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Abstract In open vehicle routing problem (OVRP), after

delivering service to the last customer, the vehicle does not

necessarily return to the initial depot. This type of problem

originally defined about thirty years ago and still is an open

issue. In real life, the OVRP is similar to the delivering

newspapers and consignments. The problem of service

delivering to a set of customers is a particular open VRP

with an identical fleet for transporting vehicles that do not

necessarily return to the initial depot. Contractors which

are not the employee of the delivery company use their

own vehicles and do not return to the depot. Solving the

OVRP means to optimize the number of vehicles, the

traveling distance and the traveling time of a vehicle. In

time, several algorithms such as tabu search, deterministic

annealing and neighborhood search were used for solving

the OVRP. In this paper, a new combinatorial algorithm

named OVRP_GELS based on gravitational emulation

local search algorithm for solving the OVRP is proposed.

We also used record-to-record algorithm to improve the

results of the GELS. Several numerical experiments show a

good performance of the proposed method for solving the

OVRP when compared with existing techniques.

Keywords Open vehicle routing problem � Gravitational
emulation local search algorithm (GELS) � Optimization �
Velocity � Newton’s law � Record-to-record algorithm

1 Introduction

The vehicle routing problem (VRP) is an important prob-

lem in the fields of transportation, distribution and logis-

tics, and the open vehicle routing problem (OVRP) is an

especial case of this problem. The OVRP includes finding

the best route for a set of vehicles that should deliver

services to a set of customers. Every route in the OVRP

includes a set of customers that start from the initial depot

and end in one customer [1]. OVRP usually is limited by

the following constraints: all vehicles have the same

capacity, every customer should be met with only one

vehicle and his/her demand should be delivered, the sum of

demands of customers in a route should not exceed the

capacity of all the vehicles, and in some problems some

constraints are considered for traveling time and distance

[2, 3]. The main purpose of solving this problem is to

reduce the number of vehicles, travelled time and distance

by the vehicle.

The most important difference between OVRP and VRP

is the existence of Hamiltonian routes and Hamiltonian

cycles in these problems, respectively; Hamiltonian routes

start from a point and end in another point, while Hamil-

tonian cycles return to the starting point finally [3, 4]. Thus,

one of the main features of OVRP is that transportation
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vehicles do not necessarily return to the starting depot after

delivering service to the customer, and if they do so, they

will meet the same customers in the delivering route [5].

OVRP is an NP-hard problem, and its solution is a scien-

tific challenge. Conventional studies about OVRP have

solved this kind of problems by assuming definite respond

for the demands of all customers on the route.

Recently, several heuristic and meta-heuristic methods

based on tabu Search, GA, PSO, ACO, ICA, memetic

algorithm and so on have been proposed by researchers to

solve the OVRP. We could cover some of them in the

following paragraphs as the literature review.

In [6], a new tabu search algorithm was proposed to

solve the vehicle routing problem in which vehicles do

not return to the distribution depot after delivering goods

to the customers or, if they do so, they must visit the

same customers, for the collection of goods, in the reverse

order. The authors compared the performance of their

algorithm with other heuristic method designed for the

same problem in terms of computation time. Erbao et al.

[7] described the customer’s demand as specific bounded

uncertainty sets with expected demand value and nominal

value and investigated the transportation costs and

unsatisfied demands in the specific bounded uncertainty

sets and proposed four robust strategies to cope with the

uncertain demand and proposed an improved differential

evolution algorithm (IDE) to solve the optimization

problem. Computational experiments indicate that the

robust optimization can avoid unmet demand while

incurring a small extra cost. The proposed strategy bal-

ances the cost with unmet demand among different robust

strategies.

In [8], a combination of GA and TS is used to solve the

OVRP, in which global optimization and parallel pro-

cessing features of GA and rapid local search of TS are

integrated to solve the problem. A tabu search algorithm

based on memory is proposed in [9] for solving OVRP in

which customers’ demand is provided with a fixed number

of vehicles with different capacities. But this method could

only solve the problems with fixed number of customers

(includes 50, 75, 100, 150, 200), while our method is able

to solve the problems with variable numbers of costumers

(for example, 50, 71, 100, 120, 134, 150, 199,…). And also

it could solve large-scale problems that contain numerous

costumers (like 200, 240, 280, 320, 360, 400, 440, 480),

which is one of the superiority of the proposed method.

