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Abstract In this short paper, a coupled genetic algorithm

and particle swarm optimization technique was used to

supervise neural networks where the applied operators and

connections of layers were tracked by genetic algorithm

and numeric values of biases and weights of layers were

examined by particle swarm optimization to modify the

optimal network topology. The method was applied for a

previously studied case, and results were analyzed. The

convergence to the optimal topology was highly fast and

efficient, and the obtained weights and biases revealed

great reliability in reproduction of data. The optimal

topology of neural networks was obtained only after seven

iterations, and an average square of the correlation (R2) of

0.9989 was obtained for the studied cases. The proposed

method can be used for fast and reliable topology opti-

mization of neural networks.

Keywords Neural networks � Genetic algorithm � Particle
swarm optimization � Coupling

1 Introduction

In reproduction of input data and correlation of properties,

neural networks (NNs) are reliable tools as described in the

literatures for various applications [1–7]. NNs learn the

patterns among input and output data using various math-

ematical and statically functions. The versatility of NNs for

modeling of nonlinear systems has been extensively ana-

lyzed and examined in the literature. The topology

adjustment from an initially generated structure toward the

final optimal one has been of interest for NNs applications.

The optimization techniques can be used for modifying the

NNs toward a feasible topology as investigated in a recent

work [8].

In a recent work [8], some of the authors have investi-

gated and analyzed the air gap membrane distillation

(AGMD) system employing a mathematical technique

which uses Volterra functional series theory. The cold feed

inlet temperature (T1), hot feed inlet temperature (T3) and

feed-in flow rate (F) were considered as the input variables

of the AGMD system, and distillate flux (J), cold feed

outlet temperature (T2) and gained output ratio (GOR) were

set as the output variables. To explore the effect of input

operational parameters, they used particle swarm opti-

mization technique to control neural network and the

obtained weights. In other words, they showed that weight

values of each variable in each layer of constructed NN can

be related to the coefficients in Volterra functional series
PN

i¼1 aixi
� �

, so that the order of contribution of each input

variable in the developed model equation might be

evaluated.

Here, we extend the idea by monitoring and analysis the

biases and the NNs operators using a coupled genetic

algorithm (GA) and particle swarm optimization (PSO).
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The monitoring of biases and weights is separated from

that of operators such as addition and multiplication so that

more reliably the NN topology can be assessed. The details

of proposed approach and the case to which it is applied are

discussed in following paragraphs.

2 Proposed method

The main interest, for presentation of coupled genetic

algorithm (GA) and particle swarm optimization (PSO)

which is incorporated into neural networks (NNs),

shortly c-GA–PSO-NN, is in searching optimal NN

topology. The GA was practically used for controlling

and monitoring of connections and topology of initial

constructed NN. During the coding and decoding steps in

GA [9], the mathematical operators such as addition and

multiplication (as applied to biases and weights in NNs)

can be coded and being controlled. So, GA would be

able to supervise and guide the evolution of NN topol-

ogy. On the other hand, the PSO is a coding/decoding

step-free optimization technique which is fast and reli-

able [8, 9]. The PSO checks the values of all individual

biases and weights in NN to examine the significant of

each input parameter and the complexity of interrelations

between inputs and layers. Based on these checks, the

results from PSO are sent to GA to change or reconsider

the applied operators or namely the connections between

layers.

To develop c-GA–PSO-NN, here, implementation of

feed forward neural networks was considered. For an ini-

tially constructed NN as illustrated in Fig. 1, the supervi-

sion of initially constructed NN, as qualitatively discussed

above, is illustrated in Fig. 2. To assess the goodness of

each topology in GA part and estimated biases and weights

in PSO part, a number of statistical parameters were used

as utilized in previous work [8]. For application of c-GA–

PSO-NN for modeling/analyzing any system of interest,

first a feed forward NN should be initiated and the values

of biases and weights must be linked to PSO code. The

operators of NN are controlled by GA in parallel. Through

the workflow illustrated in Fig. 2, the final topology of NN

could be searched.

