory tracking

control of WMMs owing to the advantages in stability,

convergence, and robustness. The FNN is essentially a

neural network. In this network, the structure is determined

using a number of fuzzy rules. The key to evaluate a FNN

is to see its generalization ability. The most important

effect of the generalization ability is the network structure

of the selection. If the number of nodes is not appropriate,

it can easily lead to the problem, of over-fitting or training

phenomenon, and reduce the generalization ability of the

neural network. The traditional learning method mostly

uses the back-propagation algorithm, which has low speed,

easy to fall into local minimum [25]. Others have used

unsupervised procedures (e.g., k-means clustering or

Kohonen’s self-organizing maps [26]) for selecting the

centers [27]. Theoretical justification of the suitability of

such a strategy is presented in [28]. Nevertheless, in order

to acquire optimal performance, the centers training pro-

cedure should also include the target data [29], leading to a

form of supervised learning that proved to be superior in

several applications [30]. Owning to the advantage of quick

converge and converge to global minima, extended Kalman

filters (EKFs) have been used extensively with neural

networks. They have been used to train multilayer per-

ceptron [31–33] and recurrent networks [34, 35]. They

have also been used to train RBF networks [36, 37].

In this study, we propose an effective tracking control

method based on FNN and EKF to track a reference tra-

jectory (e.g., trajectory for opening a door or grasping an

object) in the proposed WMM system. Firstly, we identify

the WMM system, FNN, and EKF using a simple

description. Secondly, to deal with complex dynamics

system, we developed a FNN to approximate the dynamics

model. In order to decrease the computational effort of the

training algorithm, a pair of parallel EKF is used to

sequentially update both the weights and centers, following

the line of previous work related to considering the training

procedure of a neural network as an estimation problem

[38–40]. Thirdly, an effective tracking control law for the

WMM system is proposed with system stability analysis.

Finally, the proposed tracking control method facilitates

precise tracking performance, which was demonstrated

using some simulations and experiments.

This paper is organized as follows. The background of

the WMM system, FNN, and EKF are introduced in Sect.

2. Section 3 discusses the FNN learning scheme, and a pair

of parallel EKF is used to sequentially update both the

weights and centers of the network. The effective tracking

control strategy for the WMM system is proposed based on

the stability analysis in Sect. 4. Some simulations and

experiments are presented in Sect. 5. Finally, some con-

clusions are presented in Sect. 6.

2 Background

2.1 WMM model

In this study, consider the WMM consisting of the wheeled

mobile vehicle and 6-link manipulator, as shown in Fig. 1.

The dynamics of WMM can be given by the dynamics of

wheeled mobile vehicle and 6-link manipulator [41].

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ þ Fðq; _qÞ þ C�1ss
¼ BðqÞs� JTðqÞk ð1Þ

where q; _q; €q are the joint angles, velocities, and acceler-

ations of the mobile manipulator, respectively. MðqÞ 2
<8�8 is the symmetric bounded positive definite inertia

matrix, Cðq; _qÞ 2 <8�8 denotes the centripetal and Coriolis

torques, GðqÞ 2 <8�1 is gravity matrix, Fðq; _qÞ 2 <8�1 is a

vector representing frictional force, ss 2 <8�1 denotes the

coupling torque, C 2 <8�8 denotes the reduction radio of

the speed reducer, s 2 <8�1 is the actuation input, BðqÞ 2
<8�8 is a full-rank input transformation matrix, which is

assumed to be known because it is a function of the fixed

geometry of the system, JTðqÞ 2 <8�8 is the Jacobian

matrix, and k 2 <8�1 denotes the constraining force. From
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Fig. 1, we can define q ¼ #Bl #Br qM1 qM2 qM3½
qM4qM5qM6�T.

By analogy with a similar concept introduced in [41],

the dynamics model of WMM considering kinematics can

be derived as follows.

~MðqÞ _vþ ~Cðq; _qÞvþ ~GðqÞ þ ~Fðq; _qÞ þ ~ss ¼ ~s ð2Þ
~MðqÞ, STðqBÞMðqÞSðqBÞ
~Cðq; _qÞ, STðqBÞfMðqÞ _SðqBÞ þ Cðq; _qÞSðqBÞg
~GðqÞ,STðqBÞGðqÞ
~Fðq; _qÞ, STðqBÞFðq; _qÞ

~ss ,STðqBÞC�1ss

~ss ,STðqBÞBðqÞs

2.2 Fuzzy neural network

In this paper, a FNN is used, as shown in Fig. 2. Here, r is the

number of input variables; xi (i = 1, 2,…, r) is the input

linguistic variables; yi (i = 1, 2,…, m) is the output of the

system;MFij is the i-th input variables of the j-thmembership

function; Rj is the j-th fuzzy rule; wmj is a result parameter of

the j-th rule; and u is the rule number of the system.