Combinatory tabu search algorithm [10] and improved tabu

search [11] were implemented by Huang and Liu in order

to reduce the number of transportation vehicles and trav-

eling cost of OVRP. Based on simulation results, the

algorithm is able to reduce the number of vehicles and

traveling cost.

Shamshirband et al. [12] proposed a solution to solve the

multi-objective commodity vehicle routing problem, in

which costumers have different demands. So a new model

based on integer linear programming hybrid with time

windows and various demands was introduced to optimize

the traveling cost and also maximize the number of

demands. And also two approaches based on the NSGA-II

algorithm with different mutation designs were proposed.

Hadji et al. presented a method for solving vehicle

routing combinatorial optimization problem. Their method

included six heuristic methods and memetic algorithm. Six

heuristic algorithms were used to generate the solutions,

and memetic algorithm was used to improve the obtained

solutions. To increase the quality and efficiency of the

method, time windows were added to 144 samples,

including 15–255 customers and 15–786 data (presented by

Iori et al. [13]).

Norouzi et al. [14] used multi-objective PSO for solving

OVRPC (the same OVRP but in competitive locations)

with two objectives: to reduce the traveling cost and

increase the sales in competitive locations. The proposed

method was compared with similar methods to solve the

problem. In [15], PSO algorithm with other algorithms like

‘‘nearest insertion algorithm’’ and ‘‘GENA’’ has been used

to solve the OVRP and improve the obtained solution;

these algorithms are able to optimize the inside and outside

routes. Hu and Wu [16] presented an algorithm for solving

the OVRP that is based on Genetic algorithm laws and was

applied to improve the performance of PSO and differential

evolution algorithms. In this algorithm, the dominant and

non-dominant character includes every person. In [17], a

specific decoding method for implementing PSO algorithm

was proposed to solve OVRP, in which a vector based on

customer locations was generated in descending order and

then every customer was assigned to one path based on its

location. Finally, a one-step jump was applied to the gen-

erated routes and the feasibility of routes and the solution

quality were checked; it is a more effective method to solve

the problem. But, the feasibility of this method was not

investigated for large-scale problems and it was applied

only to small problems. Both of the methods [16, 17] are

used for solving the vehicle routing problem with time

window and multiple service workers. They were imple-

mented based on local deterministic search.

In [18], various meta-heuristic techniques such as evo-

lutionary approaches, ant colony optimization, simulated

annealing, tabu search and other recent approaches and

their applications to solve the group technology/cell for-

mation problems have been investigated. In the studied

experiments, it was shown that ACO has better perfor-

mance in producing the best solutions in comparison with

GRASP.
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In [19], a new meta-heuristic algorithm named OVR-

P_ICA based on the imperialist competition algorithm was

proposed to solve the OVRP. It was a hybrid optimization

method and can service the costumers by a homogeneous

fleet of vehicles that do not return to the original depot

necessarily. The algorithm was compared with other

algorithms, and results indicated the high performance of

the proposed algorithm to solve the open vehicle routing

problem.

In [20], a clonal selection algorithm is proposed by Pan

and Fu to solve open vehicle routing problem (OVRP) in

which a new definition for continuity of antibodies and

antibody variety conservation algorithm is presented.

In summary, the some of the reviewed methods could

solve the OVRP for small problems [16, 17]. Some other

solved OVRP with extra vehicles [18, 20] and left the

OVRP as open issue. Based on our knowledge, none of the

reviewed methods could solve the OVRP in optimum time

with minimum number of vehicle and travel distance. In

this paper, a new optimization algorithm called ‘‘OVRP_-

GELS’’ is proposed to solve OVRP with optimum number

of vehicles travelled distance and travel run time for large

problems.

The paper is organized as follows: in Sect. 2, gravita-

tional emulation local search algorithm and record-to-

record algorithm are explained. In Sect. 3, the proposed

algorithm is explained, Sect. 4 describes the simulation

results of the proposed algorithm in detail, and the con-

clusion is presented in Sect. 5.

