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Abstract This paper studies how to preserve connectivity

for nonlinear time-delayed multiagent systems using event-

based mechanism. By using the idea of divide-and-con-

quer, we divide the distributed controller into five parts to

deal with different requirements of the time-delayed mul-

tiagent systems, such as eliminating the negative effects of

time delays, preserving connectivity, learning the unknown

dynamics and achieving consensus. To reduce the com-

munication times among the agents, a centralized event-

based protocol is introduced and an event-triggered func-

tion is devised to control the frequency of the communi-

cation without Zeno behavior. The technique of r-
functions is used to exclude the singularity of the estab-

lished distributed controller. In the simulation example, the

results demonstrate the validity of our developed

methodology.

Keywords Connectivity preservation � Event-based
control � Multiagent systems � Neural networks

1 Introduction

Multiagent systems have been a hot topic in the last few

years [1, 7, 8, 10, 15, 16, 18, 21, 26, 28, 32–35, 37, 39, 41].

From a biological view, Reynolds proposed a distributed

behavior model of flocks, herds and schools [25]. Then,

Vicsek et al. [31] investigated a phase transition model of

self-driven particles which is the derivation of nearest

neighbor rules. Then, Jadbabaie et al. introduced the idea

of nearest neighbor rules into the multiagent systems [13].

Recently, Werfel et al. had put this distributed algorithm

into reality [38]. They established a multiagent construc-

tion system to automatically generate low-level rules based

on limited neighboring information and to achieve specific

designed goals. For more details, please refer to [2] and the

references therein.

In physical implementations, the communication capa-

bility is constrained by the power of multiagent systems

and the distance between any two agents. When the dis-

tance between two agents becomes too far, they will lose

contact with each other [5, 40]. In [6], a leader-following

rendezvous control protocol was proposed to maintain

connectivity, and the position measurement was the only

information accessible to the distributed controller. In [29],

a distributed protocol for the double-integrator multiagent

systems with connectivity preservation was proposed.

Thus, preserving connectivity while reaching consensus is

of great importance.

As the multiagent systems become complex, the

dynamics are nonlinear and the exact models are hard to

be obtained. Neural networks are powerful tools for

learning the unknown dynamics of multiagent systems. In

[12], a robust adaptive control was proposed to achieve

consensus using neural networks. Subsequently, in [4], a

neural-network-based leader-following control was
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proposed with external disturbances. However, due to the

existence of data loss and channel congestion during the

data transmission from sensors to CPUs, time delay is

unavoidable which may deteriorate the performance of

multiagent systems. In [3], an adaptive consensus control

was proposed to deal with the nonlinear time-delayed

multiagent systems by using neural networks. Then, in

[22], external noises were taken into consideration and

Lyapunov–Krasovskii functionals were introduced to

solve the time-delay problems. Therefore, investigating

nonlinear time-delayed multiagent systems by utilizing

neural networks is meaningful for improving the auton-

omy and intelligence of the systems among the control

community.

Reducing communication times between each pair of

agents will increase the reliability of multiagent systems in

an economical way and decrease power consumptions of

on-chip systems, especially in wireless power-limited sys-

tems such as unmanned aerial vehicles (UAVs), autono-

mous underwater vehicles (AUVs) and attitude alignments

of clusters of satellites. Event-based technique is a

promising way to solve this problem [11, 17, 23, 27, 30]. In

[20, 36], both centralized and decentralized event-triggered

control were developed to achieve group consensus and the

parameters of the event-triggered function were highly

reduced. In [14], only partial states were available to the

controller and an output feedback control was proposed

based on event-triggered technique. In [42], taking input

time delay into consideration, event-based leader-following

consensus was reached. Based on all the papers mentioned

above, studying how to combine the event-based technique

with the distributed control algorithm for nonlinear time-

delayed multiagent systems with connectivity preservation

is of practical significance, and this motivates our

investigation.

In [19], a neural-network-based distributed control

algorithm for nonlinear time-delayed multiagent systems

was established to guarantee the connectivity. We extend

this problem to event-based case, and according to the idea

of divide-and-conquer, the distributed controller is divided

into five parts. The main contributions of this paper are

listed as follows.