The following is a detailed description for all the sub-

layers of the network.

The first layer is the input layer. Each node represents a

variable input language.

The second layer is the membership function layer. Each

node represents a membership function. The membership

function is the Gauss function

lijðxiÞ ¼ exp � 1

r2ij
jjxi � cijjj2

" #
; i ¼ 1; 2; . . .; r;

j ¼ 1; 2; . . .; u

ð3Þ

where r is the number of input variables, u is numbers of

membership functions, also represents the total number of

rules; lij is the j-th Gaussian membership function of xi; cij

is the j-th Gaussian membership function center of xi; and

rij is the j-th Gaussian membership function width of xi.

The third layer is a T-norm layer. Each node represents

the IF part of the possible fuzzy rules, also on behalf of the

NN units, and the layer node number reflects the number of

fuzzy rules. If the T-norm operator used to compute each

rule’s firing strength is multiplication, the output of the j-th

rule Rjðj ¼ 1; 2; . . .; uÞ in the third layer is

uj ¼ exp �
Xr

i¼1

1

r2ij
xi � cij

�� ��2" #
j ¼ 1; 2; . . .; u ð4Þ

The fourth layer is the output layer. Each node in this layer

represents an output variable as the weighted summation of

incoming signals. In this study, we consider multi-input

and multi-output systems in the following analysis.

yj ¼
Xi¼p;j¼u

i¼1;j¼1

wijuj ð5Þ

where yj is the value of j-th output variable and wij is the

THEN-part (consequent parameters) or connection weight

of the i-th rule.

From the above, the fuzzy rule numbers and the third-

layer numbers of the FNN units are same. The first layer is

used to realize input variables language; the second layer is

equivalent to the fuzzy generator, which is used to calcu-

late the membership functions; the third layer is equivalent

to the fuzzy rule base, using the T-norm operator multi-

plication on the degree of membership of the second layer;

and the fourth layer is used to obtain the output. The rule

from the input to output is defined as

Rj : IF x1 isMF1j and. . .and xr isMFrj; THENyj iswj

where wj is a real number, a system based on fuzzy S

model is used to realize the network, and the output of the

S model is

yðxÞ ¼
Xu
j¼1

aj0 exp � 1

r2j
x� Cj

�� ��2" #
ð6Þ

Assume n observation data has produced a u fuzzy rule,

the third layer of the FNN units output can be written in

matrix form as follows

/ ¼
u11 � � � u1n

..

. ..
. ..

.

uu1 � � � uun

2
64

3
75

where uij is the output of the third layer of the i-th neurons

when the j-th training data reaches the network.

The output of the system can be obtained using Eq. (5),

and hence, Eq. (5) can be rewritten as follows
Fig. 2 Structure of a two-layer FNN
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W/ ¼ Y ð7Þ

where W ¼

w11 w12 � � � w1u

w21 w22 � � � w2u

..

. ..
. ..

. ..
.

wn1 wn2 � � � wnu

2
6664

3
7775; Y ¼ y1½ y2 � � � yn�:

2.3 Extended Kalman filter

TheKalmanfilter is usually used to estimate the state variables

of a discrete process using a linear stochastic differential

equation as x 2 <n [42]. However, if the relationship between

the process and (or) the observed variables and the observed

variables are nonlinear, the direct use of the Kalman filter is

not the case. The Kalman filter, which is expected to be linear

with the covariance, is known as the EKF, which is used to

solve the problem of nonlinear filtering.

In the nonlinear case, the partial derivative of the pro-

cess and observation equation can be used to estimate the

state of the process by using the partial derivative and

observation equation. The state vector is assumed as

x 2 <n, the state equation is a nonlinear stochastic differ-

ential equation given as:

xk ¼ fðxk�1; uk�1;wk�1Þ ð8Þ

The observation variable is given as z 2 <m and can be

defined as

zk 2 hðxk; vkÞ ð9Þ

where the random variables wk and vk are the process noise

and observation noise, respectively. These variables, which

are Gauss white noise, are independent of each other. In

differential Eq. (8), the nonlinear function f maps the state

to the present moment k, and its parameters include driving

function uk�1 and zero mean noise wk. The nonlinear

function h in Eq. (9) is connected with the state variable xk
and the observed variable vk.

Equation (10) is the estimation function of the state

vector and Eq. (11) is the estimation function of the

observation vector. wk and vk are the process noise and

observation noise, respectively, which are not easy to be

estimated by mathematical formula, in practical applica-

tions. So, we did not consider them in this step. That is to

say, they are regarded as zero.

~xk ¼ fð~xk�1; uk�1; 0Þ ð10Þ
~zk ¼ hð~xk; 0Þ ð11Þ

where the ~xk is a posteriori estimation of the state relative

to the first time k.

