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Abstract Many nature-inspired optimization algorithms

have recently been proposed to solve difficult optimization

problems where the mathematical gradient-based approa-

ches could not be used. However, those approaches were

often not tested on a proper set of problems. Moreover,

statistical tests are sometimes not used to validate the

conclusions. Therefore, empirical analyses of such

approaches are needed. In this paper, a very recent nature-

inspired approach, symbiosis organisms search (SOS), is

investigated. A set of unbiased and characteristically dif-

ferent problems are used to study the performance of SOS.

In addition, a comparison with some recent optimization

methods is conducted. Then, the effect of SOS only

parameter, eco_size, is studied, and the use of different

random distributions is also explored. Finally, three simple

SOS variants are proposed and compared to the original

SOS. Conclusions are validated using nonparametric sta-

tistical tests.

Keywords Symbiosis organisms search � Evolutionary
algorithms � Nature-inspired optimization algorithms and

metaheuristics

1 Introduction

Optimization is paramount in many applications (e.g.,

engineering, business and industry). The aim is to mini-

mize (or maximize) an objective function. Mathematically

speaking, the continuous nonlinear function optimization

problem can be expressed as follows:

Min f ðxÞ : l� x� u

The vector x ¼ x1; . . .; xDð Þ is composed of D real-val-

ued components that are called design or decision vari-

ables, and the vectors l and u are assumed finite and to

satisfy \u, the objective function f(x) is typically multi-

modal, so that local optima do not in general correspond to

global optima. The objective function may have a nonlin-

ear, complex or non-differentiable form. Thus, classic

gradient-based optimization algorithms cannot be used in

this case and non-gradient algorithms are preferred.

Nature-inspired optimization algorithms, typically non-

gradient approaches, have recently become very popular.

Too many algorithms have been proposed in the past

20 years. Examples are differential evolution (DE) [15],

particle swarm optimization (PSO) [8], artificial bee colony

(ABC) [6], flower pollination algorithm (FPA) [18],

backtracking search algorithm (BSA) [2] and symbiosis

organism search (SOS) [1]. For more details, the reader is

referred to Simon [12] and Yang [19].

Unfortunately, many new algorithms are developed

without holistic testing on a proper set of benchmark

functions and without using rigorous statistical analysis.

This has resulted in a ‘‘metaheuristics bubble’’ with too

many similar and inefficient algorithms [13, 14]. In this

paper, the recently proposed SOS is empirically studied,

and some of its strengths and weaknesses are identified.

The objectives of this paper are:
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1. Evaluating the performance of SOS on a wide range of

problems.

2. Applying statistical tests in order to validate

conclusions.

3. Comparing SOS with other similar representative

methods.

4. Studying the effect of its only parameter and providing

guidance on how to set this parameter.

5. Investigating the use of different random distributions

in order to generate new solutions.

6. Proposing simple variants of the original SOS

algorithm.

The remainder of this paper is structured as follows:

Sect. 2 provides an overview of the SOS algorithm. Sec-

tion 3 discusses our experimental setup. A comparison

with some state-of-the-art methods is presented in Sect. 4.

The effect of the SOS parameter is studied in Sect. 5.

Different random distributions are used in Sect. 6. Sec-

tion 7 presents and compares three simple SOS variants.

Section 8 concludes the paper.

2 The symbiosis organisms search (SOS)
algorithm

SOS simulates the interactive behavior of organisms in nature.

Organisms rely on other species for survival. This reliance-

based relationship is called ‘‘symbiosis.’’ SOS maintains a

population of potential solutions. The initial population is

called the ecosystem.Organisms in the ecosystem is randomly

generated which each organism is representing a candidate

solution to the given problem.A fitness function is assigned to

each organism to reflect its degree of adaptation to the desired

objective. SOS consists of three phases that resemble real-

world biological interactions between two organisms:

1. Mutualism phase where an interaction benefits both

organisms.

2. Commensalism phase where an interaction benefits

one organism, while does not harm the other.

3. Parasitism phase where one organism is benefited,

while the other is harmed.

Thus, the following algorithm outlines the SOS

approach:

A detailed description of the three phases is given next.

2.1 Mutualism phase

For each organism, xi, another organism, xj, is randomly

chosen from the ecosystem to interact with xi where

xi 6¼ xj. The goal of this interaction is to increase the sur-

vival chances of both organisms. New candidate solutions

are generated according to Eqs. 1, 2 and 3:

xinew ¼ xi þ �1 � xbest � hxm½ � ð1Þ
xjnew ¼ xj þ �2 � xbest � cxm½ � ð2Þ

xm ¼ xi þ xj

2
ð3Þ

where xbest is the best organism in the ecosystem, xm is a

mutual vector which represents the relationship character-

istic between xi and xj, �1 and �2 are two random vectors,

and each entry takes the values between 0 and 1, � is the

Hadamard (i.e., elementwise) product, h and c are benefit

factors that are determined randomly as either 1 or 2. These

factors represent a level of benefit to each organism of the

interaction.

The xbest organism is used in SOS to model the highest

degree of adaptation,which is the objective for both organisms.

The modified organisms, xinew and xjnew, replace the

original organisms, xi and xj, if they are fitter than them.

Thus, a greedy selection is used in SOS.

2.2 Commensalism phase

As in the mutualism phase, an organism, xj, is randomly

selected to interact with xi. However, in this case, xi tries to

benefit of the interaction while xj neither benefits nor suf-

fers from the relationship. The xi is updated using the

following equation:

xinew ¼ xi þ �3 � xbest � xj
� �

; ð4Þ

where �3 is a random vector and each entry takes the values

between 0 and 1. The xinew organism replaces xi if it is

fitter.

2.3 Parasitism phase

A parasite vector, xp, is created in the search space by

duplicating organism xi and modifying randomly chosen

dimensions using a random number. Another organism, xj,

is randomly selected from the ecosystem. The xp replaces

xj if it is fitter.

From the above discussion, it is clear that each iteration

of SOS requires four function evaluations. In addition, the

only SOS parameter that needs to be tuned is the popula-

tion size (eco_size in SOS terminology).
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Table 1 Comparing SOS, JADE, SPSO2011 and BSA on the CEC05 functions (D = 10)

Functions (p value) SOS JADE SPSO2011 BSA

f1 (0.0503)

Median 7.78e-05 8.42e-05 (=) 8.32e-05 (=) 8.10e-05 (=)

Mean (SD) 7.44e-05 (1.96e-05) 8.33e-05 (1.29e-05) 8.04e-05 (1.73e-05) 7.58e-05 (1.75e-05)

FEs (SR %) 9.86e?03 (100) 1.32e?04 (100) 1.08e?04 (100) 1.57e?04 (100)

f2 (1.8012e-05)

Median 7.91e-05 8.04e-05 (=) 9.21e-05 (?) 9.13e-05 (?)

Mean (SD) 7.66e-05 (1.16-05) 7.71-05 (1.85-05) 8.90-05 (1.08-05) 8.81-05 (1.08-05)

FEs (SR %) 1.73e?04 (100) 2.17e?04 (100) 3.11e?04 (100) 7.37e?04 (100)

f3 (1.9012-15)

Median 7.93e?04 8.77-05 (-) 8.35e?04 (=) 1.21e?04 (-)

Mean (SD) 9.99e?04 (1.03e?05) 8.37-05 (1.35-05) 9.73e?04 (6.43e?04) 2.11e?04 (1.63e?04)

FEs (SR %) x (0) 2.63e?04 (100) x (0) x (0)

f4 (4.3487-11)

Median 8.92-05 8.24-05 (=) 9.36-05 (=) 5.44-04 (?)

