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Abstract A dynamic multi-objective optimization control

(DMOOC) scheme is proposed in this paper for the

wastewater treatment process (WWTP), which can

dynamically optimize the set-points of dissolved oxygen

concentration and nitrate level with multiple performance

indexes simultaneously. To overcome the difficulty of

establishing multi-objective optimization (MOO) model for

the WWTP, a neural network online modeling method is

proposed, requiring only the process data of the plant.

Then, the constructed MOO model with constraints is

solved based on the NSGA-II (non-dominated sorting

genetic algorithm-II), and the optimal set-point vector is

selected from the Pareto set using the defined utility

function. Simulation results, based on the benchmark

simulation model 1 (BSM1), demonstrate that the energy

consumption can be significantly reduced applying the

DMOOC than the default PID control with the fixed set-

points. Moreover, a tradeoff between energy consumption

and effluent quality index can be considered.

Keywords Dynamic multi-objective optimization control �
Neural network modeling � NSGA-II � Wastewater

treatment process

1 Introduction

Wastewater treatment processes (WWTPs) are complex

and energy-intensive systems, whereas they have to be

operated continuously with effluent requirements. More-

over, stringent standards and regulations have been intro-

duced worldwide to protect the environment from the

harmful effluent discharged to receiving waters [1, 2].

From the points of energy saving and environment pro-

tection, the optimal control of the WWTP is an appealing

strategy, and has attracted considerable attention recently

[3–5].

Single-variable optimizations are paid more attention

and have been widely studied, especially for the dissolved

oxygen (DO) concentration [6–10]. In order to improve the

optimal performance, multi-variable optimization strate-

gies are proposed for the WWTP [11–15]. However, these

control methods view the optimization of the WWTP as a

single-objective problem. Actually, the physical and

chemical phenomenon happened in a sludge treatment is

complicated and interaction, and some performances, such

as aeration energy (AE), pumping energy (PE) and effluent

quality index (EQ), are conflicting in the WWTP. There-

fore, it would be reasonable to consider the optimization of

the WWTP as a multi-objective problem [2, 16, 17]. Han

et al. proposed a nonlinear multi-objective model-predic-

tive control (NMMPC) scheme with multi-objective gra-

dient optimization for the WWTP [2]. Simulations reveal

that the NMMPC can lead to satisfactory tracking and

disturbance rejection performance. Nevertheless, this work

pays more attention to the system control performance. An

improved multi-objective optimization model was studied

and employed for optimizing the treatment cost and efflu-

ent quality indexes of a municipal wastewater treatment

plant [18]. However, this work mainly focuses on the
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discussion of decision factors. Based on the BSM1, Chen

et al. studied the optimal design of activated sludge process

(ASP) using multi-objective optimization, which includes

four performance indexes: percentage of overall cost index

(OCI), effluent violation (PEV), total suspended solids and

total volume [19]. The results indicate that multi-objective

optimization is a useful approach for the optimal design of

ASP. However, this strategy mainly optimizes the design

parameters of the WWTP and the optimization is an off-

line mode.

In this paper, a dynamic multi-objective optimization

control (DMOOC) scheme is proposed for theWWTP, where

the set-points of DO concentration and nitrate level are

dynamically optimized with multiple performance indexes

simultaneously. The difficulties in formulating the DMOOC

problem lie in three aspects. First, there is no existing multi-

objective optimization (MOO) model for the WWTP. Due to

the complex relationship among the energy consumption (EC,

mainly including AE and PE), EQ and optimal set-points, the

optimization model is not easy to obtain from the mechanism

knowledge of the WWTP. Second, the optimization under

study is a dynamic MOO with constraints. The WWTP is a

nonlinear dynamic system with large disturbance and uncer-

tainties, such as the influent flow, pollutant concentration and

weather variations. Therefore, the optimization of theWWTP

should be a dynamic optimization process.Moreover, effluent

constraints must be met while applying the optimization

strategy. Third, a satisfactory solution (optimal set-points)

needs to be selected from the Pareto set to realize the close-

loop control of the WWTP. However, MOO algorithm pro-

vides a group of equally excellent Pareto optimal solutions

generally.