In order to include the process of a nonlinear difference

and observation error in practical applications, we can use

the new control equation by Eqs. (12) and (13)

xk � ~xkþAðxk�1�x̂k�1ÞþWwk�1 ð12Þ
zk � ~zkþHðxk�~xkÞþVvk ð13Þ

where xk is the actual value of the state vector. zk is the actual

value of the observation vector. ~xk is obtained using Eq. (10)

and is the observation value of the state vector. ~zk is calculated
using Eq. (11), which is the observation value of the obser-

vation vector. x̂k is a posteriori estimation of the state vector of

the kmoment. The randomvariableswk and vk are the process

noise and observation noise, in practical applications, which

are feedback fromsensors.A is the Jacobymatrix of the partial

derivative of f to x, which can be rewritten as

A½i;j� ¼
of ½i�
ox½j�

ðx̂k�1; uk�1; 0Þ ð14Þ

W is the Jacoby matrix of the partial derivative of f to w.

W ½i;j� ¼
of ½i�
ow½j�

ðx̂k�1; uk�1; 0Þ ð15Þ

H is the Jacoby matrix of the partial derivative of h to x.

H½i;j� ¼
oh½i�
ox½j�

ð~xk; 0Þ ð16Þ

V is the Jacoby matrix of the partial derivative of h to v.

V½i;j� ¼
oh½i�
ov½j�

ð~xk; 0Þ ð17Þ

Prediction error is

~eXk
� xk � ~xk ð18Þ

The residuals of the observed variables are

~ezk � zk � ~zk ð19Þ

Furthermore, the expression of the error can be recorded

as Eqs. (20) and (21).The covariance matrix is

~exk � Aðxk�1 � ~xk�1Þ þ ek ð20Þ
~ezk � H ~exk þ gk ð21Þ

where ek and gk are zero mean. The covariance matrix is

the independent random variables of WQWT and VRVT. Q

is obtained from pðwÞ�Nð0;QÞ, R is obtained from

pðvÞ�Nð0;RÞ. Q and R are Gauss white noise series

which are independent of each other and have normal

distribution.

By using the observation residuals ~ezk in Eq. (19) and

the second Kalman filter (hypothesis) estimates ~exk in

Eq. (20), the estimation results denoted as êk, combining

450 Neural Comput & Applic (2018) 30:447–462
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Eq. (18) together to obtain the initial nonlinear process a

posteriori state estimation, i.e.,

x̂k ¼ ~xk þ êk ð22Þ

The random variables in Eqs. (20) and (21) are approxi-

mate to the probability distribution.

pð~exkÞ�Nð0;E½~exk ~eTxk �Þ ð23Þ

pðekÞ�Nð0;WQWTÞ ð24Þ

pðgkÞ�Nð0;VRkV
TÞ ð25Þ

According to the above approximation, the Kalman filter

is used to estimate the equation. êk can be written as

êk ¼ Kk~ezk ð26Þ

Substituting Eqs. (26) and (19) into Eq. (22), we can

observe that the second Kalman filter is not actually

required

x̂k ¼ ~xkþKk~ezk ¼ ~xkþKkðzk � ~zkÞ ð27Þ

Equation (27) can be used to extend the observation

variables of Kalman filtering, where x̂k and ~zk are derived

from Eqs. (10) and (11), respectively.

3 A self-organizing learning algorithm

In general, training a neural network is a challenging

nonlinear optimization problem. Various derivative-based

methods have been used to train neural networks. How-

ever, they typically tend to converge more slowly or tend

to converge to local minima. The Kalman filter is a well-

known estimation procedure of a vector of parameters

from the available measured data. They have been used to

train multilayer perceptions and recurrent networks. The

need essential of recursive Kalman filtering algorithm for

neural network training, except an orderly way to update

the weights and centers of the network, is a two-order

differential information approximation error variance

matrix that also needs to be maintained and updated,

which has the advantage of converging quickly and

converge to global minima in the training process. In this

study, we extend the use of the Kalman filters to train

general multi-input multi-output FNN based on using a

pair of parallel EKF to sequentially update both the

weights and centers of the network known as the self-

organizing learning algorithm.

As mentioned in Sect. 2, the third layer of each node

represents the IF part of the possible fuzzy rules or the

FNN units. If the number of fuzzy rules requires an iden-

tification system, we cannot select the pre-structure of the

fuzzy neural networks. Therefore, this study presents a new

learning algorithm, which can automatically determine the

fuzzy rules of the system, to achieve the system of specific

performance.

3.1 Production standards of fuzzy rules

In the fuzzy neural network, if the fuzzy rule number is too

high, it will not only increase the system complexity and

computational burden, but also reduce the generalization

ability of the network. If it is too low, the system will not

be able to contain input and output state space completely,

and will degrade the network performance. Joining the new

fuzzy rules or not depends on three important factors: the

system error, accommodate boundary, and the error

reduction rate.