1. A Lyapunov–Krasovskii functional is borrowed

from [3, 9] to eliminate the negative effects of time

delays. Moreover, a r-function is developed to avoid

the singularity in the distributed controller.

2. A centralized event-based protocol is introduced, and

an event-triggered function is designed to control the

frequency of the communication. Furthermore, the

Zeno behavior can be excluded.

3. Radial basis function neural networks (RBFNNs) are

utilized to learn the unknown dynamics of multiagent

systems which can improve the intelligence and

autonomy of multiagent systems.

The rest of this paper is organized as follows. In Sect. 2,

fundamental preliminaries and problem statement are

provided. In Sect. 3, an event-triggered function is devised

and an event-based distributed control protocol is devel-

oped which guarantees the achievement of consensus. A

simulation example and the concluding remarks are given

in Sects. 4 and 5, respectively.

Notations ð�ÞT represents the transpose of a matrix. trð�Þ
is the trace of a given matrix, and k � k is the Frobenius

norm or Euclidian norm. t� denotes the time just before t.

2 Preliminaries

2.1 Graph theory

A triplet G ¼ fV; E;Ag is called a weighted graph if V ¼
f1; 2; . . .;Ng is the set of N nodes, E � V � V is the set of

edges and A ¼ ðAijÞ 2 RN�N is the N�N matrix of the

weights of G. Here, we denote Aij as the element of the ith

row and jth column of matrix A. The ith node in graph G
represents the ith agent, and a directed path from node i to

node j is denoted as an ordered pair ði; jÞ 2 E, which means

that agent j can directly obtain the information from agent

i. In addition, A is called the adjacency matrix of graph G
and we use the notation GðAÞ : Aij 6¼ 0 , ðj; iÞ 2 E to

represent the graph G corresponding to A. We will focus on

agent i if there is no confusion. Let

D ¼

d1 0 � � � 0

0 d2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � dN

2
66664

3
77775

be an N�N diagonal matrix where di ¼
P

j2N i
Aij and

N i ¼ fj 2 Vjðj; iÞ 2 Eg is the set of neighbor nodes of

node i. Then, D is termed as the indegree matrix of G and

the Laplacian matrix is L ¼ D�A corresponding to G. In
addition, for a connected graph, L has only one single zero

eigenvalue [24].

2.2 Radial basis function neural network

In practice, we usually use neural networks as function

approximators to model unknown functions. RBFNNs are

potential candidates for learning the unknown dynamics of

the multiagent systems in virtue of ‘‘linear-in-weight’’

property. In Fig. 1, hðxÞ ¼ ½h1ðxÞ; h2ðxÞ; . . .; hmðxÞ�T :
Rm ! Rm is a continuous unknown nonlinear function

which can be approximated by an RBFNN:
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hðxÞ ¼ WTUðxÞ; ð1Þ

where x 2 !x � Rm is the input vector, W 2 Rp�m is the

weight matrix and p represents the number of neurons.

Additionally, UðxÞ ¼ ½û1ðxÞ; û2ðxÞ; . . .; ûpðxÞ�T is the

activation function and

ûiðxÞ ¼ exp
�ðx� l̂iÞTðx� l̂iÞ

r̂2i

" #
; i ¼ 1; 2; . . .; p; ð2Þ

where r̂i is the width of the Gaussian function ûiðxÞ and l̂i ¼
½l̂i1; l̂i2; . . .; l̂im�T is the center of the receptive field. RBFNNs
can approximate any continuous function over a compact set

!x � Rm with arbitrary precision. Therefore, for a given posi-

tive constanthN , there exists an idealweightmatrixW� such that

hðxÞ ¼ W�TUðxÞ þ h; ð3Þ

where h 2 Rm is the approximating error with khk\hN .

However, in real applications, we denote Ŵ as the

estimation of the ideal weight matrix W�. Thus, the esti-

mation of h(x) can be written as

ĥðxÞ ¼ Ŵ
T
UðxÞ; ð4Þ

where Ŵ can be updated online. The online updating laws

will be given in Sect. 3.

2.3 Problem statement

The second-order nonlinear time-delayed multiagent sys-

tem is modeled as follows:

_pi ¼ vi;

_vi ¼ ui þ fiðpiðtÞ; viðtÞÞ þ giðviðt � siÞÞ; i ¼ 1; 2; . . .;N;

ð5Þ

where i represents agent i, pi 2 R2 is the position, vi 2 R2

is the velocity, si is the unknown time delay, fið�Þ : R2 !
R2 and gið�Þ : R2 ! R2 are continuous but unknown non-

linear vector functions and uið�Þ 2 R2 is the control input.