The main contributions of this paper are as follows.

First, the MOO model of the WWTP is constructed by the

neural network (NN) online modeling method only using

the process data, which establish the underlying relation-

ships between the set-points and concerned performances.

Second, the set-points of DO concentration and nitrate

level are dynamically optimized based on the NSGA-II

(non-dominated sorting genetic algorithm-II) with effluent

constraints treatment, and the defined utility function.

Third, the proposed strategy is tested and evaluated on the

benchmark simulation model 1 (BSM1), where energy

saving is achieved and a tradeoff between EC and EQ can

be considered as well.

The reminder of this paper is organized as follows.

Section 2 describes the optimization problem of the

WWTP. The design process of the DMOOC scheme is

demonstrated in Sect. 3. In Sect. 4, the case studies are

provided based on the BSM1. Finally, conclusions are

drawn in Sect. 5.

2 Problem description

2.1 BSM1

To objectively evaluate different control strategies applied

to the WWTP, BSM1 [20] has been developed by the IWA

(International Water Association) and COST (European

Cooperation in the Field of Science and Technology). The

layout of BSM1 is described in Fig. 1, which is a typical

pre-denitrifying activated sludge treatment process.

BSM1 mainly includes a five-compartment activated

biological reactor, and a secondary clarifier described by

the double-exponential settling velocity function [21].

Activated Sludge Model 1 (ASM1) is selected to describe

the biological phenomena taking place in the biological

Fig. 1 Layout of the BSM1
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reactor. Three kinds of weather disturbance data files,

which are collected from the real WWTP, are provided in

the BSM1: dry weather, rain weather (a combination of dry

weather and a long rain period) and storm weather (a

combination of dry weather with two storm events).

DO concentration in unit 5 and nitrate level in unit 2 are

two crucial controlled parameters, which strongly influence

the biological reaction process, effluent quality as well as

energy consumption [20]. Therefore, the optimization of

their set-points has been regarded as an effective way to

save energy and improve effluent quality [13, 22].

2.2 Evaluation criteria

Two types of performance indexes are considered in this

work: One is the EC (energy consumption), which is the

sum of AE (aeration energy) and PE (pumping energy); the

other is EQ (effluent quality index). AE, PE and EQ can be

calculated by the following equations.

AE ¼ SO;sat

T � 1:8� 1000

Z t¼14 days

t¼7 days

Xi¼5

i¼1

Vi � KLaiðtÞdt ð1Þ

PE ¼ 1

T

Z t¼14 days

t¼7 days

ð0:004 � QaðtÞ þ 0:05 � QwðtÞ þ 0:008 � QrðtÞÞdt

ð2Þ

EQ ¼ 1

T � 1000

Z t¼14 days

t¼7 days

BSS � SSeðtÞ þ BCOD � CODeðtÞ
þBNO � SNO; eðtÞ þ BNKj � SNKj; eðtÞ
þBBOD5 � BODeðtÞ

0
B@

1
CA � QeðtÞdt

ð3Þ

where KLai and Vi are the mass transfer coefficient and

volume of the ith biological reactor, respectively; SO;sat is

the saturation concentration for oxygen; T (7 days) is the

evaluation cycle; According to the benchmark BSM1

platform, the lower limit and upper limit of the integrals

takes 7 days and 14 days, respectively. Qa, Qw and Qr are

the internal recycle flow rate, waste sludge flow rate and

return sludge recycle flow rate, respectively. DO concen-

tration (SOÞ and nitrate concentration (SNOÞ are manipu-

lated by the KLa5 and Qa, respectively. Bi represent

weighting factors for the different kinds of pollution to

convert them into pollution units, and according to the

BSM1, the weighting factor parameter is chosen as fol-

lows: BSS ¼ 2, BCOD ¼ 1, BNO ¼ 10, BNKj ¼ 30 and

BBOD5 ¼ 2; SS, COD, SNO, SNKj and BOD are the con-

centration of suspended solids, chemical oxygen demand,

nitrite, Kjeldahl nitrogen and biological oxygen demand,

respectively. The subscript e corresponds to the effluent.