3.1.1 The system error

The error criterion can be described as follows: for the i-th

observation data ðxoi; yoiÞ, where xoi is the input vector; yoi
is the desired output. The current structure of the network

of all outputs yi is calculated by using Eq. (3). System error

is defined as:

eik k ¼ yoi � xoik k; i ¼ 1; 2; . . .; n ð28Þ

If

eik k[ ke; ke ¼ max emax � bi; emin

� �
ð29Þ

then a new rule should be considered; otherwise, new rules

should not be produced. The term ke consists of preselected

values according to the expected network precision. emax is

a pre-defined maximum error, emin is the desired output

accuracy, and bð0\b\1Þ is the convergence factor.

3.1.2 Accommodate boundary

In a way, the efficient performance of FNN learning is the

partition of the input space. The FNN structure and per-

formance and the input membership functions are closely

related. In this study, we use the Gauss membership

function, and output decreases with increase in the center

distance. If a new sample is located in a preexisting

Gaussian membership function within the scope of cover-

age, the new samples can use the existing Gaussian

membership function, and they do not need the network to

generate new Gaussian units.

Accommodate boundary: For the i-th observation data

ðxi; yiÞ, we calculated the i-th input values xi with the

existing FNN units in the center of the ci between distance

diðjÞ
diðjÞ ¼ xi � cj

�� ��; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; u ð30Þ

where u is the number of existing fuzzy rules or NN unit.
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Define

di;min ¼ arg min ðdiðjÞÞ ð31Þ

If

di;min [ kd; kd ¼ max½dmax � ci; dmin� ð32Þ

then the existing input membership functions cannot

effectively partition the input space. It is necessary to add a

new fuzzy rule. If not, the observation data will be repre-

sented by using the existing nearest FNN units. The term kd
is the effective radius of the accommodate boundary, dmax

is the maximum length of the input space, dmin is

the minimum length, and cð0\c\1Þ is the attenuation

factor.

3.1.3 The error reduction rate

In traditional learning algorithms, the learning speed will

be reduced because of the pruning process, and increase

the computational burden [45, 46]. In this study, a new

growth criterion is proposed. The algorithm does not need

the pruning process; thus, the learning process will speed

up.

Given n input/output data ðxi; yiÞ; i ¼ 1; 2; . . .; n, con-

sider Eq. (3) as a special case of a linear regression model;

the linear regression model can be rewritten as

yðiÞ ¼
Xu
j¼1

hjðiÞhj þ eðiÞ ð33Þ

Equation (9) can be abbreviated as

D ¼ HHþ E ð34Þ

where D ¼ TT 2 <n is the expected output, H ¼ WT 2
<n�u is a regressor, and H ¼ WT 2 <u is a weighting

vector; suppose that E 2 <n is not correlated with the

regression error vector quantity.

For matrix W, if its line number is greater than the

number of columns, by the decomposition of QR:

H ¼ PQ ð35Þ

H transforms into a set of orthogonal basis vectors set

P ¼ p1; p2; . . .; pu½ � 2 <n�u: The dimension is same

as that of H, the column vector consists of an orthogonal

basis, and Q 2 <u�u is an upper triangular matrix. Through

this transformation, it is possible to calculate the contri-

bution of each component to the expected energy output

from each base vector. Substituting Eq. (11) into Eq. (10),

one can obtain

D ¼ PQH þ E ¼ PG þ E ð36Þ

Linear least-squares solution of G is G¼ ðPTPÞ�1PTD,

or

gk ¼
pTkD

pTk pk
; k ¼ 1; 2; . . .; u ð37Þ

Q and H satisfy the following equation

QH ¼ G ð38Þ
When k 6¼ l, pk and pl is orthogonal; the quadratic sum of D

is given by Eq. (15)

DTD ¼
Xu
k¼1

g2kp
T
k pk þ ETE ð39Þ

On eliminating the mean, the variance of D is given by

Eq. (16)

n�1DTD ¼ n�1
Xu
k¼1

g2kp
T
k pk þ n�1ETE ð40Þ

From Eq. (16), we can see that n�1
Pu

k¼1 g
2
kp

T
k pk is a

part of expected output variance brought about by regressor

pk. Thus, the error rate of decline of pk can be defined as

errk ¼
g2kp

T
k pk

DTD
; 1	 k	 u ð41Þ

Substituting Eq. (13) into Eq. (17), one can obtain

errk ¼
ðpTkDÞ

2

pTk pkD
TD

; 1	 k	 u ð42Þ

Equation (18) provides a simple and effective method to

return the vales of the quantum set, its significance lies in

errk revealed the similarity of pk and D. The larger the

value of errk and D, said pk similarity is greater, and it has a

greater effect on output pk. Using errk defining generalized

factor (GF), GF can test the generalized ability of the

algorithm, and this further simplifies and speeds up the

learning process. Definition:

GF ¼
Xu
k¼1

errk ð43Þ

Equation (43) can be used to calculate the fuzzy rule

numbers. If GF\kGF, then it is necessary to increase

additional new fuzzy rules; otherwise, the additional new

rules is not necessary where the value of kGF is a prese-

lected thresholds value.