We assume that all the agents have a common sensing

radius R. Due to the existence of measurement noises, we

cannot detect the critical boundary precisely when an agent

is losing connectivity. In Fig. 2, l 2 ð0;RÞ is the given

constant which can generate the effect of hysteresis and

l0 	 l is utilized to generate the initial set of edges Eð0Þ.
The properties of the time-varying set of edges EðtÞ ¼
fði; jÞji; j 2 Vg can be described as follows [29]:

• The initial set of edges can be generated by

Eð0Þ ¼ fði; jÞji; j 2 V; kpið0Þ � pjð0Þk\R� l0g.
• When ði; jÞ 62 Eðt�Þ and kpiðtÞ � pjðtÞk\R� l, then

we add a new edge (i, j) to EðtÞ.
• When ði; jÞ 2 Eðt�Þ and kpiðtÞ � pjðtÞk
R, then we

delete the edge (i, j) from EðtÞ.
• Otherwise, EðtÞ keeps unchanged.
We introduce an indicator function dijðtÞ 2 f0; 1g to show

whether there exists an edge between agent i and agent j at

time t. The corresponding definition is given as follows:

dijðtÞ ¼

0; if fdijðt�Þ ¼ 0 and kpiðtÞ � pjðtÞk
R� lg
or fdijðt�Þ ¼ 1 and kpiðtÞ � pjðtÞk
Rg;

1; if fdijðt�Þ ¼ 0 and kpiðtÞ � pjðtÞk\R� lg
or fdijðt�Þ ¼ 1 and kpiðtÞ � pjðtÞk\Rg:

8>>><
>>>:

Then, if the intensity of the communication is defined as

a constant adjacency matrix Â, the time-varying commu-

nication weights between each pair of agents are

AijðtÞ ¼ Âij � dijðtÞ. Before proceeding, we introduce the

following assumption and definition for demonstrating our

main theorem.

Assumption 1 giðviðt � siÞÞ; i ¼ 1; 2; . . .;N; are

unknown smooth nonlinear functions. The inequalities

kgiðviðtÞÞk	/iðviðtÞÞ; i ¼ 1; 2; . . .;N; hold, where

/ið�Þ; i ¼ 1; 2; . . .;N; are known positive smooth scalar

functions. Furthermore, gið0Þ ¼ 0 and /ið0Þ ¼ 0,

i ¼ 1; 2; . . .;N.

Fig. 1 Structure of the radial basis function neural network (RBFNN)
Fig. 2 Indicator function dijðtÞ
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Definition 1 If there is no trajectory of the multiagent

system with an infinite number of events within a finite

period of time, that is infkftkþ1 � tkg[ 0, k ¼ 0; 1; 2; . . .,
then the multiagent systems have no Zeno behavior.

3 Event-based control for multiagent systems

3.1 Design of distributed control algorithm

Our aim is to make all the agents reach consensus while

preserving connectivity based on event-triggered mecha-

nism. That is, 8i; j 2 V,
lim
t!1

kpiðtÞ � pjðtÞk ¼ 0;

lim
t!1

viðtÞ ¼ vjðtÞ ¼ 0;

8<
: ð6Þ

and no agent will lose connection with its neighbors.

Therefore, we adopt the hysteresis function mentioned in

[41] to avoid this technical problem. We use the definition

of the potential function in [29]:

uðkpijkÞ ¼
kpijk2

R� kpijk þ
R2

P̂

; kpijk 2 ½0;R�; ð7Þ

where R is the radius of the communication range,

kpijk ¼ kpiðtÞ � pjðtkÞk, tk represents the triggering time of

(20) and P̂[ 0 is a large constant. It should be noted that

we utilize AðtÞ, NðtÞ and LðtÞ to represent the switching

topology.