Mean (SD) 8.28-05 (1.67-05) 7.97-05 (1.45-05) 9.14-05 (8.46-06) 1.97-03 (3.96-03)

FEs (SR %) 2.09e?04 (100) 2.32e?04 (100) 4.83e?04 (100) 9.30e?04 (23.3)

f5 (0.0176)

Median 8.49-05 8.76-05 (=) 9.30-05 (=) 9.03-05 (=)

Mean (SD) 8.16-05 (1.64-05) 8.32-05 (1.29-05) 9.12-05 (9.65-06) 8.82-05 (8.68-06)

FEs (SR %) 1.73e?04 (100) 2.42e?04 (100) 1.95e?04 (100) 6.02e?04 (100)

f6 (2.8821-08)

Median 1.52-01 9.40-05 (=) 6.68e?01 (?) 1.18-01 (=)

Mean (SD) 4.04e?00 (1.29e?01) 2.02e?00 (2.54e?00) 6.76e?02 (1.71e?03) 5.53-01 (9.51-01)

FEs (SR %) x (0) 4.68e?04 (60) x (0) 7.99e?04 (13.3)

f7 (2.9353-16)

Median 1.27e?03 1.27e?03 (=) 1.27e?03 (?) 1.27e?03 (=)

Mean (SD) 1.27e?03 (2.60-13) 1.27e?03 (5.97-14) 1.27e?03 (2.28e?00) 1.27e?03 (8.97-02)

FEs (SR %) x (0) x (0) x (0) x (0)

f8 (1.8329-07)

Median 2.04e?01 2.04e?01 (=) 2.03e?01 (-) 2.03e?01 (=)

Mean (SD) 2.04e?01 (6.92-02) 2.04e?01 (5.85-02) 2.03e?01 (9.62-02) 2.03e?01 (6.39-02)

FEs (SR %) x (0) x (0) x (0) x (0)

f9 (9.2775-17)

Median 2.82e?00 8.65-05 (-) 7.19e?00 (=) 8.79-05 (-)

Mean (SD) 3.06e?00 (1.73e?00) 8.22-05 (1.68-05) 7.34e?00 (3.50e?00) 8.20-05 (1.52-05)

FEs (SR %) x (0) 3.28e?04 (100) x (0) 3.77e?04 (100)

f10 (5.6412-12)

Median 1.52e?01 4.35e?00 (-) 7.23e?00 (-) 9.95e?00 (=)

Mean (SD) 1.55e?01 (6.61e?00) 4.22e?00 (1.20e?00) 7.53e?00 (2.32e?00) 1.04e?01 (4.66e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f11 (7.6452-09)

Median 2.49e?00 4.87e?00 (?) 6.02e?00 (?) 4.76e?00 (?)

Mean (SD) 2.62e?00 (1.40e?00) 4.84e?00 (6.20-01) 5.70e?00 (1.58e?00) 4.75e?00 (1.09e?00)

FEs (SR %) 9.40e?04 (3.33) x (0) x (0) x (0)

f12 (1.4776-17)

Median 3.22e?03 4.59e?02 (-) 1.07e?04 (?) 2.77e?02 (-)

Mean (SD) 3.08e?03 (1.15e?03) 4.62e?02 (2.20e?02) 1.13e?04 (5.28e?03) 2.87e?02 (1.37e?02)

FEs (SR %) x (0) x (0) x (0) x (0)
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SOS was compared to several optimization approaches

on 26 benchmark problems and 6 engineering design

optimization problems from the structural engineering field

[1]. However, the 26 problems are typically biased and

relatively easy to solve. A biased function is a function

whose minimum lies on a special line, like an axis of the

system coordinates, or a symmetry axe of the search space,

or a diagonal when the search space is a D-rectangle. Very

common biased functions are those whose minimum is at

the center of the search space, which is, at the same time,

the origin of the system coordinates. Moreover, statistical

tests were not used to validate the conclusions drawn from

Table 1 continued

Functions (p value) SOS JADE SPSO2011 BSA

f13 (5.5157-15)

Median 8.98-01 3.32-01 (-) 1.32e?00 (=) 3.18e-01 (-)

Mean (SD) 8.55-01 (3.10-01) 3.27-01 (4.76-02) 1.27e?00 (3.61e-01) 2.83e-01 (9.43e-02)

FEs (SR %) x (0) x (0) x (0) x (0)

f14 (1.0727-06)

Median 3.08e?00 2.83e?00 (=) 3.05e?00 (=) 3.27e?00 (?)

Mean (SD) 3.03e?00 (2.24-01) 2.77e?00 (2.92-01) 3.01e?00 (3.54e-01) 3.23e?00 (2.35e-01)

FEs (SR %) x (0) x (0) x (0) x (0)

# of wins/draws/losses of SOS compared to a particular algorithm 1/8/5 5/7/2 4/6/4

?/=/- shows that SOS is significantly better/equal/significantly worse according to Friedman test at 5 % significance level. x (0) means that the

algorithm failed to solve the problem within the admissible error

Table 2 Comparing SOS, JADE, SPSO2011 and BSA on the CEC08 functions (D = 50)

Functions (p value) SOS JADE SPSO2011 BSA

F1 (0.0017)

Median 9.63e-05 9.47e-05 (=) 9.79e-05 (=) 9.38e-05 (=)

Mean (SD) 9.14e-05 (1.38e-05) 9.33e-05 (6.13e-06) 9.70e-05 (3.31e-06) 9.17e-05 (7.04e-06)

FEs (SR %) 4.60e?04 (100) 2.73e?04 (100) 8.33e?04 (100) 6.86e?04 (100)

F2 (4.8222e-14)

Median 2.59e?01 9.94e-05 (-) 1.64e?01 (=) 2.74e?01 (=)

Mean (SD) 2.60e?01 (3.08e?00) 9.92e-05 (7.77e-07) 1.82e?01 (7.74e?00) 2.75e?01 (4.90e?00)

FEs (SR %) x (0) 1.47e?05 (100) x (0) x (0)

F3 (1.3133e-14)

Median 3.85e?01 9.71e-05 (-) 1.92e?02 (?) 9.04e?01 (=)

Mean (SD) 6.54e?01 (5.72e?01) 5.32e-01 (1.38e?00) 4.92e?02 (8.46e?02) 8.43e?01 (5.80e?01)

FEs (SR %) x (0) 2.16e?05 (86.7) x (0) x (0)

F4 (5.6622e-17)

Median 1.04e?02 9.69e-05 (-) 2.15e?02 (=) 9.65e-05 (-)

Mean (SD) 1.06e?02 (2.95e?01) 9.56e-05 (4.84e-06) 2.14e?02 (6.36e?01) 4.31e-01 (5.65e-01)

FEs (SR %) x (0) 1.70e?05 (100) x (0) 2.08e?05 (60)

F5 (7.4973e-09)

Median 3.19e-02 9.45e-05 (-) 9.96e-05 (=) 9.67e-05 (-)

Mean (SD) 4.72e-02 (6.68e-02) 1.15e-03 (4.05e-03) 4.17e-03 (6.20e-03) 3.37e-04 (1.33e-03)

FEs (SR %) 4.54e?04 (30) 2.80e?04 (93.3) 1.40e?05 (66.7) 7.08e?04 (96.7)

F6 (3.2567e-17)

Median 2.79e?00 9.55e-05 (-) 1.76e?00 (-) 9.76e-05 (-)

Mean (SD) 2.91e?00 (4.44e-01) 9.48e-05 (4.32e-06) 1.77e?00 (5.10e-01) 9.64e-05 (3.43e-06)

FEs (SR %) x (0) 3.55e?04 (100) 1.56e?05 (3.33) 8.79e?04 (100)

# of wins/draws/losses of SOS compared to a particular algorithm 0/1/5 1/4/1 0/3/3

?/=/- shows that SOS is significantly better/equal/significantly worse according to Friedman test at 5 % significance level. x (0) means that the

algorithm failed to solve the problem within the admissible error
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the experiments. Therefore, those conclusions are

questionable.