3.2 Parameter training by extended Kalman filter

Please note that irrespective of newly generated hidden

nodes or those that are already present, the network param-

eters need to be adjusted. In this study, we have used the EKF

method to adjust the parameters of the network. A neural

network of nonlinear system equations can be written as

hkþ1 ¼ hk ð44Þ

452 Neural Comput & Applic (2018) 30:447–462
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yk ¼ hðhkÞ ð45Þ

where hðhkÞ is a nonlinear mapping between the input and

the output of the network. To achieve a stable EKF algo-

rithm, process noise and observation noise are added to the

system Eqs. (44) and (45), which can be rewritten as

hkþ1 ¼ hkþxk ð46Þ
yk ¼ hðhkÞþvk ð47Þ

where xk and vk denote the added noise.

In fact, by using the EFK, one can adjust all the

parameters of the network. However, the global method

will involve large matrix operations and increase the

computational burden. Therefore, we can divide the global

problem into a series of sub-problems. Because the center

and width of the network are nonlinear, it can be adjusted

using the EKF algorithm.

The adjustment of the parameters of the former parts:

Because of the nonlinear characteristics of the front end of

the network, it can be used as follows: The EKF algorithm

is used to update the center and width parameters of the

membership function of Gauss.

Kd
i ¼ Pd

i�1G
T
i ½Ri þ GiP

d
i�1G

T
i �

�1 ð48Þ

di ¼ di�1 þ Kd
i ðTi �W i�1/iÞ ð49Þ

Pd
i ¼ Pd

i�1 � Kd
iGiP

d
i�1 þ Qi ð50Þ

where di is the center or width of the membership function of

Gauss, Kd
i is Kalman gain matrix, and Gi is the partial

derivative of the center or width parameter of the network

output for the membership function of Gauss d. Pd
i is the

forecast error variance matrix, Qi is a process noise covari-

ance matrix, and Ri is the measurement noise covariance

matrix.

Gi ¼
oYi

odi�1

����
d¼d̂i�1

¼ �2di�1 Xi � Cj

�� ��2Xu
j¼1

wjuj ð51Þ

After adjustment of the parameters: Because the back

end of the network has a linear feature, the following

Kalman filtering algorithm can be used to update the

parameters.

Kw
i ¼ Pw

i�1/
T
i ½Ri þ /iP

w
i�1/

T
i �

�1 ð52Þ

W i ¼ W i�1 þKw
i ðTi �W i�1/iÞ ð53Þ

Pw
i ¼ Pw

i�1 � Kw
i /iP

w
i�1 þ Qi ð54Þ

where W i is a post-parameter matrix, Kw
i is Kalman gain

matrix, Pw
i is the forecast error variance matrix, Qi is a

process noise covariance matrix, and Ri is the measurement

noise covariance matrix.

3.3 The process of adding fuzzy rules

In the algorithm, the process of adding fuzzy rules is as

follows.

Initial parameter allocation: When the first observation

data ðx1; y1Þ is obtained, the network is not yet established,

so the data will be selected as the first fuzzy rule: C1 ¼
x1 ¼ x11 x21 . . . xr1½ �T, r1 ¼ r0, w1 ¼ y1, where r0 is
a pre-defined constant.

Growth process: When the i-th observation data ðxi; yiÞ
is obtained, in the third layer, there is a u-th hidden neuron.

According to Eqs. (28), (31), and (43), respectively, we can

calculate ei; di;min;GF:

If

eik k
 ke; di;min [ kd; and GF\kGF ð55Þ

EKF (1)

EKF (2)

FNN

Training

Back propagation
Eq.(5-6)

Forward propagation 
Eq.(3-4)

Weights update 
Eq.(23-25)

Centers Update 
Eq.(23-25)

Z-1I

Z-1I

Z-1I

Z-1IError variance 
update Eq.(54) 

Kalman 
gain matrix 

Eq.(52) 

Error variance 
update Eq.(54)

Input

NN Output 

Output

ky

ky

Error kε
Differential 
matrix

ku

Differential matrix

1kH

2kH

 approximation error 
variance matrix 1kP

2kP

Measurement noise 
covariance matrix 1kR 2kR

1 1kP +

2 1kP +

Kalman gain 
matrix

Kalman gain 
matrix

1kK

2kKCenter
Center

Weight
Weight 1kW +

kW

kC

1kC +

as Eq.(16)

as Eq.(16)

Measurement noise 
covariance matrix

as Eq.(33)

as Eq.(33)

Kalman gain 
matrix Eq.(52)

Fig. 3 Signal flow graph of

FNN training based on using a

pair of parallel EKF
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then add a new hidden neuron, where ke; kd are given in

Eqs. (29) and (32), respectively. The new increase in the

center of the hidden neurons and weights assigned to the

center as Cuþ1 ¼ xi ¼ x1i x2i½ . . .xri�T, duþ1 ¼ k0di;min,

wuþ1 ¼ ei, where k0ð k0k k[ 1Þ is the overlap factor.