And these effluent parameters have a major influence on

the quality of the receiving water. The units of flow rates

are in m3/day, the units of effluent loads concentration are

in mg/l, the units of weighting factors are in g pollution

unit.g�1, the units of AE and PE are in kWh d�1, and the

unit of EQ is in kg pollution units d�1. EQ value reflects

the level of the treated wastewater (smaller EQ value

means better effluent quality), and the EQ value will

impact the operation cost of WWTP if the effluent dis-

charge fee is executed strictly.

Aside from the EQ, five effluent parameters are required

to reach the followling specified standard.

Ntot\18mg=l; SNH\4mg=l;

SS\30mg=l;COD\100mg=l;BOD5\10mg=l
ð4Þ

Therefore, the optimization of the WWTP is the one with

effluent constraints. Detailed definitions and explanations

of the parameters in Eqs. (1)–(4) can be found in BSM1

[20].

2.3 Analysis of MOO model

To realize the DMOOC, the first thing is to provide an

appropriate MOO model for the WWTP. Figure 2

demonstrates the relationships among the optimized vari-

ables, manipulated variables and performance indexes from

the perspective of control flow in the WWTP.

It can be observed that there exist a close relationship

between the performance indexes discussed and the opti-

mized variables. However, we cannot deduce their rela-

tionship easily using the mechanism knowledge of the

sludge treatment process. Therefore, a neural network

online modeling method, requiring only the process data of

the plant, is proposed in this paper to establish the mapping

between the performance indexes and optimized variables.

It should be noted that ammonia nitrogen (SNH) and total

nitrogen (Ntot) are two special effluent parameters, which

reflect the level of nitrification and denitrification process,

and are prone to exceed effluent standards as well.

Therefore, only these two effluent parameters are consid-

ered as constraints in the current study.

3 DMOOC design

3.1 MOO modeling

Construct the following MOO model for the WWTP

minFðxÞ ¼ ffAEðxÞ; fPEðxÞ; fEQðxÞg
s:t: x 2 S

�
ð5Þ

where x ¼ ½x1; x2� ¼ ½So;sp; SNo;sp� is the optimal vector;

denote f1ðxÞ ¼ fAE, f2ðxÞ ¼ fPE, f3ðxÞ ¼ fEQ; S ¼ fx 2
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R2jgjðxÞ � Cj � 0; j ¼ 1; 2; xli � xi � xui ; i ¼ 1; 2g represents

the constraint set of the optimal variables; xli and xui are the

lower limit and upper limit for each optimal variable,

respectively; gjðxÞ denotes the effluent parameter, and the

inequality constraints in set S can be rewritten as

gSNHðxÞ � 4� 0

gSNtotðxÞ � 18� 0

�
ð6Þ

TS-fuzzy neural networks (TS-FNNs) are employed in this

study to establish these underlying function relationships

involved in the MOO model, including performance

indexes, effluent constraints and effluent state variables

discussed. Each of them can be expressed by (7)–(9).

ŷðzÞ ¼
Xn
j¼1

ujðzÞhjðz; hjÞ ð7Þ

hjðz; hjÞ ¼½1; zT �hj ð8Þ

ujðzÞ ¼
Qr

k¼1 AkðxkÞPn
j¼1

Qr
k¼1 AjkðxkÞ

ð9Þ

where z ¼ ½z1; z2; . . .; zr� is the input vector of the TS-FNN,
r is the number of input variables; hj is the consequent

parameter of the FNN; ŷðzÞ is the output of the FNN; Að�Þ
denotes the fuzzy set and Gaussian function is chosen

(center cj and width rjÞ; j ¼ 1; 2; . . .; n, n is the number of

fuzzy rules.