In the next section, the experimental setup is described

where a set of 25 problems are used to test the performance

of SOS. This set consists of different types of problems

with different characteristics that are typically not biased.

In addition, the statistical test used to validate the results of

the experiments is briefly stated.

3 Experimental setup

To test the performance of the competing methods, we

have chosen 25 functions: 14 CEC05 functions (namely f1–

f14), five real-world engineering problems (namely Gear

Train, Compression Spring, Pressure Vessel, Lennard-

Jones and Frequency Modulation Sound Parameter Iden-

tification) and the 6 CEC08 large-scale global optimization

problems (i.e., F1–F6). The 14 CEC05 functions have

different characteristics (e.g., rotated, non-separable,

shifted, unimodal, multimodal, composite). For more

details about the CEC05 functions, the reader is referred to

Suganthan et al. [16]. More information on the first three

real-world problems can be found in Sandgren [11]. For the

Lennard-Jones and Frequency Identification problems, see

Das and Suganthan [3]. For more details about the CEC08,

refer to Tang et al. [17].

For all functions (except the CEC08 functions), we have

used 100,000 function evaluations (FEs). For the CEC08

functions, 5000D FEs were used as suggested by Tang

et al. [17]. The results of all methods have been obtained

using 30 independent runs of the algorithms against each

problem.

Given the best-of-run error, which is defined as the

absolute difference between the best-of-the-run f x�ð Þ value
and the actual optimum f x0ð Þ of a given function, i.e.,

err: ¼ f x�ð Þ � f x0ð Þj j

The effectiveness of a method is measured using three

metrics:

Table 3 Comparing SOS, JADE, SPSO2011 and BSA on the engineering problems

Functions (p value) SOS JADE SPSO2011 BSA

Compression Spring (0.2035)

Median 5.56e-05 5.65e-05 (=) 5.60e-05 (=) 4.92e-05 (=)

Mean (SD) 5.50e-05 (3.02e-05) 5.32e-05 (2.97e-05) 1.53e-04 (5.15e-04) 4.77e-05 (2.79e-05)

FEs (SR %) 2.12e?04 (100) 1.27e?04 (100) 1.16e?04 (96.7) 3.58e?04 (100)

Gear Train (0.0042)

Median 1.38e-06 1.45e-05 (?) 1.65e-05 (=) 1.36e-05 (?)

Mean (SD) 1.24e-05 (2.52e-05) 2.81e-05 (3.10e-05) 2.59e-05 (2.63e-05) 2.74e-05 (3.07e-05)

FEs (SR %) 2.10e?02 (100) 1.97e?02 (100) 8.67e?01 (100) 1.15e?02 (100)

Pressure Vessel (2.6729e-12)

Median 5.74e-05 5.73e-05 (=) 1.27e-02 (?) 6.95e-05 (=)

Mean (SD) 5.31e-05 (3.28e-05) 4.78e-05 (3.06e-05) 2.83e?01 (8.72e?01) 6.19e-05 (2.76e-05)

FEs (SR %) 3.17e?04 (100) 1.87e?04 (100) x (0) 3.92e?04 (100)

Frequency Modulation (4.0231e-15)

Median 6.68e-05 3.25e-01 (?) 1.28e?01 (?) 2.23e-02 (?)

Mean (SD) 1.09e-02 (5.94e-02) 9.23e-01 (1.64e?00) 1.19e?01 (5.20e?00) 7.91e-01 (1.93e?00)

FEs (SR %) 3.84e?04 (96.7) x (0) x (0) 8.20e?04 (13.3)

Lennard-Jones (2.4090e-15)

Median 8.95e-05 2.25e-02 (?) 4.75e-01 (?) 1.27e-03 (=)

Mean (SD) 1.45e-02 (7.53e-02) 2.49e-02 (1.16e-02) 4.55e-01 (3.40e-01) 3.08e-03 (5.13e-03)

FEs (SR %) 5.88e?04 (83.3) x (0) 8.32e?04 (6.67) 8.60e?04 (3.33)

# of wins/draws/losses of SOS compared to a particular algorithm 3/2/0 3/2/0 2/3/0

?/=/- shows that SOS is significantly better/equal/significantly worse according to Friedman test at 5 % significance level. x (0) means that the

algorithm failed to solve the problem within the admissible error
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1. The median of the best-of-run error.

2. The mean and the standard deviation of the best-of-run

error.

3. Success rate (SR): The number of successful runs,

where a run is successful if err. B admissible error. In

this paper, the admissible error is set to 1e-4.

In solving real-world problems, the function evaluation

time overwhelms the algorithm overhead. Hence, the mean

number of FEs needed to reach acceptable accuracy will be

much more interesting than the CPU time [21]. Hence, the

efficiency of a method is measured in terms of the number

of FEs.

All programs are implemented using MATLAB ver-

sion 8.1.0.604 (R2013a), and machine epsilon is

2.2204e-16. For the pseudo-random number generator

(RNG), we have used the rand built-in function pro-

vided by MATLAB. This function implements the

Mersenne Twister RNG [9]. We warmed the RNG by

calling it 10,000 at the start of the program as suggested

by Jones [5]. The nonparametric Friedman’s test with

a = 0.05 and the Dunn–Sidak correction as a post hoc

test have been used to compare the difference in per-

formance of the different algorithms. The post hoc sta-

tistical analysis could help up to detect concrete

differences between the competing algorithms. In this

study, the null hypothesis, H0, states that there is no

difference between the medians of errors of the different

algorithms. Nonparametric statistics do not need prior

assumptions related to the sample of data being analyzed

[4].

Fig. 1 Mean best error curves of SOS, JADE, SPSO2011 and BSA for selected problems. a CEC05 f4, b CEC05 f9, c CEC08 F3, d Lennard-

Jones
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Table 4 Effect of eco_size on the performance of SOS on the CEC05 functions (D = 10)

Functions (p value) 25 50 75 100

f1 (0.4170)

Median 8.01e-05 8.13e-05 7.07e-05 7.93e-05

Mean (SD) 7.55e-05 (1.77e-05) 7.88e-05 (1.66e-05) 7.05e-05 (1.54e-05) 7.51e-05 (1.77e-05)

FEs (SR %) 5.64e?03 (100) 9.80e?03 (100) 1.41e?04 (100) 1.85e?04 (100)

f2 (1.2268e-04)

Median 9.16e-05 8.85e-05 7.30e-05 7.22e-05

Mean (SD) 8.74e-05 (1.20e-05) 8.24e-05 (1.61e-05) 7.16e-05 (1.57e-05) 7.35e-05 (1.67e-05)

FEs (SR %) 1.18e?04 (100) 1.72e?04 (100) 2.47e?04 (100) 3.18e?04 (100)

f3 (0.0131)

Median 4.93e?04 5.66e?04 5.27e?04 7.72e?04

Mean (SD) 6.38e?04 (4.75e?04) 7.51e?04 (6.85e?04) 6.13e?04 (3.75e?04) 9.29e?04 (6.32e?04)