Parameter adjustment: When the new neurons are

added, the parameters of all the existing neurons are

adjusted by using Eqs. (48–54).

Figure 3 illustrates the application of EKF to the train-

ing of general multi-input, multi-output FNN for both

weights and centers.

4 Tracking controller design

Define vd as reference velocity. Take vd into the dynamics

model of WMM (2), which can be rewritten as

~MðqÞ _vd þ ~Cðq; _qÞvd þ ~GðqÞ þ ~Fðq; _qÞ þ ~ss ¼ ~s ð56Þ

The velocity error vector is defined as

E ¼ vd �v
_vd � _v

� �
¼ n

_n

� �
: ð57Þ

Differentiating Eq. (57), using Eq. (2), and the mobile

robot dynamics can be rewritten in terms of the velocity

tracking error as

~MðqÞ _n¼ � ~Cðq; _qÞnþ gðhÞ þ ~ss�~s ð58Þ

where the important nonlinear mobile robot function is

defined as

gðhÞ ¼ ~MðqÞ _vdþ ~Cðq; vÞvd þ ~GðqÞ þ ~Fðq; vÞ þ ~ss�~s ð59Þ

Here, the vector h can be measured by

h � vTd _vTd vT
� �T

.

Function gðhÞ contains all the mobile manipulator

parameters, such as mass, moments of inertia, and friction

coefficients. The system function gðhÞ is approximated

using the FNN described by Eq. (7). The function gðhÞ can
be rewritten as

gðhÞ ¼ wT/ðhÞ þ eðhÞ ð60Þ

where w 2 <ðLþ1Þ is the vector of the ideal threshold and

their weights. The bounds described by Eq. (60) are

modified for w and eðhÞ and expressed as

jjwjj 	 bw and jeðhÞj 	 be8h: ð61Þ

The FNN controller is connected in parallel with the

PD controller and robust term to generate a compensated

control signal. Theoretically, one can directly control the

motor movement by the FNN controller. But in our real

test process, we found it easy to diverge in joint tracking

control process, since the errors in sensors signal

acquisition and data fusion process exist. So we use a

PD controller to prevent the divergence which caused by

signal errors in the system and a robust term to ensure

the robustness. They form the inner closed-loop system

that controls the velocity error. The control law is given

by:

~s ¼ ~gþ KEþ dsgnðnÞ ð62Þ

where ~g is an estimate of g. KE is the torque produced by

the PD controller, and dsgnðnÞ is the robust term. An

estimate of gðhÞ can be given by:

~gðhÞ ¼ ~wT ~/ðhÞ ð63Þ

where ~w 2 < is the vector of the estimated threshold and

weights. There is no simple or standard method of judging

which choice is the best; hence, our assumption about ~/ ¼
/ is always feasible. A pair of parallel running extended

Kalman filters then can be used to sequentially update both

the weights and the centers of the network ~g as description

in Sect. 3.

KE is given by

KE ¼ KPnþKD
_n ð64Þ

where K¼ ½KP KD�, KP ¼ diagðk4; k5Þ�, and

KD = diagðk6; k7Þ are positive matrix with real numbers.

Using the estimated function ~gðhÞ given by Eq. (63), the

system control law (62) becomes:

~s ¼ ~wT/ðhÞ þ KPnþ KD
_nþ dsgnðn=dÞ ð65Þ

and the parameter d is defined as:

d
 be þ bd þ
1

4
jb2wþ 2 ð66Þ

which is related to the bounds described by Eq. (59), the

parameter j in Eq. (65), and a strictly positive constant 2.
The structure of the proposed tracking controller

scheme is as shown in Fig. 4. The control system is shown

in terms of the composition of a compensated controller

and a Fuzzy neural network controller.

Next, we perform the system stability analysis of the

closed-loop behavior of the proposed control methodology.

Substituting the control input (65) into the mobile manip-

ulator dynamics system described by Eq. (56) yields

ð ~M þ KDÞ _n¼ �ðKP þ ~CÞnþ ĝ� dsgnðnÞ ð67Þ

where ĝ ¼ g�~g is the function estimation error.