Define the objective function of FNN as

J ¼ 1

2
eðkÞ2 ¼ 1

2
ðŷðkÞ � yðkÞÞ2 ð10Þ

Let a ¼ hT ; cT ; rT
� �T

be the parameter vector of the network

and the gradient descent algorithm is adopted for the param-

eter learning. Then, the update law can be expressed by

aðk þ 1Þ ¼ aðkÞ � g
oJðkÞ
oaðkÞ ð11Þ

where g 2 ð0; 1Þ is the learning rate of the FNN; ŷðkÞ
represents the output of the FNN; y(k) is the real value

generated by the BSM1.

It should be noted that the process model of WWTP is

complex from the aspect of the mechanism analysis. Fur-

thermore, it is much more difficult to deduce an optimal

model from the mechanism perspective. Actually, the

model description problem has been a bottleneck for the

optimization control of WWTP. In this paper, NN tech-

nology is employed such that the optimal relationships

between the performance indexes and optimized variables

can be established by some simple models, which are much

easier to optimize.

3.2 MOO algorithm with constraint treatment

In this work, NSGA-II [23], one of the most excellent

evolution multi-objective optimization algorithms, is

employed to solve the MOO problem of the WWTP.

However, extra issues need to be considered. First, the

MOO problem of the WWTP is a dynamic optimization

process with effluent constraints. Therefore, the effluent

constraints need to be integrated into the NSGA-II. Second,

a unique optimal solution must be presented to realize the

closed-loop control. NSGA-II can provide a group of

equally excellent Pareto solutions. Therefore, an effective

evaluation criterion is required to select a satisfactory

optimal solution from the Pareto set.

To handle the effluent constraints, the penalty function

method is used in this paper. Let the penalty function

defined as

fpenaltyðxÞ ¼ maxfgSNHðxÞ � 4; 0g þmaxfgSNtotðxÞ � 18; 0g
ð12Þ

Then, the performance functions with penalty item can be

formulated as

Fig. 2 Relationships among the

optimized variables,

manipulated variables and

performance indexes in the

WWTP
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fi;constraintðxÞ ¼ fiðxÞ þ C � fpenaltyðxÞ; i ¼ 1; 2 ð13Þ

where C is the penalty factor with larger positive value.

When constraints are violated, the value of performance

function will become larger. As a result, those solutions

with violation records will be dispelled away from the

Pareto set.

A summary of NSGA-II algorithm applied in our

experiment can be described as follows:

1. Initialize the population P(0), population size N, max-

imum generationM, optimal variable dimension D;

2. Calculate the values of performance indexes for each

individual in P(0) (utilize the mathematical mappings

established by the neural networks and the constraint

treatmentmethod); calculate the crowding distance index;

3. Proceed fast non-dominated sorting for the initial

population P(0), and let the generation t=1;

4. Repeat the following steps until the evolutionary

generation t reaches the maximum generation M;

(a) Select the parent population PpðtÞ from the

population P(t) using the binary roulette method;

(b) Proceed the crossover and mutation for the

parent population PpðtÞ, generate the child

population PcðtÞ;
(c) Combine the parent population PpðtÞ and child

population PcðtÞ into a new temporary population

PiðtÞ;
(d) Calculate the performance function values and

crowding distance values for each individual in

population PiðtÞ;
(e) Proceed the fast non-dominated sorting for the

population PiðtÞ;
(f) Select the most excellent N individuals from the

population PiðtÞ) as the next generation popula-

tion Pðt þ 1Þ;
(g) t ¼ t þ 1;

5. Obtain Pareto solutions (the most excellent N individ-

uals) for the current optimal cycle.