FEs (SR %) x (0) x (0) x (0) x (0)

f4 (0.3561)

Median 8.72e-05 8.20e-05 8.80e-05 8.15e-05

Mean (SD) 8.46e-05 (1.33e-05) 8.05e-05 (1.17e-05) 8.38e-05 (1.37e-05) 7.58e-05 (1.89e-05)

FEs (SR %) 2.01e?04 (100) 2.07e?04 (100) 2.82e?04 (100) 3.67e?04 (100)

f5 (0.7819)

Median 7.90e-05 8.01e-05 8.59e-05 8.20e-05

Mean (SD) 7.68e-05 (1.70e-05) 7.49e-05 (1.92e-05) 8.00e-05 (1.95e-05) 8.07e-05 (1.39e-05)

FEs (SR %) 1.10e?04 (100) 1.76e?04 (100) 2.47e?04 (100) 3.18e?04 (100)

f6 (0.8590)

Median 3.86e-01 3.68e-01 3.04e-01 5.24e-01

Mean (SD) 9.43e-01 (1.46e?00) 5.25e?00 (1.73e?01) 6.42e?00 (1.60e?01) 5.87e?00 (2.01e?01)

FEs (SR %) x (0) x (0) x (0) x (0)

f7 (0.2615)

Median 1.27e?03 1.27e?03 1.27e?03 1.27e?03

Mean (SD) 1.27e?03 (8.44e-14) 1.27e?03 (5.97e-14) 1.27e?03 (5.97e-14) 1.27e?03 (0.00e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f8 (0.3504)

Median 2.04e?01 2.03e?01 2.03e?01 2.04e?01

Mean (SD) 2.04e?01 (6.16e-02) 2.03e?01 (8.48e-02) 2.03e?01 (6.74e-02) 2.04e?01 (7.21e-02)

FEs (SR %) x (0) x (0) x (0) x (0)

f9 (1.1440e-14)

Median 8.77e-05 3.34e?00 5.40e?00 9.60e?00

Mean (SD) 5.48e-01 (1.11e?00) 3.79e?00 (2.75e?00) 5.97e?00 (2.79e?00) 9.37e?00 (2.62e?00)

FEs (SR %) 7.94e?04 (70) x (0) x (0) x (0)

f10 (6.4789e-07)

Median 1.04e101 1.70e?01 1.99e?01 2.35e?01

Mean (SD) 1.17e?01 (6.21e?00) 1.65e?01 (5.88e?00) 1.94e?01 (5.25e?00) 2.23e?01 (5.22e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f11 (0.0272)

Median 3.32e?00 2.20e?00 2.41e?00 3.51e?00

Mean (SD) 3.44e?00 (1.25e?00) 2.14e?00 (1.47e?00) 2.92e?00 (1.93e?00) 3.48e?00 (2.30e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f12 (7.4220e-06)

Median 1.74e?03 2.92e?03 3.88e?03 4.11e?03

Mean (SD) 2.27e?03 (1.55e?03) 3.10e?03 (1.34e?03) 4.03e?03 (1.10e?03) 4.09e?03 (1.56e?03)
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4 SOS versus state-of-the-art methods

In this section, we have compared SOS to three represen-

tative population-based optimization methods, namely DE,

PSO and BSA. For DE, a self-adaptive DE, called JADE,

proposed by Zhang and Sanderson [20] is used. JADE can

be considered as a good performing DE variant and it is

one of the best evolutionary algorithms for global opti-

mization [22] and this is why we have chosen it. For PSO,

the most recent standard SPSO2011 is used. A MATLAB

implementation of SPSO2011 can be downloaded from

http://www.particleswarm.info. BSA, on the other hand, is

Table 5 Effect of eco_size on the performance of SOS on the CEC08 functions (D = 50)

Functions (p value) 25 50 75 100

F1 (0.1351)

Median 7.94e-05 9.23e-05 9.34e-05 9.24e-05

Mean (SD) 6.61e-05 (3.35e-05) 7.99e-05 (2.79e-05) 9.05e-05 (1.24e-05) 9.07e-05 (8.34e-06)

FEs (SR %) 5.49e?04 (100) 4.80e?04 (100) 5.15e?04 (100) 5.73e?04 (100)

F2 (3.3030e-15)

Median 3.19e?01 2.58e?01 2.23e?01 1.83e?01

Mean (SD) 3.21e?01 (2.22e?00) 2.60e?01 (2.74e?00) 2.24e?01 (3.31e?00) 1.81e?01 (4.20e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

F3 (0.7055)

Median 9.33e?01 8.36e?01 8.65e?01 9.21e?01

Mean (SD) 1.14e?02 (7.41e?01) 9.68e?01 (6.73e?01) 1.28e?02 (1.88e?02) 9.80e?01 (7.77e?01)

FEs (SR %) x (0) x (0) x (0) x (0)

F4 (1.1475e-09)

Median 7.98e?01 1.07e?02 1.40e?02 1.62e?02

Mean (SD) 8.07e?01 (1.91e?01) 1.01e?02 (2.72e?01) 1.41e?02 (3.71e?01) 1.59e?02 (3.91e?01)

FEs (SR %) x (0) x (0) x (0) x (0)

F5 (1.7635e-04)

Median 1.05e-01 4.18e-02 1.23e-02 3.75e-03

Mean (SD) 1.57e-01 (1.67e-01) 5.85e-02 (7.35e-02) 6.20e-02 (1.01e-01) 2.46e-02 (5.61e-02)

FEs (SR %) x (0) 4.69e?04 (16.7) 5.17e?04 (30) 6.74e?04 (50)

F6 (1.0727e-06)

Median 3.17e?00 2.70e?00 2.53e?00 2.37e?00

Mean (SD) 3.24e?00 (6.15e-01) 2.75e?00 (4.35e-01) 2.58e?00 (3.21e-01) 2.45e?00 (4.32e-01)

FEs (SR %) x (0) x (0) x (0) x (0)

# of times the algorithm is best 1 1 1 3

Bold is statistically better than italic at 5 % significance level

Table 4 continued

Functions (p value) 25 50 75 100

FEs (SR %) x (0) x (0) x (0) x (0)

f13 (2.1544e-06)

Median 6.06e-01 9.03e-01 1.07e?00 1.25e?00

Mean (SD) 6.05e-01 (3.04e-01) 8.63e-01 (3.85e-01) 1.02e?00 (3.71e-01) 1.25e?00 (3.39e-01)

FEs (SR %) x (0) 5.30e?04 (3.33) 8.95e?04 (3.33) x (0)

f14 (0.0011)

Median 3.01e?00 3.08e?00 3.21e?00 3.30e?00

Mean (SD) 2.95e?00 (2.80e-01) 3.05e?00 (2.90e-01) 3.12e?00 (3.16e-01) 3.26e?00 (2.25e-01)

FEs (SR %) x (0) x (0) x (0) x (0)

# of times the algorithm is best 5 1 2 1

Bold is statistically better than italic at 5 % significance level
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a very recent and simple metaheuristic that has shown to

perform well on a wide range of problems [2]. The three

optimization methods have been used to check if SOS can

compete with some similar and recent approaches.

Table 1 shows that JADE clearly outperforms SOS on

the 14 CEC05 benchmark functions. However, compared

to SPSO2011, SOS manages to perform better on 5 func-

tions while performing worse on two. SOS and BSA per-

form comparably on this set of benchmark problems.