The schematic plot of the potential function uðkpijkÞ is
shown in Fig. 3. If we set P̂ large enough, uðkpijkÞ can

reach an extremely large value when kpijk ¼ R, which is

equal to the effect in Fig. 3. Thus, uðkpijkÞ is nonnegative
within [0, R]. Note that as the distance kpijk between each

pair of agents increases, the value of uðkpijkÞ will increase.
Moreover, when kpijk approaches R, uðkpijkÞ will become

extremely large to prevent the agent from losing connec-

tivity. Additionally, calculating the derivative of uðkpijkÞ
with respect to kpijk, we can obtain that

duðkpijkÞ
dðkpijkÞ

¼
kpijk 2R� kpijk þ

2R2

P̂

� �

R� kpijk þ
R2

P̂

� �2
[ 0; ð8Þ

where kpijk 2 ½0;R�. A Lyapunov–Krasovskii functional is

utilized as follows:

VUðtÞ ¼
1

2

XN
i¼1

Z t

t�si

UiðviðfÞÞdf; ð9Þ

where UiðviðtÞÞ ¼ /2
i ðviðtÞÞ. In order to avoid the singu-

larity induced by the denominator of the developed dis-

tributed controller, we define a function rð�Þ as follows:

rðviÞ ¼
1; if vi ¼ 0;

0; if vi 6¼ 0:

�
ð10Þ

Then, the distributed controller is divided into five parts:

uiðtÞ ¼ ui1ðtÞ þ ui2ðtÞ þ ui3ðtÞ þ ui4ðtÞ þ ui5ðtÞ; ð11Þ

ui1ðtÞ ¼ �
X

j2N iðtÞ
rpiuðkpijkÞ;

ui2ðtÞ ¼ �
X

j2N iðtÞ
AijðtÞðq̂i � q̂jÞ;

ui3ðtÞ ¼ � 1

2

vi

kvik2 þ rðviÞ
/2
i ðviðtÞÞ;

ui4ðtÞ ¼ � kiðtÞvi;

ui5ðtÞ ¼ � Ŵi
T
Uiðpi; viÞ;

kiðtÞ ¼ ki0 þ 1þ
0:5h2Ni

kvik2 þ rðviÞ
;

ð12Þ

where q̂i ¼
P

l2N iðtÞ AilðtÞðv̂i � v̂lÞ, v̂i ¼ viðtkÞ, tkðk ¼
0; 1; 2; . . .Þ are the triggering times,hNi

is the upper boundofhi,
ki0 [ 0 is the given feedback coefficient andN iðtÞ is the time-

varying set of the neighbors of agent i. Specifically, ui1ðtÞ has
the explicit expression based on potential function (7). That is

rpiuðkpijkÞ ¼ xijðtÞðpiðtÞ � pjðtkÞÞ; ð13Þ

where

xijðtÞ ¼

2R� kpijk þ
2R2

P̂

� �

R� kpijk þ
R2

P̂

� �2
; ðj; iÞ 2 EðtÞ;

0; otherwise.

8>>>>><
>>>>>:

ð14Þ

Remark 1 ui1ðtÞ and ui2ðtÞ only need the information of

agent i and its neighbor’s positions and velocities at trig-

gering time tk, respectively. Thus, compared with [19], the

communication times among the multiagent system (5) are

highly reduced.

( )ϕ

Fig. 3 Schematic plot of potential function uðkpijkÞ

364 Neural Comput & Applic (2018) 29:361–369

123



The online updating algorithm for the weight matrix of

the RBFNN is given as follows:

_̂
Wi ¼

viUiðpi; viÞvTi ; if tr Ŵi
T
Ŵi

� �
\Wmax

i ; or

if tr Ŵi
T
Ŵi

� �
¼ Wmax

i and vTi Ŵi
T
Uiðpi; viÞ\0;

viUiðpi; viÞvTi � vi
vTi Ŵi

T
Uiðpi; viÞ

tr Ŵi
T
Ŵi

� � Ŵi; otherwise;

8>>>>>>><
>>>>>>>:

ð15Þ

where i ¼ 1; 2; . . .;N, Ŵi is the estimation of the idealweight

matrix W� and vi is the updating rate. Moreover, the initial

values of Ŵi should satisfy tr Ŵi
Tð0ÞŴið0Þ

� �
	Wmax

i .