This estimation error is expressed in terms of Eq. (57) as

ĝðhÞ ¼ ŵT/ðhÞ þ eðhÞ ð68Þ

where ŵ is the vector of the threshold and weight estima-

tion errors, defined as
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ŵ ¼ w� ~w ð69Þ

Therefore, Eq. (62) can be written as

ð ~M þ KDÞ _n¼ �ðKP þ ~CÞnþ ŵT/ðhÞ þ eðhÞ�dsgnðnÞ
ð70Þ

Consider the following Lyapunov function candidate

V(n; tÞ ¼ 1

2
nT ~Mnþ 1

2
nTKDnþ

1

2
ðw� ~wÞTð_Þ
h i

ð71Þ

Differentiation yields

Mobile 
manipulator 

Eq(65)

dq

cu

dq

dq

+
+-

dv

FNN+KMF 
Eq(47)

Kinematics
Model Eq(2)

Sign d

K

dv

v

v

+
+

 Trajectory 
planning

Parameter 
estimation

d dt
dv ξ

suEq(62)PID

.

.

..

Fig. 4 Structure of the

proposed fuzzy neural network-

based motion control

methodology
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V(n; tÞ¼ nT ~M _nþ1

2
nT _~M _nþnTKD

_nþ tr ðw� ~wÞTð _~wÞ
h i

¼ nTð� ~Cnþ ~wT/�KD
_n�KPnþ eþ ~ss�dsgnðnÞÞ

þ1

2
nT ~M _nþnTKD

_n� tr ~wTð/nT�j nk k ~wÞ
� �

¼ 1

2
nTð _~M�2

_~CÞnþnT ~wT/�nTKPn�d nk k

þnTðeþ ~ssÞ� tr ~wT/nT�j ~wT nk k ~wÞ
� �

¼ nT ~wT/�KP nk k2�d nk kþnTðeþ ~ssÞ� tr nT ~wT/
� �

+ tr j ~w nk kðw� ~wÞ½ �

	 �KP nk k2�d nk kþ nk kðeþ ~ssÞ�j nk k ~wk k2þj nk k ~wk kbw
¼�KP nk k2�d nk kþ nk kðbeþbdÞ�j nk kð ~wk k2� ~wk kbwÞ

�1

4
jb2w nk kþ1

4
jb2w nk k

¼�KP nk k2�d nk kþ nk kðbeþbdÞ

�j nk k ~wk k2� ~wk kbwþ
1

4
b2w

� 	
þ1

4
jb2w nk k

¼�KP nk k2� nk k d�be�bdþj ~wk k�1

2
bw

� 	2

�1

4
b2w

" #( )

	 �KP nk k2� nk kþj eþ ~wk k�1

2
bw

� 	2
" #

ð72Þ
Thus, V
 0 and _V 	 0 are guaranteed to be negative,

and this shows that V ! 0 and implies n ! 0, while _n ! 0

as t ! 1. Furthermore, Eq. (72) shows V ¼ 0 if and only

if n ! 0. Therefore, v ! vd, as t ! 1.

Remark In practice, the velocity and tracking errors

are not exactly equal to zero when using control law

(66). The best we can guarantee is that the error con-

verges in the neighborhood of the origin. The discon-

tinuous function ‘‘sign’’ will give rise to control

chattering because of imperfect switching in the com-

puter control. This is undesirable because the
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unmodeled high-frequency dynamics might become

excited. To avoid this, we use the boundary layer

technique [43] to smooth the control signal. In a small

neighborhood of the velocity error (n ¼ 0), the discon-

tinuous function ‘‘sign’’ is replaced by a boundary sat-

uration function satðn=dÞ. Thus, based on dynamics

control, the robust neural network motion tracking

control law (66) becomes

~s ¼ ~wT/ðhÞ þ KPnþ KD
_nþ dsatðn=dÞ ð73Þ

5 Simulation and experimental results

5.1 Trajectory tracking for simulation

In this simulation, we show the process of identification of

the dynamic system of a manipulator and predict the future

value using proposed control methodology. The dynamic

system of the manipulator with two joints is described

using Eq. (74), which is defined as:

MðqÞ€qþVðq; _qÞ _qþ GðqÞ þ Fð _qÞ þ sd ¼ s ð74Þ

where MðqÞ ¼ p1 þ p2 þ 2p3 cos q2 p2 þ p3 cos q2
p2 þ p3 cos q2 p2

� �
,

Table 1 Trajectory control

points of mobile manipulator
Points pose 1 2 3 4 5 6 7

px 12.49 31.20 49.90 49.90 49.90 52.95 63.30

py -536.72 -536.39 -533.58 -533.58 -533.58 -533.58 -533.58

pz 324.80 287.45 259.47 259.47 259.47 233.53 209.41

po 280.40 284.50 288.58 288.58 288.58 316.94 331.59

pa 151.16 155.01 157.87 157.87 157.87 149.67 137.63

pt 13.90 16.25 18.52 18.52 18.52 46.74 61.25

pxB 0.00 0.00 100.00 200.00 300.00 300.00 300.00

pyB 0.00 0.00 -100.00 -200.00 -300.00 -300.00 -300.00

phB 0.00 45.00 45.00 45.00 45.00 0.00 -45.00
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Vðq; _qÞ ¼ � p3 _q2 sin q2 � p3ð _q1 þ _q2Þ sin q2
p3 _q1 sin q2 0