Comparing the efficiency of the four approaches, SOS

seems to require less number of function evaluations to

reach an ‘‘optimal’’ solution.

On high-dimensional problems, Table 2 shows that

JADE outperforms SOS on almost all functions. SOS

performs comparably to SPSO2011, while BSA generally

performs better than SOS especially on multimodal

functions. In addition, Table 2 shows that JADE is the

most efficient approach when applied to the CEC08

problems.

Table 3 compares the performance of the four methods

on real-world engineering problems. Based on the reported

results, SOS is the best approach for these problems. The

other three methods could not beat SOS on any single

problem.

To summarize the results of Tables 1, 2 and 3, we can

say that JADE is the best approach on the benchmark

functions especially on high-dimensional problems. SOS,

on the other hand, works particularly well on real-world

engineering problems. In addition, SOS generally performs

better than SPSO2011 on the standard benchmark func-

tions. BSA performs better than SOS on high-dimensional

problems.

The results reported in this section suggest that SOS

needs further improvement in order to compete well with

other state-of-the-art approaches.

Figure 1 shows the progress of the mean best errors

found by the four approaches over 30 runs for selected

problems.

5 Effect of eco_size

In this section, the effect of the population size, eco_size,

on the performance of SOS is investigated.

Table 6 Effect of eco_size on the performance of SOS on the engineering problems

Functions (p value) 25 50 75 100

Compression Spring (0.6504)

Median 4.68e-05 4.39e-05 5.13e-05 5.45e-05

Mean (SD) 3.35e-04 (1.57e-03) 4.66e-05 (2.70e-05) 5.35e-05 (3.04e-05) 5.19e-05 (2.98e-05)

FEs (SR %) 1.65e?04 (96.7) 1.98e?04 (100) 2.16e?04 (100) 2.48e?04 (100)

Gear Train (0.7494)

Median 1.70e-06 2.22e-06 5.47e-06 3.82e-06

Mean (SD) 1.29e-05 (1.93e-05) 1.02e-05 (1.63e-05) 1.66e-05 (2.12e-05) 1.39e-05 (1.97e-05)

FEs (SR %) 1.22e?02 (100) 1.90e?02 (100) 2.35e?02 (100) 2.87e?02 (100)

Pressure Vessel (0.9893)

Median 6.21e-05 7.15e-05 5.50e-05 6.61e-05

Mean (SD) 5.50e-05 (3.11e-05) 6.10e-05 (3.04e-05) 5.59e-05 (3.27e-05) 5.84e-05 (3.06e-05)

FEs (SR %) 1.63e?04 (100) 3.03e?04 (100) 4.41e?04 (100) 5.93e?04 (100)

Frequency Modulation (0.1005)

Median 8.93e-05 8.07e-05 8.13e-05 9.18e-05

Mean (SD) 2.26e?00 (4.30e?00) 1.50e-01 (8.20e-01) 9.12e-01 (2.37e?00) 5.21e-01 (1.36e?00)

FEs (SR %) 3.24e?04 (73.3) 4.20e?04 (93.3) 6.55e?04 (70) 7.08e?04 (63.3)

Lennard-Jones (9.5493e-07)

Median 8.41e-05 8.16e-05 1.88e-04 4.10e-02

Mean (SD) 8.26e-05 (1.31e-05) 9.44e-05 (8.38e-05) 9.36e-02 (3.25e-01) 2.41e-01 (3.58e-01)

FEs (SR %) 2.64e?04 (100) 5.66e?04 (96.7) 8.36e?04 (46.7) 8.58e?04 (20)

# of times the algorithm is best 1 1 0 0

Bold is statistically better than italic at 5 % significance level
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Tables 4, 5 and 6 present the effect of eco_size on the

performance of SOS when applied to CEC05 functions,

CEC08 functions and the engineering problems, respec-

tively. Table 4 shows that using a relatively small eco_size

(i.e., 25) generally improves the performance of SOS on

multimodal functions.

On the other hand, on high-dimensional CEC08 prob-

lems, Table 5 suggests that using a relatively big value of

eco_size (i.e., 100) yields better solutions.

For the engineering problems, results reported in

Table 6 show that generally no significant difference is

noted between the different values of eco_size except for

the Lennard-Jones problem, where a relatively small

value of eco_size (B50) significantly generates better

solutions.

Therefore, based on the results reported in this section, a

relatively small value of eco_size should be used for low-

dimensional problems, while a relatively big value should

be used for high-dimensional problems (i.e., eco_size is

proportionally to D).

Figure 2 shows the convergence curves of SOS using

different values of eco_size over 30 runs for selected

problems. The figure shows that using 25 organisms

enables SOS to converge to a better solution faster than

bigger values of eco_size on low-dimensional problems

(Fig. 2a, b, d). However, Fig. 2c shows that for a high-

dimensional function, the performance improves as eco_-

size increases.

6 Commensalism phase: effect of using different
distributions

Randomization plays an important role in both exploration

and exploitation of a metaheuristic algorithm. Simple

random numbers are often drawn from either a uniform

Fig. 2 Mean best error curves of different eco_size values for selected problems. a CEC05 f2, b CEC05 f13, c CEC08 F6, d Lennard-Jones
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Table 7 Effect of using different distributions in the commensalism phase of SOS when applied to the CEC05 functions (D = 10)

Functions (p value) Uniform Normal Lévy

f1 (0.9048)

Median 7.80e-05 7.52e-05 7.35e-05

Mean (SD) 7.36e-05 (1.71e-05) 7.32e-05 (1.65e-05) 7.45e-05 (1.49e-05

FEs (SR %) 9.87e?03 (100) 1.03e?04 (100) 1.08e?04 (100)

f2 (0.7408)

Median 8.32e-05 8.71e-05 8.57e-05

Mean (SD) 8.11e-05 (1.33e-05) 8.38e-05 (1.38e-05) 8.27e-05 (1.33e-05)

FEs (SR %) 1.76e?04 (100) 1.81e?04 (100) 1.88e?04 (100)

f3 (0.4346)

Median 5.66e?04 5.70e?04 7.63e?04

Mean (SD) 8.59e?04 (8.37e?04) 6.32e?04 (6.24e?04) 9.29e?04 (6.18e?04)

FEs (SR %) x (0) x (0) x (0)

f4 (0.9048)

Median 7.99e-05 8.49e-05 8.55e-05

Mean (SD) 8.00e-05 (1.58e-05) 8.14e-05 (1.47e-05) 7.94e-05 (1.58e-05)

FEs (SR %) 2.03e?04 (100) 2.13e?04 (100) 2.23e?04 (100)

f5 (7.2211e-04)

Median 8.04e-05 8.70e-05 9.49e-05

Mean (SD) 7.70e-05 (1.70e-05) 8.50e-05 (1.02e-05) 2.13e-03 (9.58e-03)

FEs (SR %) 1.77e?04 (100) 1.78e?04 (100) 3.30e?04 (86.7)

f6 (0.3558)

Median 1.55e-01 1.23e-01 2.72e?00

Mean (SD) 4.62e?00 (1.37e?01) 6.60e?00 (2.17e?01) 2.78e?00 (2.57e?00)

FEs (SR %) 6.56e?04 (3.33) x (0) 3.78e?04 (3.33)

f7 (3.8430e-05)

Median 1.27e?03 1.27e?03 1.27e?03

Mean (SD) 1.27e?03 (4.22e-14) 1.27e?03 (5.97e-14) 1.27e?03 (6.22e-02)

FEs (SR %) x (0) x (0) x (0)

f8 (0.7919)