3.3 Satisfactory optimal solution

Obtaining a satisfactory optimal solution from the Pareto

set is a process of the second optimization. Define the

utility function of each optimal solution in Pareto set

dutilityðxpÞ ¼
Xl

i¼1

xifiðxpÞ;
Xl

i¼1

xi ¼ 1; p ¼ 1; 2; . . .; k

ð14Þ

where k is the number of the Pareto solutions; l is the

number of the performance indexes. The value of utility

function reflects the satisfactory level of each optimal

solution in Pareto set, which is related to the current

demands from the treatment plant.

Find the solution with the minimum of the utility

function

K ¼ arg min
p¼1;2;...;k

fdutilityðxpÞg ð15Þ

The final satisfactory optimal solution needs to be deter-

mined based on the decision information and the values of

all the performance functions, and the minimum value of

the utility function is found out. Then, xK is selected as the

satisfactory optimal solution (the optimal set-point vector).

The differences of the MOO method used in our studies

with a ‘‘classical’’ multi-objective optimization mainly lie

in two aspects: Firstly, the search scope of Pareto solutions

is broadened since a group of equally excellent solutions

can be provided not just a single Pareto solution (when the

optimization views as a ‘‘classical’’ multi-objective opti-

mization problem). Therefore, we can obtain much more

feasible solutions for choosing a satisfactory optimal

solution. Secondly, the adopted optimal style is convenient

to the weights adjustment, which provides a possible way

to realize an intelligent decision management based on the

system operation information.

The control structure of DMOOC is demonstrated in

Fig. 3.

The optimization process can be described as follows.

First, the MOO model of the WWTP is established by the

FNN using the process data of the plant. Then, the MOO

model with constraints is solved by the NSGA-II algo-

rithm, and Pareto optimal solutions are provided to the

decision module. Finally, the optimal satisfactory solution

(the optimal set-points SO;sp and SNO;spÞ is chosen from the

Pareto set based on the defined utility function. The MOO

model is continuously modified during the process such

that the modeling networks can reflect the dynamic char-

acteristics of the WWTP and the optimal set-points are

provided at every optimized time. For the control layer, the

task is to track the optimal set-points closely. PID is

adopted as the lower-level controller for convenience of

comparison with the default control in BSM1.

The proposed strategy is also a hierarchical control

structure, which includes decision-maker layer, optimiza-

tion layer and control loop layer. However, it is different

from the common hierarchical control applied in the

WWTP. Firstly, the optimization layer is a multi-objective

optimization process and the optimal model is established

dynamically using the neural network, which provides an

easy and effective multi-objective optimization model for

the WWTP. Secondly, the decision-maker layer is designed

for the satisfactory solution determination. Compared our

strategy with the published works [7, 11] considering

Neural Comput & Applic (2018) 29:1261–1271 1265
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multi-objective optimization (OCI and EQ simultane-

ously), the main contribution of our proposed method lies

in that a multi-objective optimization model of WWTP is

established using the neural network based on the analysis

of the mechanism knowledge. The constructed optimal

model solves the problem that no existing optimal model is

provided between the optimized variables and performance

indexes.

4 Experiment studies

4.1 Experimental environment and parameter

setting

All experiments are operated in a MATLAB environment

and tested on the BSM1 platform. The sampling interval is

15 min. The optimal cycle is chosen as 2 h according to our

previous studies [13, 14]. For comparisons, the open-loop

control and default PID control with fixed set-points (DO

concentration and nitrate concentration are set to 2 and

1 mg/l, respectively) have been introduced and operated in

the same simulation environment. According to the experi-

ence and experiment results, the parameters of PID con-

trollers are set as follows: for SO, the proportional, integral

and differential coefficients are 200, 15 and 2, respectively;

for SNO, these coefficients are 20,000, 5,000 and 400,

respectively. The structures of NNs are chosen as 2-10-1 for

the modeling of AE and PE (input is ½SO; SNO�T ) , and 3-10-1
for the modeling of effluent parameters and constraints

(input is ½SO; SNO;Qin�T ; and Qin is the influent flow rate that

has large impact on the effluent parameters). It should be

noted that the input numbers of NNs are decided by the

analysis of process variables, and the hidden numbers of the

NNs are determined based on the experience and experiment

results. The optimal ranges of set-points are chosen as 0.4–3/

mg/l for SO and 0.2–2 mg/l for SNO [12]. The penalty factor

C is set for 10,000. The sizes of populations and evolution

generations in NSGA-II are chosen as 40 and 20, respec-

tively, which are suitable for the current study through

experimental verification. For the neural network modeling,

the updating period is same to the sample time (15 min).