2 Review of combined algorithms

Because we combined two different optimization algo-

rithms, namely GELS and Record-to-Record, in the fol-

lowing subsections we try to introduce them in brief.

2.1 Gravitational emulation local search algorithm

In 1997, guided local search (GLS) algorithm was pro-

posed by Voudouris and Tesang [21] to search and solve

complex problems for the first time. In 2004, Webster [22]

called this method gravitational emulation local search

(GELS) and was used as a powerful local search algorithm

for solving complex problems. The main idea of GELS is

based on gravitational force, which causes to attract objects

with each other, such a way that heavy object has the

higher gravitational force and attract low weigh objects.

The attraction force between two objects depends on the

distance between them.

In GELS algorithm, possible solutions in the search space

are divided into several categories according to their fit-

ness’s. Each of these categories named a dimension of the

solution, and there is initial velocity for them. Equation (2.1)

computes the gravitational force between current solution

(CU) and candidate solution (CA). This force (F) is added to

the velocity vector in the path of current motion.

If velocity exceeds the maximum value (threshold),

maximum velocity becomes the current velocity, and if the

velocity becomes negative due to this force, the velocity is

considered zero [23–29].

F ¼ GðCU� CAÞ
R2

ð2:1Þ

The available parameters in GELS are as follows:

Maximum velocity The maximum value that can be

assigned to each entry of the initial velocity vector, which

prevents the further expansion of these entries.

Radius The radius (R) employed in the gravity calculation

formula.

Iteration The maximum number of algorithm iterations,

which ensures that the algorithm will terminate [23–29].

The pseudo-code of the GELS algorithm is described in

Algorithm 1. This algorithm shows that an initial response

to a problem is created, and each mass is evaluated. Next,

the problem is updated as G, or Best, and/or Worst, and

parameters m and a are calculated for each mass. Then

velocity and the location of each mass are also updated.

Finally, the algorithm ends, if the maximum number of

iterations meets or all the initial velocity vector elements

become zero. Otherwise, the algorithm goes back to step 2

and continues until an optimal answer is reached.

Algorithm1: The Pseudo-code of the GELS algorithm

Generate initial population;
while termination condition is not satisfied do

Evaluate the fitness for each agent;
Update the G, Best and Worst of the population;
Calculate m and a parameters for each agent;
Update velocity and position;

end
return best solution;

2.2 Record-to-record algorithm

Record-to-record algorithm (RTR) was developed by Duke

in 1993 as a deterministic simulated annealing algorithm

[30]. Assume that S is a current solution and N (S) is a

neighborhood of S including the proposed solutions that are

in the neighborhood of S and a proposed solution S ^0

2NðSÞ is selected and the corresponding objective function

f ðS^0Þ is also calculated.

In record-to-record algorithm, record is the total dis-

tance which is observed so far as the best solution.

Neural Comput & Applic (2018) 29:955–968 957

123



Deviation is defined by K%� Record and if

f S^0ð Þ\Recordþ Deviation then S^0 is selected as a new

solution and upward movements that are related to the total

distance of the route, which are admissible in order to

avoid trapping in a local minimum [31]. In open record-to-

record (ORTR), a fixed neighborhood list with 20 cus-

tomers is used, because the idea of the algorithm is that

when improvement movements are carried out, a fixed

number of neighborhoods is considered for every customer.

In this algorithm, an initial feasible solution and also the

least number of required vehicles for delivering service to

the customers Kmin are obtained by sweeping algorithm. If

none of the answers used Kmin number of vehicles, then a

solution is selected that uses the least number of vehicles

for delivering service to the customers. If the coordinates

of the customers are not determined, the sweep algorithm

cannot be used to generate an initial solution, because we

cannot calculate the radius and angle and in this case we

can employ another heuristic algorithm to generate the

initial solution.