3.2 Main theorem

Before proceeding, we define the potential energy function

for agent i as follows:

PiðtÞ ¼
X

j2N iðtÞ
uðkpijkÞ þ

1

2
vTi vi þ

1

2

Z t

t�si

UiðviðfÞÞdf

þ 1

2
tr

1

vi
~Wi

T ~Wi

� �
;

ð16Þ

where ~Wi ¼ W�
i � Ŵi. Then, the total potential energy

function is PðtÞ ¼
PN

i¼1 PiðtÞ.

Theorem 1 The multiagent system (5) consists of

N agents and the distributed controller is designed as (11)

with the triggering function (20). With Assumption 1, if the

initial energy P(0) is finite, and the initial undirected

topology Gð0Þ is connected, the consensus of the multiagent
system (5) can be reached with preserving connectivity.

Proof The derivative of P(t) is

_PðtÞ ¼
XN
i¼1

X
j2N iðtÞ

_uðkpijkÞþ
XN
i¼1

vTi _viþ _VUðtÞ�
XN
i¼1

tr
1

vi
~Wi

T _̂
Wi

� �

¼
XN
i¼1

vTi

X
j2N iðtÞ

rpiuðkpijkÞþ
1

2

XN
i¼1

/2
i ðviðtÞÞ�/2

i ðviðt� siÞÞ
� �

þ
XN
i¼1

vTi �kiðtÞvi�
X

j2N iðtÞ
rpiuðkpijkÞ�

X
j2N iðtÞ

AijðtÞðq̂i� q̂jÞ

0
@

� 1

2

vi

kvik2þrðviÞ
/2
i ðviðtÞÞ� Ŵi

T
Uið�Þþ giðviðt� siÞÞ

þW�T
i Uið�Þþ hi

!
�
XN
i¼1

tr
1

vi
~Wi

T _̂
Wi

� �
;

ð17Þ

where Uið�Þ is short for Uiðpi;viÞ. If tr Ŵi
Tð0Þ

�

Ŵið0ÞÞ	Wmax
i , it is easy to demonstrate that

tr Ŵi
TðtÞŴiðtÞ

� �
	Wmax

i [22]. Thus, according to the

updating algorithm (15), the inequality tr ~Wi
T 1

vi

_̂
Wi�

��

Uið�ÞvTi ÞÞ
0 holds. If viðtÞ ¼ 0, _PiðtÞ ¼�1
2
/2
i

ðviðt� siÞÞ\0. Thus, we need to focus on the case where

viðtÞ 6¼ 0. Merging the polynomial (17), we can obtain

_PðtÞ ¼1

2

XN
i¼1

/2
i ðviðtÞÞ�/2

i ðviðt� siÞÞ
� �

�
XN
i¼1

tr
1

vi
~Wi

T _̂
Wi

� �

þ
XN
i¼1

vTi �
X

j2N iðtÞ
AijðtÞðq̂i� q̂jÞ�

1

2

vi

kvik2
/2
i ðviðtÞÞ

0
@

�kiðtÞviþ ~Wi
T
Uið�Þþ giðviðt� siÞÞþ hi

!

¼�
XN
i¼1

kiðtÞkvik2�
XN
i¼1

vTi

X
j2N iðtÞ

AijðtÞðq̂i� q̂jÞ

�
XN
i¼1

tr ~Wi
T 1

vi

_̂
Wi�Uið�ÞvTi

� �� �

� 1

2

XN
i¼1

/2
i ðviðt� siÞÞþ

XN
i¼1

vTi ðgiðviðt� siÞÞþ hiÞ

	 �
XN
i¼1

kiðtÞkvik2�
1

2

XN
i¼1

/2
i ðviðt� siÞÞ

þ 1

2

XN
i¼1

2kvik2þkgiðviðt� siÞÞk2þkhik2
� �

�
XN
i¼1

vTi

X
j2N iðtÞ

AijðtÞðq̂i� q̂jÞ ðwithAssumption1Þ

	 �
XN
i¼1

ðkiðtÞ� 1Þkvik2þ
1

2

XN
i¼1

h2Ni

�
XN
i¼1

vTi

X
j2N iðtÞ

AijðtÞðq̂i� q̂jÞ;