The Pareto set can be obtained at every sample time and the

optimized set-points can be obtained every 2 h. The simu-

lation time is 14 days, and the data of the last 7 days are used

for evaluation.

4.2 Results and analysis

Case 1 In this case, the emphasis is to evaluate the per-

formance of energy saving under the DMOOC. Perfor-

mance functions are chosen as f1 ¼ fAE and f2 ¼ fPE with

the same weight factor. Aside from the open-loop control

and default PID control, the single-objective optimization

control (SOOC) is also introduced, where the optimization

objective is to minimize the sum of AE and PE instead of

optimizing AE and PE simultaneously. Compared with the

DMOOC method, the SOOC method can only obtain one

of the Pareto solutions and decrease the search scope of the

feasible solutions. For the PID, the optimal set-points are

Fig. 3 Structure of the control

system
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not updated, i.e., a single couple of optimal set-points is

determined. The data of rain weather are used in this case.

Figure 4 demonstrates the optimal results of the set-points

and tracking performance under the DMOOC. Figure 5

shows the variation of several key effluent parameters under

the DMOOC compared with the default PID control.

From the figures, we can see that the set-points of the

DO concentration and nitrate level are dynamically

adjusted with the treatment process and the lower-layer

controller can well track the optimal set-points under the

DMOOC. For the effluent, the concentrations of COD and

BOD5 are below the specified standards all the time and

have little change between the control strategies. Com-

pared with the default PID control, Ntot has an obvious

decrease and over-limit phenomenon at the peak time has

also been improved under the DMOOC. Nevertheless, SNH

Fig. 4 Optimized set-points and

online tracking control

performance under the DMOOC

in the rain weather

Fig. 5 Comparisons of the

effluent parameters between the

DMOOC and PID control in the

rain weather
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appears to increase under the DMOOC compared with the

default PID control. It is a reasonable conclusion because

Ntot and SNH are a pair of conflicting effluent parameters

from the mechanism knowledge of the WWTP. Actually,

there still exist other conflicting parameters (performances)

in the WWTP. Fortunately, the multi-objective optimiza-

tion can provide an effective balance tactics.

Detailed comparisons of the AE, PE, EC, EQ and some

key effluent parameters under different control strategies are

represented in Tables 1 and 2. And the effluent parameters

are average values between the 7th and the 14th day.

The results show that the optimal strategies (SOOC and

DMOOC) achieve better performance of energy saving com-

paredwith the default PID control, andmoreover, theDMOOC

is superior to the SOOC obviously. For the DMOOC, the EC is

decreased by 4.94% comparedwith the default control, and the

value is 2.20% for the SOOC. This indicates that the DMOOC

can obtain much better optimal result than the SOOC, and it is

consistent with the analysis that the optimization of theWWTP

should be viewed MOO problem. From the values of AE and

PE, we can also see that the AE and PE indexes are conflicting,

i.e., the AE value increases while the PE value decreases and

vice versa. Therefore, it is much more reasonable that the PE

and AE are treated as two-objective functions. Combining PE

and AE in a single-objective function can only obtain a single

optimal solution (one of the Pareto solution). However, treating

PE and AE as two-objective functions is a method of multi-

objective optimization essentially, which can obtain a group of

equally optimal solutions (Pareto solutions). These solutions

broaden the optimal search scope, and this treatment style can

also provide a convenient decision adjustment. Although the

open-loop control has the lowest EC value, the average con-

centration of SNH exceeds the effluent standard and EQ value is

the highest among the controlmethods. TheEQvalue under the

DMOOChasa slight increase.This is in agreementwith the fact

that theECandEQareconflictingperformances aswell. For the

current treatment plant, lower EC value is the most expected

and thus this case is paid more attention to the EC index.