Finally, in open record-to-record (ORTR), we try to

combine the paths by joining two paths together. For

example, paths A and B can be combined if the demand of

the combined path does not exceed the vehicle capacity

and the sum of traveling distance does not exceed maxi-

mum path length. Usually finding the best path for com-

bining two paths quickly and effectively is not possible,

and in this algorithm we try to combine path A between

two alternate ties with path B.

3 The proposed algorithm

We use the gravitational emulation local search algorithm

(GELS) as a strategy to solve the OVRP. The objective is

to find the shortest path between customers, reducing the

number of vehicles and traveling time of all vehicles.

3.1 Defining the solution dimensions

In the proposed method, every dimension of solution can

be considered as a customer; in fact, number of solution

dimensions is equal to the number of customers. The

neighbor of the current solution (CU) in the considered

dimension is the customer who has the least distance, time

and most velocity with the customer of the current solution

(CU) for every vehicle, and the vehicle has not met the

customer so far [28].

3.2 Definition of neighborhood

In GELS algorithm unlike other algorithms, searching the

neighborhood solution is not carried out randomly but

every current solution (CU) has different neighbors and

each of them is based on a particular change which is

named moving direction toward the neighboring solution

[28]. All the neighbors that are obtained based on this

method are only based on this neighbor. The following

procedure is used to find the neighboring solution, the

customer with the least distance, time and most velocity

with respect to the current solution (CU) is selected as a

neighbor and candidate solution (CA) for every vehicle.

3.3 Solution method

In the proposed method, gravitational emulation local

search algorithm (GELS) is applied to solve the open

vehicle routing problem (OVRP). As mentioned earlier, the

objective is to reduce the traveling time and distance and

also reduce the number of employed vehicles. Because of

the complexity of the problem, achieving to the solution is

difficult even if there are a few vehicles and customers.

Therefore, by considering the characteristics of GELS

algorithm and its global feature, we used this algorithm to

solve the OVRP.

A one-dimensional array is used to present the solution;

its length is equal to the number of costumers plus the

number of vehicles minus 1. To initialize each solution, we

put zero in the randomly selected cells of array (for the

number of vehicles minus 1), and then we put the con-

sumers randomly in remind cells.

Example 1 It is considered a particular example with

three vehicles and ten customers, (3, 10). In Fig. 1, it is a

solution, an array with the length 12, including the 10

customers in the order of vehicles separated by zeros. So,

the vehicle 1 meets the costumers with the numbers 4, 7

Fig. 1 The solution structure of a particular case of the open vehicle

routing problem (OVRP) solved with the gravitational emulation

local search algorithm (GELS). There are considered three vehicles,

separated by number 0, each cell of the solution array includes the

customer’s number for each of the three considered vehicles, (vehicle,

[list of customers]): (1, [4, 7, 3]), (2, [5, 1, 2, 6]) and (3, [9, 8, 10])
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and 3, the second vehicle meets the next forth costumers 5,

1, 2 and 6, and the third vehicle meets the last three cos-

tumers 9, 8 and 10. So, for short (vehicle, [list of cus-

tomers]): (1, [4, 7, 3]), (2, [5, 1, 2, 6]) and (3, [9, 8, 10]).

Considering the objective of the problem which is

reducing the traveling distance and number of vehicles, this

paper introduces the gravitational emulation local search

algorithm (GELS) as a suitable strategy for solving the

OVRP. Contrary to other algorithms, the GELS algorithm

does not proceed with random solutions, but it proceeds by

examining the current solutions (CU) and provides distinct

final conditions that can complete the previous direction for

a specific iteration to continue counting. Thus, although the

GELS algorithm has a number of random operators-based

elements, it does not proceed purely based on random

operators. Although it employs the local neighborhood

search method for solving the problem, it does not move in

the same way between them at all. And although it includes

a particular behavior of greedy algorithms, it does not find

the best path for searching. The GELS algorithm uses the

same law that guides the motion of objects in physical

space in order to control their motion in a complex search

space.

Unlike other algorithms that start from an initial popu-

lation and then generate the next populations, the GELS

algorithm starts from an initial or current solution (CU)

and, in the next step, the secondary or candidate solution

(CA) is generated based on the neighbors, customers and

vehicles that can satisfy the problem constraints. In this

step, the gravitational force between these two masses is

calculated and it is considered as a solution and then

velocity and gravitational mass are updated.