ð18Þ

where khik\hNi
. Then,

_PðtÞ\�
XN
i¼1

vTi

X
j2N iðtÞ

AijðtÞðq̂i � q̂jÞ

	 � vTðLðtÞ � I2Þq̂
	 � vTðLðtÞ � I2ÞðLðtÞ � I2Þv̂;

where

v ¼ðvT1 ðtÞ; vT2 ðtÞ; . . .; vTNðtÞÞ
T;

v̂ ¼ðv̂T1 ; v̂T2 ; . . .; v̂TNÞ
T;

q̂ ¼ðq̂T1 ; q̂T2 ; . . .; q̂TNÞ
T:

Let eiðtÞ ¼ v̂i � viðtÞ, for LðtÞ is symmetric, then
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_PðtÞ\� vTðLðtÞ � I2ÞðLðtÞ � I2Þðvþ eÞ
¼ � kðLðtÞ � I2Þvk2 � vTðLðtÞ � I2ÞðLðtÞ � I2Þe
	 � kðLðtÞ � I2Þvk2 þ kðLðtÞ � I2ÞvkkLðtÞ � I2kkek;

where e ¼ ðeT1 ðtÞ; eT2 ðtÞ; . . .; eTNðtÞÞ
T
. In order to guarantee

_PðtÞ\0, we enforce e to satisfy

kek	 b
kðLðtÞ � I2Þvk
kLðtÞ � I2k

; ð19Þ

where b 2 ð0; 1Þ. Then, _PðtÞ\ðb� 1ÞkðLðtÞ � I2Þvk2 	 0.

Therefore, the triggering function is

zðvÞ ¼ kek � b
kðLðtÞ � I2Þvk
kLðtÞ � I2k

: ð20Þ

According to the similar proof steps in [20], we can prove

that the inter-event times infkftkþ1 � tkg, k ¼ 0; 1; 2; . . .,

are strictly positive by a lower bounded time ŝ ¼ b
kLðtÞkð1þbÞ.

Therefore, the Zeno behavior is excluded.
_PðtÞ\0 when t 2 ½tc0; tc1Þ, and this means that

PðtÞ	P0\Pmax; 8t 2 ½tc0; tc1Þ. For uðRÞ[Pmax [P0,

the distance between each pair of the existing edges cannot

reach R when t 2 ½tc0; tc1Þ. Therefore, no edge will lose

connectivity at time tc1. Due to the decrease in the total

potential energy function P(t), there must be new edges

which are added to the network at switching time tc1.

Suppose that at time tc1, sc1 new edges are added to the

network, where 0\sc1 	 Sc and Sc ¼ ðN�1ÞðN�2Þ
2

. Thus, we

can imply that Pðtc1Þ	P0 þ sc1uðkR� lkÞ	Pmax.

Following the similar proof steps in the above analysis,

when t 2 ½tc;k�1; tckÞ, k ¼ 2; 3; . . ., the derivative of the total

potential energy function P(t) is _PðtÞ\ðb� 1Þ
kðLðtÞ � I2Þvk2 	 0. Thus, PðtÞ	Pðtc;k�1Þ\Pmax;

t 2 ½tc;k�1; tckÞ; k ¼ 1; 2; . . .. Therefore, no edge will lose

connectivity at time tck; k ¼ 1; 2; . . .: In summary, if the

initial energy P(0) is finite and the initial undirected

topology Gð0Þ is connected, the connectivity can be

preserved.

There are at most Sc new edges to be added to the

network, and thus, the switching times of the topology are

finite. Specifically, the following discussion is based on

the fixed topology. Since every term in P(t) is positive

and _PðtÞ\0 when vi 6¼ 0, all the terms such as uðkpijkÞ,
vTi vi, VUðtÞ and tr 1

vi
~Wi

T ~Wi

� �
will tend to be zero. That is,

p1 ¼ p2 ¼ � � � ¼ pN and v1 ¼ v2 ¼ � � � ¼ vN ¼ 0. There-

fore, all the agents can asymptotically reach the same

position and velocity satisfied with (6). Furthermore,

limt!1 kW�
i � Ŵik ¼ 0 shows that RBFNNs can learn the

unknown dynamics of the multiagent system. The proof is

complete. h

4 Simulation example

The multiagent system includes seven agents which move

on the two-dimensional plane. We set the sensing radius

R ¼ 4 m and choose the initial positions and velocities

randomly from ½0; 8m� � ½0; 8m� and ½0; 2m=s��
½0; 2m=s�, respectively. For simplicity, here we suppose

that all the existing communication weights are 1 and the

initial network is undirected and connected. In addition,

l ¼ l0 ¼ 1 m, P̂ ¼ 1000 and the time-delay parameters

are in Table 1.