Median 2.04e?01 2.04e?01 2.04e?01

Mean (SD) 2.04e?01 (6.54e-02) 2.04e?01 (5.48e-02) 2.04e?01 (7.32e-02)

FEs (SR %) x (0) x (0) x (0)

f9 (0.0145)

Median 2.91e?00 3.23e?00 2.00e?00

Mean (SD) 3.28e?00 (2.43e?00) 3.35e?00 (2.58e?00) 1.77e?00 (1.09e?00)

FEs (SR %) x (0) 9.40e?04 (3.33) x (0)

f10 (0.0017)

Median 1.24e?01 1.43e?01 8.08e?00

Mean (SD) 1.28e?01 (5.30e?00) 1.61e?01 (9.19e?00) 8.57e?00 (3.20e?00)

FEs (SR %) x (0) x (0) x (0)

f11 (0.7919)

Median 2.37e?00 2.53e?00 2.54e?00

Mean (SD) 2.57e?00 (1.61e?00) 2.54e?00 (1.27e?00) 2.85e?00 (1.45e?00)

FEs (SR %) x (0) x (0) x (0)

f12 (6.1283e-05)

Median 2.82e?03 3.19e?03 1.57e?03

Mean (SD) 2.85e?03 (1.38e?03) 3.45e?03 (1.49e?03) 1.56e?03 (6.58e?02)

FEs (SR %) x (0) x (0) x (0)
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distribution or a Gaussian normal distribution. Equation (4)

in the commensalism phase uses a uniform distribution to

generate the vector, �3, of random numbers between 0 and

1. In this section, we investigate the use of distributions

with ‘‘infinite’’ support by the search space like normal and

Lévy distributions to generate �3. If �3 is drawn from a

Table 7 continued

Functions (p value) Uniform Normal Lévy

f13 (1.9884e-08)

Median 1.04e?00 8.68e-01 4.48e-01

Mean (SD) 9.55e-01 (3.12e-01) 8.86e-01 (3.46e-01) 4.07e-01 (1.80e-01)

FEs (SR %) x (0) x (0) x (0)

f14 (0.0029)

Median 3.03e?00 3.14e?00 2.91e?00

Mean (SD) 3.04e?00 (2.46e-01) 3.16e?00 (3.00e-01) 2.87e?00 (2.69e-01)

FEs (SR %) x (0) x (0) x (0)

# of times the algorithm is best 2 1 5

Bold is statistically better than italic at 5 % significance level

Table 8 Effect of using different distributions in the commensalism phase of SOS when applied to the CEC08 functions (D = 50)

Functions (p value) Uniform Normal Lévy

F1 (1.6364e-10)

Median 9.54e-05 9.42e-05 8.46e?00

Mean (SD) 9.28e-05 (9.42e-06) 9.05e-05 (1.12e-05) 1.65e?01 (2.20e?01)

FEs (SR %) 4.61e?04 (100) 4.85e?04 (100) x (0)

F2 (1.3363e-09

Median 2.61e?01 2.45e?01 3.50e?01

Mean (SD) 2.63e?01 (3.33e?00) 2.43e?01 (2.88e?00) 3.50e?01 (3.33e?00)

FEs (SR %) x (0) x (0) x (0)

F3 (9.9255e-11)

Median 8.19e?01 8.31e?01 4.70e?04

Mean (SD) 9.97e?01 (6.35e?01) 9.50e?01 (6.10e?01) 1.17e?05 (1.73e?05)

FEs (SR %) x (0) x (0) x (0)

F4 (0.7408)

Median 1.05e?02 1.01e?02 1.04e?02

Mean (SD) 1.03e?02 (2.36e?01) 9.84e?01 (2.71e?01) 1.01e?02 (1.77e?01)

FEs (SR %) x (0) x (0) x (0)

F5 (1.6919e-10)

Median 2.95e-02 7.61e-02 1.42e?00

Mean (SD) 5.21e-02 (6.55e-02) 7.76e-02 (8.18e-02) 1.53e?00 (4.83e-01)

FEs (SR %) 4.78e?04 (20) 4.74e?04 (26.7) x (0)

F6 (9.8743e-09)

Median 3.00e?00 2.81e?00 4.23e?00

Mean (SD) 3.04e?00 (5.50e-01) 2.84e?00 (4.63e-01) 4.20e?00 (5.65e-01)

FEs (SR %) x (0) x (0) x (0)

# of times the algorithm is best 5 5 0

Bold is statistically better than italic at 5 % significance level
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normal distribution (i.e., r3;d � N 0; 1ð Þ where �3;d is the dth
component of �3), the random walk (which is a random

process consists of taking a series of consecutive random

steps) is called a Brownian random walk. However, if Lévy

distribution is used, the random walk is called a Lévy

flight. Lévy flights are more efficient than Brownian ran-

dom walks in exploring unknown, large-scale search

spaces [19].

Table 7 compares the three distributions on the CEC05

functions. The results show that on unimodal functions,

there is generally no significant difference between the

three distributions. On multimodal functions, however,

Lévy distribution outperforms uniform and normal distri-

butions given that Lévy flights are efficient in exploring

search spaces and thus more suitable for multimodal

functions.

However, Table 8 shows that on high-dimensional

problems, uniform and normal distributions outperform

Lévy distribution. This suggests that Lévy distributions

require more time (i.e., more function evaluations) to reach

good solutions when applied to high-dimensional

problems.

On engineering problems, Table 9 generally shows that

no significant difference is observed between the three

distributions.

From Tables 7, 8 and 9, we can conclude that using a

distribution with infinite support does not mean that an

optimization algorithm become better. It is true on some

problems (like CEC05 multimodal functions when

D = 10), but it is false on other problems (e.g., CEC08

using D = 50) because such a distribution may need far

more iterations to find an ‘‘optimal’’ solution.

Similar analysis could be carried in the mutualism phase

where �1 and �2 in Eqs. (1) and (2) can be drawn from

normal and Lévy distributions.

Figure 3 shows the convergence curves of SOS using the

three random distributions for some representative problems.

7 Enhanced SOS algorithm

In this section, three new variants are proposed and com-

pared with the original SOS. The three SOS variants are

explained next.

Table 9 Effect of using different distributions in the commensalism phase of SOS when applied to the engineering problems

Functions (p value) Uniform Normal Lévy

Compression Spring (0.1072)

Median 6.13e-05 5.56e-05 4.93e-05

Mean (SD) 6.16e-05 (2.64e-05) 5.16e-05 (2.95e-05) 1.66e-04 (6.64e-04)

FEs (SR %) 2.00e?04 (100) 2.06e?04 (100) 1.33e?04 (96.7)

Gear Train (0.3471)

Median 5.80e-06 2.40e-06 3.66e-06

Mean (SD) 1.94e-05 (2.69e-05) 1.67e-05 (2.72e-05) 1.79e-05 (2.68e-05)

FEs (SR %) 1.97e?02 (100) 1.97e?02 (100) 1.97e?02 (100)

Pressure Vessel (0.6483)

Median 4.99e-05 6.43e-05 5.80e-05

Mean (SD) 5.24e-05 (2.82e-05) 6.19e-05 (2.58e-05) 6.16e-05 (2.31e-05)

FEs (SR %) 3.02e?04 (100) 3.09e?04 (100) 3.35e?04 (100)

Frequency Modulation (0.0036)

Median 8.53e-05 8.40e-05 9.78e-05

Mean (SD) 4.77e-01 (1.29e?00) 1.02e?00 (2.46e?00) 2.49e?00 (3.76e?00)