The modeling performance of the AE, PE and effluent

parameters (SNH and NtotÞ are shown in Fig. 6 and Table 3.

Simulation results show that the outputs of modeling

Table 1 A comparison of the energy consumption with different

control strategies

Weather Control method AE PE EC Up/down

Rain Open-loop 3341.26 388.16 3729.42 –

PID 3663.01 253.72 3916.72 –

SOOC 3572.91 257.98 3830.89 2.20%

DMOOC 3459.12 264.66 3723.78 4.94%

Table 2 A comparison of the average effluent parameters and EQ

with different strategies

BOD5 COD Ntot SNH SS EQ

Rain Limit 10 100 18 4 30 –

Open-loop 2.91 46.45 15.36 4.81 13.47 8147.34

PID 2.88 46.34 16.49 2.69 13.47 7592.88

SOOC 2.89 46.36 16.31 3.05 13.48 7702.70

DMOOC 2.89 46.39 16.18 3.46 13.48 7867.17

Fig. 6 Modeling performance

of the energy consumption (AE

and PE) and effluent parameters

(SNH and Ntot) in case 1
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networks can well approximate the real values of the

WWTP. RMSE (root-mean-squared error between the

evaluation values and the real values) and DEVmax (max-

imum value of the modeling errors) of the modeling NNs

are within 0.07 and 0.3, respectively.

Case 2 In this case, performance functions are chosen as

f1 ¼ fAE þ fPE and f2 ¼ fEQ, that is, EC and EQ are opti-

mized simultaneously. It should be noted that EC and EQ

are a pair of conflicting indexes, and the fee of effluent

discharge should be included into the treatment cost of the

WWTP. For the plants, lower energy or cost is expected.

The environmental protection departments pay more atten-

tion to the water protection, and the smaller EQ value is also

expected. In this experiment, three different demands for the

optimization are provided and described in Table 4, which

means different utility functions can be obtained.

First, the data of the rain weather are used. Performance

comparisons of the AE, PE, EC, EQ, SNH and Ntot under

three optimal cases, open-loop control and default PID

control are reported in Table 5.

We can see that the lowest EC value is obtained in Case

A (decrease by 5.25% compared with the default PID

control), but the EQ value increases by 4.73% compared

with the default PID control. For Case B, the EC and EQ

have the median values among three optimal strategies.

When EQ index is emphasized just as Case C, the EQ value

increases by 1.06% compared with the default control and

the energy saving is still achieved (decrease by 2.36%

compared with the default control).

Figure 7 demonstrates the optimal set-points of DO

concentration and nitrate level, and tracking control per-

formance under DMOOC for Case C.

The simulation results show that the set-points of DO

concentration and nitrate level are dynamically optimized

during the treatment process and the lower-layer controller

can well track the optimal set-points, just as the case 1.

Further, the dry weather and storm weather scenarios are

also evaluated in this case, and performance comparisons

of the AE, PE, EC, EQ, SNH and Ntot are listed in Table 6.

From the results of dry and storm weather, it also can be

seen that the EC under the DMOOC is significantly reduced

compared with the default PID control, while the effluent

parameters meet the specified standards. Under the dry

weather, the EC is reduced by 5.14%, 3.17% and 2.42% for

Case A, Case B and Case C, respectively. For the storm

weather, these values are 5.99%, 3.88% and 2.64%, respec-

tively. Similarly, a tradeoff between EC and EQ can be

achieved using the DMOOC. It should be noted that the lower

EC is paid more attention for the current treatment plant.