The dynamics of time-delay terms are described as

follows:

giðviðtÞÞ ¼
mi1vi1ðtÞ cosðvi2ðtÞÞ
mi2vi2ðtÞ sinðvi1ðtÞÞ

	 

; ð21Þ

where mi1 and mi2; i ¼ 1; 2; . . .; 7; are the corresponding

constant coefficients given in Table 2, and the feedback

coefficients are chosen to be the same as

ki0 ¼ 5; i ¼ 1; 2; . . .; 7. The parameter of the event-trig-

gered function is b ¼ 0:9. Then,

/iðviðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi1vi1ðtÞÞ2 þ ðmi2vi2ðtÞÞ2

q
; i ¼ 1; 2; . . .; 7:

The unknown dynamics are chosen to be

fiðpiðtÞ; viðtÞÞ ¼
li1pi1ðtÞ sinðpi2ðtÞÞvi1vi2

li2pi2ðtÞ cosðpi1ðtÞÞ sinðvi1vi2Þ

	 

; ð22Þ

where li1 and li2; i ¼ 1; 2; . . .; 7; are the corresponding

constant coefficients given in Table 3. The parameters of

RBFNNs are hNi
¼ 0:1, r̂i ¼ 2, Wmax

i ¼ 100 and vi ¼ 100.

The number of neurons for each RBFNN is 16. l̂i is dis-

tributed uniformly among the range ½0; 10� � ½0; 10�.

Table 1 Time delay for each agent

i 1 2 3 4 5 6 7

si 0.1 0.05 0.15 0.08 0.18 0.1 0.04

Table 2 Coefficients of time-delay terms

i 1 2 3 4 5 6 7

mi1 0.4 -0.65 0.5 -0.75 0.1 0.4 0.2

mi2 0.5 0.45 -0.6 0.4 1 0.1 0.3

Table 3 Coefficients of nonlinear terms

i 1 2 3 4 5 6 7

li1 0.9 1.2 -1.1 -0.7 0.6 0.3 0.5

li2 1.2 0.8 0.6 0.3 0.8 0.4 -0.6
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Figure 4 illustrates the initial positions of the seven

agents, where the red asterisks, the black solid lines and the

blue arrows represent the agents, the edges and the direc-

tions of velocities, respectively. In Fig. 5, the red asterisks

represent the starting points of the multiagent system and

the trajectories are consisted of a sequence of points with

seven different symbols. Each point means that the func-

tion (20) is triggered at that point. The red star represents

the consensus point of the seven agents, and it shows that

under the centralized event-based control algorithm, all the

agents can reach consensus. This demonstrates Theorem 1.

In addition, when l ¼ 1 m, Fig. 6 shows that the final

positions of the seven agents are the same which are near

(5.5, 4.6 m).

Figures 7 and 8 illustrate the trajectories of velocities in

two dimensions when l ¼ 1 m and l ¼ 0:5 m, respectively.

From the extracting windows in Fig. 7, all the velocities

change at the same time and this in turn shows the charac-

teristics of the centralized event-based control. In addition,

due to the existence of frictions in the dynamics of (5), all the

velocities tend to be zero. Furthermore, comparing with

Figs. 7 and 8, we can see that when l ¼ 0:5 m the velocities

varymore sharply than l ¼ 1 m. This can be interpreted that

the smaller the hysteresis parameter l is, the more sensitive

the indicator function dijðtÞ will be. The percentage in

Table 4 is defined as follows:
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Percentage ð%Þ ¼ Times of self-triggered events

Times of time-triggered events
� 100%:

InTable 4,we set all the parameters unchanged exceptb and
l to make comparisons of the performance affected by these

two parameters. From Table 4, we can obtain that when the

hysteresis parameter l decreases, new edges are easier to be

added. Then, agents can get more information from their

neighbors at one triggering time. Thus, the event-triggered

times are reduced. However, the key factor of the performance

is theparameterb of the triggering function (20).Asb increases,
the threshold of (20) increases and the average time between

two triggered events also increases. Thus, the triggered times

are highly reduced which can save communication resources

andpower consumptions.And this demonstrates the advantages

of the event-triggered control over the time-triggered control.