FEs (SR %) 4.50e?04 (80) 4.74e?04 (80) 5.50e?04 (60)

Lennard-Jones (0.2725)

Median 8.88e-05 8.68e-05 9.24e-05

Mean (SD) 3.54e-03 (1.89e-02) 5.31e-04 (2.45e-03) 2.26e-04 (3.92e-04)

FEs (SR %) 5.69e?04 (93.3) 5.29e?04 (93.3) 7.16e?04 (83.3)

# of times the algorithm is best 1 1 0

Bold is statistically better than italic at 5 % significance level
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1. lbest_SOS

The original SOS uses the best organism in the

ecosystem, xbest, in the mutualism and commensalism

phases. However, using this model (i.e., a fully

connected network structure or a star topology [7]

the propagation is very fast. All the individuals in the

population will be affected by the best solution found

in iteration t, immediately in iteration t þ 1. This fast

propagation may result in a premature convergence

problem. However, using a ring topology, as depicted

in Fig. 4, will slow down the convergence rate because

the best solution found has to propagate through

several neighborhoods before affecting all individuals

in the population. This slow propagation will enable

the individuals to explore more areas in the search

space and thus decrease the chance of premature

convergence. This is particularly useful for multimodal

functions [10].

2. pbest_SOS

The best organism in the ecosystem, xbest, in Eqs. 1, 2

and 4 is replaced with, xpbest, which is randomly chosen

as one of the top 100p % organisms in the current

ecosystem with p 2 (0, 1] as in JADE. The p parameter

Fig. 3 Mean best error curves of SOS using different random distributions for selected problems. a CEC05 f5, b CEC05 f10, c CEC08 F5,

d Frequency Modulation

Fig. 4 Ring topology
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Table 10 Comparing SOS, lbest_SOS, pbest_SOS and eco_min_max_SOS on the CEC05 functions (D = 10)

Functions (p value) SOS lbest_SOS pbest_SOS eco_min_max_SOS

f1 (0.4505)

Median 7.22e-05 7.50e-05 7.45e-05 7.49e-05

Mean (SD) 7.34e-05 (1.56e-05) 7.31e-05 (1.98e-05) 7.63e-05 (1.57e-05) 7.09e-05 (1.75e-05)

FEs (SR %) 9.87e?03 (100) 1.44e?04 (100) 1.05e?04 (100) 7.42e?03 (100)

f2 (0.0186)

Median 7.40e-05 8.91e-05 7.79e-05 8.59e-05

Mean (SD) 7.52e-05 (1.42e-05) 8.70e-05 (8.99e-06) 7.71e-05 (1.74e-05) 8.16e-05 (1.52e-05)

FEs (SR %) 1.73e?04 (100) 4.13e?04 (100) 2.06e?04 (100) 1.48e?04 (100)

f3 (0.4862)

Median 6.81e?04 4.45e?04 4.88e?04 3.76e?04

Mean (SD) 9.47e?04 (8.87e?04) 5.55e?04 (3.38e?04) 5.67e?04 (4.46e?04) 5.96e?04 (5.68e?04)

FEs (SR %) x (0) x (0) x (0) x (0)

f4 (0.6962)

Median 8.60e-05 8.70e-05 8.39e-05 8.33e-05

Mean (SD) 8.26e-05 (1.44e-05) 8.55e-05 (9.50e-06) 7.88e-05 (1.73e-05) 7.95e-05 (1.66e-05)

FEs (SR %) 2.10e?04 (100) 4.74e?04 (100) 2.36e?04 (100) 1.77e?04 (100)

f5 (0.6325)

Median 8.30e-05 8.78e-05 8.51e-05 7.74e-05

Mean (SD) 8.29e-05 (1.26e-05) 8.32e-05 (1.50e-05) 8.13e-05 (1.42e-05) 7.73e-05 (1.38e-05)

FEs (SR %) 1.76e?04 (100) 3.63e?04 (100) 2.00e?04 (100) 1.45e?04 (100)

f6 (4.2271e-07)

Median 2.27e-01 2.62e?00 7.69e-02 9.43e-05

Mean (SD) 1.09e?01 (4.89e?01) 3.06e?00 (1.71e?00) 6.22e-01 (1.39e?00) 9.82e-01 (2.11e?00)

FEs (SR %) x (0) x (0) x (0) 7.78e?04 (70)

f7 (2.9264e-04)

Median 1.27e?03 1.27e?03 1.27e?03 1.27e?03

Mean (SD) 1.27e?03 (8.44e-14) 1.27e?03 (1.64e-13) 1.27e?03 (1.19e-13) 1.27e?03 (4.22e-14)

FEs (SR %) x (0) x (0) x (0) x (0)

f8 (0.6869)

Median 2.04e?01 2.04e?01 2.04e?01 2.03e?01

Mean (SD) 2.04e?01 (7.30e-02) 2.04e?01 (6.73e-02) 2.03e?01 (7.17e-02) 2.03e?01 (8.61e-02)

FEs (SR %) x (0) x (0) x (0) x (0)

f9 (7.0706e-09)

Median 2.42e?00 2.83e?00 3.52e?00 9.72e-05

Mean (SD) 2.85e?00 (1.67e?00) 2.83e?00 (1.66e?00) 3.29e?00 (2.12e?00) 5.97e-01 (8.10e-01)

FEs (SR %) x (0) x (0) 1.00e?05 (3.33) 6.45e?04 (60)

f10 (2.6463e-05)

Median 1.36e?01 9.58e?00 1.13e?01 6.96e?00

Mean (SD) 1.43e?01 (6.03e?00) 1.09e?01 (5.49e?00) 1.29e?01 (5.18e?00) 7.46e?00 (3.34e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f11 (0.6325)

Median 2.10e?00 2.32e?00 2.47e?00 1.50e?00

Mean (SD) 2.50e?00 (1.31e?00) 2.43e?00 (1.37e?00) 2.18e?00 (1.27e?00) 1.98e?00 (1.46e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

f12 (0.7149)

Median 3.58e?03 2.95e?03 3.28e?03 3.03e?03

Mean (SD) 3.42e?03 (1.51e?03) 2.88e?03 (1.31e?03) 3.19e?03 (1.26e?03) 3.29e?03 (1.63e?03)

FEs (SR %) x (0) x (0) x (0) x (0)
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determines the greediness of the approach. In this

paper, p is set to 0.1 that is within the [0.05,0.2] range

suggested by Zhang and Sanderson [20].