� �
,

GðqÞ ¼ p4g cos q1 þ p5g cosðq1 þ q2Þ
p5g cosðq1 þ q2Þ

� �
, Fð _qÞ ¼ 0:02sgn

ð _qÞ, sd ¼ 20 sinðtÞ 20 sinðtÞ½ �T.
The reference positions for training of the two joints can

be given as q1d ¼ 0:1 sinðtÞ, q2d ¼ 0:1 sinðtÞ. The reference
positions for prediction of the two joints can be given as

q1d ¼ 0:5 sinðtÞ, q2d ¼ 0:5 cosðtÞ. p ¼ p1; p2; p3; p4;½
p5� ¼ 2:9; 0:76; 0:87; 3:04; 0:87½ �: The parameters

of controller (73) are selected as: KP ¼ diagf35:26; 38:45g,
KD ¼ diagf25:45; 20:15g, be ¼ 0:20, bd ¼ 0:10,

j = bw ¼ i ¼ 0:01. In order to obtain the time series, using

Eq. (74) to generate 7200 data as the input. We use the first

6000 data pairs as training data sets and the last 1200 data

pairs to validate the model’s predictive performance.

Figure 5 shows that the number of fuzzy rules of the

algorithm is 12. The algorithm has good generalization

ability at the same time. Figures 6, 7, 8 and 9 show the

good performance of the algorithm.

5.2 Trajectory tracking for real MRR

At this stage, a real-life wheeled mobile manipulator is

used for the tracking experiment. The robot is named

RCAMC-1 (see Fig. 10) [43]. It consists of arm from

SCHUNK LWA4/SDH, providing 6 DOF, a four-wheel

mobile base with two active wheels (front), and two pas-

sive wheels (back). We have written all our software based

on VC?? and made use of a variety of open-source

packages including KDL (knowledge description lan-

guage), ROBOOP (an object-oriented toolbox in C?? for

robotics simulation), and MATLAB. The API (Automated

Precision Inc.) T3 laser tracker system is used for the aided

experiment (Fig. 11).

In this study, using the main control points as shown in

Table 1, a smooth trajectory for mobile manipulator is

proposed to be used with the open-door task. The smooth

orientation trajectory is generated by interpolating key

orientations with the spherical spline quaternion interpo-

lation method, as shown in Fig. 12, and a Hermite cubic

polynomial is used to connect these position points to

create a rudimentary position trajectory, as shown in

Fig. 13. The key joint positions are solved with the inverse

kinematics algorithm according to discrete pose sampled

with specific accuracy of the task need, and then smooth

joint trajectories with stable start–stop motion and contin-

uous jerk are obtained through interpolating key joint

positions with B-spline, as shown in Figs. 11 and 14. Next,

Eq. (73) is used as the trajectory tracking control law, to

realize the planned trajectory tracking. This controller is

realized using C?? programming with a cycle of 20 ms

(Table 2).

The response of FNN–EKF-based controller is described

under conditions that the dynamic model of the system is

not exactly known. The input and output sample data

generated from [44]. Figure 15 shows the comparison and

errors of reference trajectory and real trajectory for

wheeled platform in task space. Figure 16 shows the

comparison and errors of reference trajectory and real

trajectory for the manipulator in joint space.

6 Conclusion

The new method for mobile manipulator tracking the

desired motion trajectory was developed using fuzzy neural

network (FNN) and extended Kalman filter (EKF)

approach and the robust control algorithm. The FNN is

trained to generate a feedforward torque. For parameter

tuning of the FNN, an online EKF methodology is derived

to sequentially update both the output weights and centers,

so that the tracking velocity and converge property can be

guaranteed. When external disturbances and unknown

system parameters changed, not only the connecting

weights but also the centers are adjusted online. This

training scheme will increase the learning capability of the

FNN. By several simulations and experiments, it is obvious

that the tracking performance was advantageous. The

method can be extended to more complex robot configu-

rations, such as tracks or legs, although a method is never

the perfect solution. Even so, this paper contribution
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focuses on the development of a new method for mobile

manipulator tracking the desired motion trajectory that

provides a better solution of the high-performance control.

Experiments were conducted to contrasting the utility and

validity of the proposed method. The method proposed in

this study supplies another option for similar robots’

process.
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