Four parameters [sum of squares due to error of the fit

(SSE), square of the correlation (R2), adjusted R2 (R2-adj)

and standard error of the regression (RMSE)] have been

defined for evaluation of goodness of each iteration/gen-

eration solutions (objective functions) as listed in Table 1.

Fig. 1 Illustrating an initially constructed neural network
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In Ref. [8], the relationships between input variables

[cold feed inlet temperature (T1), hot feed inlet temperature

(T3) and feed-in flow rate (F)] and outputs parameters

[distillate flux (J), cold feed outlet temperature (T2) and

gained output ratio (GOR)] and variables were considered

using the particle swarm optimization for controlling neu-

ral network. The data for system of interest were collected

from the literature [10]. To apply the new c-GA–PSO-NN

method, Table 2 summarizes the characteristics of GA and

PSO.

3 Evaluation of proposed method

The c-GA–PSO-NN method was applied for a previously

case reported in Ref. [8]. This analysis should reveal the

applicability of proposed method in a concise manner. In

Ref. [8], the PSO was coupled to NNs to investigate

effective input variables by monitoring the weights and

biases in NNs. Consequently, applying the proposed c-GA–

PSO-NN to this case will result in valuable conclusions

regarding these approaches. The GA and PSO codes were

obtained from Ref. [9], and the objective functions were

the same as used in Ref. [8] so that a defensible comparison

can be made. The obtained goodness of final solutions is

listed in Table 3.

Based on the results listed in Table 3, the R2 values of

final models using the proposed method are much more

Fig. 2 Workflow of c-GA–PSO-NN technique

Table 1 Statistical parameters defined for assessment of perfor-

mance (objective functions)

Parameter Equation

Sum of squares due to error of the fit SSE ¼
Pn

i¼1 cexpi ccali

� �2 1

Square of the correlation R2 ¼ SSR

SST
¼ 1� SSE

SST

SSR ¼
Pn

i¼1 ccali � �c
� �2

SST ¼
Pn

i¼1 cexpi � �cð Þ2

2

Adjusted R-square Adj R2 ¼ 1� SSEðn�1Þ
SSTðn�mÞ

3

Standard error of the regression
RMSE ¼

ffiffiffiffiffiffiffi
SSE
n�m

q
4

n is number of data, and m is number of coefficient in the models
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feasible than those obtained in Ref. [8]. Small values of

RMSE and SSE obviously approve the goodness of final

model coefficients and the models agreement to the col-

lected data. The optimal NN topologies were obtained only

after seven iterations which is fast and noting to the

goodness parameters, is highly reliable.

4 Conclusion

Supervised neural networks incorporating a coupled

genetic algorithm and particle swarm optimization tech-

niques were presented. In the proposed method, genetic

algorithm mainly monitors the applied operators and con-

nections of layers in constructed neural network, while

particle swarm optimization checks the values of biases

and weights of layers to modify the network topology

toward final optimal network construction. The initially

constructed neural network converged to optimal topology

fast and efficiently only in seven iterations. The c-GA–

PSO-NN method used here can be used for other applica-

tions noting the outstanding results.
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Table 2 GA and PSO

parameters
Parameter Symbol Value

PSO GA PSO GA

Maximum number of iterations MaxIt MaxIt 1000 1000

Population size nPop Popsize 150 150

Number of decision variables nVar Dimension 7 2 (? and 9)

Upper and lower bound of variables VarMin

VarMax

x_bound -2000

2000

-2000, 2000

Objective function ObjFun ObjFun Listed in Table 1 Listed in Table 1

Table 3 Statistical parameters

as measure of goodness of

model

Model R2 R2-adj SSE RMSE

Ref. [8] This work Ref. [8] This work Ref. [8] This work Ref. [8] This work

�J 0.9788 0.9987 0.9791 0.9989 0.0420 0.0019 0.0013 0.0009

�T2 0.9800 0.9990 0.9899 0.9991 0.0306 0.0097 0.0127 0.0099

GOR 0.9879 0.9988 0.9888 0.9990 0.0370 0.0154 0.0019 0.0010
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