3. eco_min_max_SOS

In the parasitism phase, the parasite vector, xp, is

created in the search space by duplicating organism xi
and modifying randomly chosen dimensions using a

random number, i.e.,

xp;d ¼ ld þ �4 ud � ld½ �

Table 10 continued

Functions (p value) SOS lbest_SOS pbest_SOS eco_min_max_SOS

f13 (3.0383e-07)

Median 8.22e-01 7.35e-01 9.88e-01 4.08e-01

Mean (SD) 7.86e-01 (3.74e-01) 7.93e-01 (2.49e-01) 9.80e-01 (3.17e-01) 4.08e-01 (1.35e-01)

FEs (SR %) 4.78e?04 (3.33) x (0) x (0) x (0)

f14 (0.0670)

Median 3.05e?00 3.19e?00 3.18e?00 3.05e?00

Mean (SD) 3.01e?00 (2.88e-01) 3.18e?00 (1.93e-01) 3.13e?00 (2.11e-01) 3.04e?00 (2.71e-01)

FEs (SR %) x (0) x (0) x (0) x (0)

# of times the algorithm is best 0 1 0 5

Bold is statistically better than italic at 5 % significance level

Table 11 Comparing SOS, lbest_SOS, pbest_SOS and eco_min_max_SOS on the CEC08 functions (D = 50)

Functions (p value) SOS lbest_SOS pbest_SOS eco_min_max_SOS

F1 (0.5479)

Median 9.50e-05 9.60e-05 9.45e-05 9.42e-05

Mean (SD) 8.90e-05 (1.61e-05) 9.51e-05 (3.99e-06) 9.25e-05 (6.46e-06) 9.07e-05 (1.41e-05)

FEs (SR %) 4.67e?04 (100) 7.35e?04 (100) 4.52e?04 (100) 2.95e?04 (100)

F2 (7.5463e-18)

Median 2.68e?01 1.69e?01 2.43e?01 4.69e?01

Mean (SD) 2.69e?01 (2.93e?00) 1.75e?01 (2.96e?00) 2.48e?01 (2.25e?00) 4.71e?01 (5.11e?00)

FEs (SR %) x (0) x (0) x (0) x (0)

F3 (8.0532e-05)

Median 8.91e?01 1.52e?02 8.11e?01 7.16e?01

Mean (SD) 9.69e?01 (6.63e?01) 1.62e?02 (9.28e?01) 7.90e?01 (3.43e?01) 6.10e?01 (3.75e?01)

FEs (SR %) x (0) x (0) x (0) x (0)

F4 (0.0027)

Median 1.09e?02 1.22e?02 1.05e?02 1.03e?02

Mean (SD) 1.07e?02 (1.94e?01) 1.21e?02 (2.01e?01) 1.03e?02 (2.36e?01) 1.04e?02 (1.74e?01)

FEs (SR %) x (0) x (0) x (0) x (0)

F5 (0.0786)

Median 8.63e-03 9.88e-05 9.82e-05 1.35e-02

Mean (SD) 2.68e-02 (3.29e-02) 4.07e-03 (7.15e-03) 1.30e-02 (2.44e-02) 3.80e-02 (4.86e-02)

FEs (SR %) 4.60e?04 (43.3) 8.51e?04 (70) 4.62e?04 (56.7) 2.93e?04 (36.7)

F6 (7.2428e-11)

Median 2.84e?00 1.32e?00 1.95e?00 2.37e?00

Mean (SD) 2.88e?00 (4.63e-01) 1.34e?00 (4.73e-01) 1.93e?00 (3.46e-01) 2.66e?00 (1.44e?00)

FEs (SR %) x (0) 2.50e?05 (3.33) x (0) x (0)

# of times the algorithm is best 0 2 1 2

Bold is statistically better than italic at 5 % significance level
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where �4 �U 0; 1ð Þ, ld and ud are the lower and upper

bounds of the dth decision variable. In the proposed

variant, ld and ud are replaced with the minimum and

maximum values of the dth decision variable in the

current ecosystem.

Table 10 shows that the three proposed methods perform

better than or equal to the original SOS on the CEC05 func-

tions. On unimodal functions, there is generally no significant

difference between the four methods. However, on the more

interesting multimodal functions, eco_min_max_SOS is the

best approach. The results show also that eco_min_max_SOS

is the most efficient approach since it requires less number of

function evaluations to reach the ‘‘optimal’’ solution. This is

another advantage for this variant.

For high-dimensional CEC08 functions, Table 11 shows

that on multimodal functions eco_min_max_SOS performs

better on two out of the four functions. In addition, eco_min_-

max_SOS is the most efficient approach as in Table 10.

On the engineering problems, Table 12 shows that there

is no significant difference between the four approaches.

However, as in Tables 10 and 11, eco_min_max_SOS is

the most efficient approach.

Based on the results reported in Tables 10, 11 and 12, it

seems that eco_min_max_SOS is generally a viable and

efficient alternative to the original SOS.

Figure 5 shows the convergence behavior of SOS and its

variants on four representative problems. It is clear from

the figure that SOS exhibits faster convergence.

Therefore, we can conclude from the results reported in

this section that l and u may give exceedingly ‘‘loose’’

bounds on the decision variables, and hence, the parasitism

phase (and consequently SOS) can be improved by a pro-

cess that successively revises l and u based on solution

history.

8 Conclusions

In this paper, the symbiosis organisms search (SOS)

algorithm was empirically studied on a wide range of

problems. First, SOS has been compared to three recent

metaheuristic algorithms. The results showed that SOS

suffered when used to solve high-dimensional problems.

However, it worked well on the five engineering problems

used in this study. Second, the effect of the only SOS

parameter, eco_size, is investigated. The results suggested

that as the problem’s dimension increases, eco_size should

be increased. Hence, an adaptive formula could be used to

automatically tune the eco_size parameter. Third, different

random walks have then been used in the commensalism

phase. In general, it seems that uniform and normal

Table 12 Comparing SOS, lbest_SOS, pbest_SOS and eco_min_max_SOS on the engineering problems

Functions (p value) SOS lbest_SOS pbest_SOS eco_min_max_SOS

Compression Spring (0.8964)

Median 6.75e-05 6.07e-05 5.15e-05 6.66e-05

Mean (SD) 5.97e-05 (3.09e-05) 5.50e-05 (3.34e-05) 5.44e-05 (2.86e-05) 5.79e-05 (2.76e-05)

FEs (SR %) 1.66e?04 (100) 2.84e?04 (100) 1.78e?04 (100) 1.53e?04 (100)

Gear Train (0.1427)

Median 1.70e-06 4.25e-06 1.70e-06 2.02e-06

Mean (SD) 1.07e-05 (2.20e-05) 1.62e-05 (2.31e-05) 1.13e-05 (2.23e-05) 1.23e-05 (2.24e-05)

FEs (SR %) 2.17e?02 (100) 2.17e?02 (100) 2.17e?02 (100) 2.17e?02 (100)

Pressure Vessel (0.6414)

Median 4.36e-05 4.63e-05 5.39e-05 3.23e-05

Mean (SD) 4.85e-05 (3.04e-05) 4.93e-05 (3.08e-05) 5.20e-05 (2.84e-05) 3.85e-05 (3.02e-05)

FEs (SR %) 3.02e?04 (100) 4.57e?04 (100) 3.14e?04 (100) 1.45e?04 (100)

Frequency Modulation (0.1577)

Median 6.89e-05 7.54e-05 8.25e-05 9.25e-05

Mean (SD) 6.69e-01 (2.22e?00) 4.96e-02 (2.51e-01) 1.79e-01 (9.79e-01) 3.15e?00 (4.57e?00)

FEs (SR %) 5.17e?04 (90) 6.39e?04 (90) 6.21e?04 (96.7) 1.55e?04 (60)

Lennard-Jones (0.0658)

Median 8.94e-05 8.75e-05 9.32e-05 8.06e-05

Mean (SD) 4.27e-04 (1.86e-03) 1.88e-04 (5.86e-04) 1.20e-02 (5.25e-02) 7.71e-05 (1.59e-05)

FEs (SR %) 5.40e?04 (90) 6.93e?04 (96.7) 6.13e?04 (73.3) 4.46e?04 (100)

# of times the algorithm is best 0 0 0 0

Bold is statistically better than italic at 5 % significance level
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distributions are better than the Lévy distribution except for

the low-dimensional multimodal functions. Finally, three

simple SOS variants have been proposed and the results

suggest that eco_min_max_SOS is a promising alternative

to SOS.
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