5 Conclusion

This paper investigates nonlinear time-delayed multiagent

systems based on event-based mechanism with connectiv-

ity preservation. The distributed controller is divided into

five parts with the idea of divide-and-conquer. By utilizing

radial basis function neural networks, the distributed con-

troller can learn the unknown dynamics online. Moreover,

by using Lyapunov–Krasovskii functionals, the negative

effects of time delays can be eliminated. The event-based

mechanism is introduced to reduce communication times

among the multiagent systems and save power consump-

tions. By devising a proper event-triggered function, the

Zeno behavior is excluded which can improve the stability

of the multiagent systems. Connectivity preservation can

be guaranteed by utilizing a high-threshold potential

function. Simulation results demonstrate the validity of the

developed methodology. In future work, we will investi-

gate how to use distributed event-triggered mechanism and

design self-triggered functions to make the algorithm more

applicable to physical implementations.
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31. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995)

Novel type of phase transition in a system of self-driven particles.

Phys Rev Lett 75(6):1226–1229

32. Wang D, Liu D, Zhao D, Huang Y, Zhang D (2013) A neural-

network-based iterative GDHP approach for solving a class of

nonlinear optimal control problems with control constraints.

Neural Comput Appl 22(2):219–227

33. Wang D, Liu D, Li H, Ma H, Li C (2016) A neural-network-based

online optimal control approach for nonlinear robust decentral-

ized stabilization. Soft Comput 20(2):707–716

34. Wang D, Liu D, Mu C, Ma H (2016) Decentralized guaranteed

cost control of interconnected systems with uncertainties: a

learning-based optimal control strategy. Neurocomputing. doi:10.

1016/j.neucom.2016.06.020

35. Wang D, Ma H, Liu D (2016) Distributed control algorithm for

bipartite consensus of the nonlinear time-delayed multi-agent

systems with neural networks. Neurocomputing 174:928–936

36. Wang D, Mu C, He H, Liu D (2016) Event-driven adaptive robust

control of nonlinear systems with uncertainties through ndp

strategy. IEEE Trans Syst Man Cybern Syst. doi:10.1109/TSMC.

2016.2592682

37. Wang D, Mu C, Liu D (2016) Data-driven nonlinear near-optimal

regulation based on iterative neural dynamic programming. Acta

Autom Sin (accepted)

38. Werfel J, Petersen K, Nagpal R (2014) Designing collective

behavior in a termite-inspired robot construction team. Science

343(6172):754–758

39. Xie S, Wang Y (2014) Construction of tree network with limited

delivery latency in homogeneous wireless sensor networks. Wirel

Pers Commun 78(1):231–246

40. Yu H, Antsaklis P (2012) Formation control of multi-agent

systems with connectivity preservation by using both event--

driven and time-driven communication. In: Proceedings of the

IEEE conference on decision control, Maui, Hawaii, USA,

pp 7218–7223

41. Zavlanos M, Tanner H, Jadbabaie A, Pappas G (2009) Hybrid

control for connectivity preserving flocking. IEEE Trans Autom

Control 54(12):2869–2875

42. Zhu W, Jiang ZP (2015) Event-based leader-following consensus

of multi-agent systems with input time delay. IEEE Trans Autom

Control 60(5):1362–1367

Neural Comput & Applic (2018) 29:361–369 369

123

http://dx.doi.org/10.1109/TCYB.2016.2548941
http://dx.doi.org/10.1109/TCYB.2016.2548941
http://dx.doi.org/10.1016/j.neucom.2016.06.020
http://dx.doi.org/10.1016/j.neucom.2016.06.020
http://dx.doi.org/10.1109/TSMC.2016.2592682
http://dx.doi.org/10.1109/TSMC.2016.2592682

	Connectivity preserved nonlinear time-delayed multiagent systems using neural networks and event-based mechanism
	Abstract
	Introduction
	Preliminaries
	Graph theory
	Radial basis function neural network
	Problem statement

	Event-based control for multiagent systems
	Design of distributed control algorithm
	Main theorem

	Simulation example
	Conclusion
	Acknowledgments
	References