From the theoretical point, the approach adopted in this

paper can be applied to the real-time optimization of

WWTPs. Firstly, a WWTP system belongs to a slow time-

varying control system; the modeling and optimization

algorithm employed in this paper can meet the time

requirement. Secondly, measuring instruments used in

WWTPs are becoming more and more precise and popular,

which is convenient to employ the NN modeling technol-

ogy and will improve the control performance further.

5 Conclusions

Optimization control strategies provide significant benefit

for energy saving of the WWTP. However, it is a chal-

lenging task that the performance indexes of EC and EQ

Table 3 Performance of the modeling network

AE PE SNH Ntot

RMSE 0.0106 0.0052 0.0611 0.0436

DEVmax 0.0272 0.0133 0.2762 0.1993

Table 4 Description of three

different demands for the

optimal control of the WWTP in

case 2

EC weight EQ weight Description

Case A 1 0 Energy saving preferred

Case B 0.5 0.5 Equal importance of energy saving and effluent quality

Case C 0.2 0.8 Effluent quality preferred

Table 5 Performance

comparisons with different

control strategies in case 2

Weather Method AE PE EC Up/down EQ

Rain Open-loop 3341.26 388.16 3729.42 – 8147.34

PID 3663.01 253.72 3916.72 – 7592.88

Case A 3421.96 289.13 3711.10 5.25% 8013.19

Case B 3534.32 259.90 3794.22 3.13% 7780.04

Case C 3565.78 258.504 3824.28 2.36% 7674.03
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are considered simultaneously during the complex treat-

ment process. In this paper, a DMOOC scheme is pro-

posed for the WWTP. The set-point values of DO

concentration and nitrate level can be dynamically opti-

mized with multiple performance indexes simultaneously.

The difficulty of establishing MOO model for the WWTP

is solved by the neural network online modeling method.

The results show that DMOOC can significantly reduce

the energy consumption while meeting effluent require-

ments, and a tradeoff between EC and EQ can be con-

sidered as well. The proposed strategy is more flexible

and reasonable than the single-objective optimization for

the WWTP and indicates dynamic multi-objective opti-

mization control is a promising strategy that can further

improve the optimal performance of the WWTP.

Nevertheless, some issues still remain to be addressed

for the multi-objective optimization of the WWTP.

Following work of our team includes two aspects. One is

to construct the interpretable MOO model. In this paper,

the MOO model is constructed by the neural network

online modeling method. However, it is favorable that the

understandable mechanism knowledge can be added to

the modeling such that the optimization problem descri-

bed is more practical and transparent. The other is to

improve the MOO algorithm. NSGA-II has been verified

to be an excellent MOO algorithm, especially under two

objectives. However, there will be more than two objec-

tives to be optimized for further improving the optimal

performance.
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Fig. 7 Optimal set-points and

tracking performance of Case C

under the DMOOC in the rain

weather

Table 6 Performance

comparisons of different control

strategies in the dry weather and

storm weather scenarios for

case 2

Weather Method AE PE EC Up/down EQ Ntot SNH

Dry Open-loop 3341.26 388.15 3729.28 – 7027.83 15.74 4.69

PID 3675.07 231.47 3906.54 – 6567.31 17.30 2.42

Case A 3461.61 244.02 3705.63 5.14% 6965.84 17.07 3.70

Case B 3515.32 246.05 3761.37 3.71% 6898.17 17.15 3.44

Case C 3577.80 233.84 3811.64 2.42% 6834.45 17.33 3.19

Storm Open-loop 3341.26 388.16 3729.38 – 7687.46 15.62 5.01

PID 3685.87 243.99 3929.87 – 7111.87 16.88 2.69

Case A 3425.43 268.88 3694.32 5.99% 7561.50 16.35 4.13

Case B 3528.17 249.08 3777.25 3.88% 7507.52 16.88 3.75

Case C 3623.06 239.13 3862.19 2.64% 7443.85 17.22 3.40
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