One of the advantages of this algorithm against other

algorithms is the presence of velocity factor which makes

this algorithm to search only for the best and optimum

Table 1 OVRP_GELS steps

1. To create initial response by sweep algorithm

2. To determine the perimeter of system and initialize customers

who are considered as bodies

3. To arrange solutions created by customers based on each

customer’s weight

4. To select the first solution as the best one

5. To evaluate the weight of each customer

6. To calculate G(t)

7. To calculate the gravity force imposed on each customer

8. To calculate acceleration, time and speed of each customer

9. To update parameters T and V

10. To displace solutions in each dimension based on the force

exerted on them in different dimensions

11. If stop condition is satisfied, run steps 12 and 13; otherwise, go

to step 4

12. Run of record-to-record algorithm

13. Turn the best response

Table 2 OVRP_GELS

algorithm Data: I, K, M, A, B, R, F, V, NBListSize
Result: Distance, Time, BestFit A, BestFit B
initialization;
Parameters I, K, M, NBListSize, Distance, Speed, Time, A, B, R, F, V, BestFit A,
BestFit B.
//Generate a feasible solution using the sweep algorithm Set Record= objective
function value of the current solution
Set BestRecord= Record
Set Deviation= 0:01 × Record
Set itr= 0
Generate a feasible solution using the GSA algorithm
Distance= Create Matrix Distance()
Speed= Create Matrix Speed()
Time= Create Matrix Time()
A= Create Parente()
B= Create Child()
BestFitA= Fitness A
BestFitB= Fitness B
while Number Of City’s Region do

Empty B
B= Create Child()

End
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solutions and attract them. This process leads to growth of

object’s mass, and as we know, in the gravitational law,

as the object mass increases, the gravitational force

increases as well and thus the object attracts more opti-

mum solutions toward itself. This procedure is repeated in

each iteration until the object’s weight gets rise by

attracting the optimum solutions, so the algorithm returns

the best solution.

The initial solutions of OVRP can be obtained using

algorithms such as sweep algorithm or in a random way.

The proposed method integrates the GELS algorithm and

initial solution obtained from the sweep algorithm in order

to solve the OVRP. The solution procedure works as

follows:

The GELS algorithm generates the conditions for OVRP

by defining three parameters.

At first, sweep algorithm produces an initial solution.

And then system environment and initialization to cus-

tomers which are considered as masses are determined.

Solutions obtained by customers are sorted based on their

weight, and the first solution is considered as the best

solution. In the next step, the weight of customers is

evaluated. And in the next step G(t), gravitational force on

each costumer, acceleration, time and velocity are calcu-

lated and parameters V, T would be updated. It means that

if the candidate solution (CA) obtained in each step is

better than current solutions (CU), previous solution is

replaced by candidate solution (CA) and then gravitational

force between them is calculated using Eq. (2.1), and then

parameter V is updated by Eq. (3.1).

V ¼ V þ F ð3:1Þ

In this updating formula, parameter V is increased, after

that parameter T would be updated in Eq. (3.1), and it is

decreased, which means that the problem is being opti-

mized. After these steps, solutions are moved in different

dimensions based on their forces and then GELS algorithm

will end. Then, the algorithm performs record-to-record

algorithm on produced solutions and finally the best solu-

tion obtained by the proposed algorithm would be

displayed

The GELS algorithm improves distance and reduces the

number of vehicles by applying the following procedure.

First, we consider three matrices: distance, initial

velocity and time. The distance matrix is taken from

standard problems in [32] and is calculated for every

sample separately. Based on GELS algorithm, the initial

velocity has an initial constant velocity at first. In this

problem, the initial velocity of all masses is considered

equal to 100. The initial velocity is updated in every step.

As it was explained, in the initial velocity matrix, an initial

velocity of 100 is assigned to each customer, which is

considered as a mass, and then in the next step, velocity

will change and also the time (mass) matrix based on

distance. Velocity matrix is obtained from Eq. (3.2):

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYB � YAÞ2 þ ðXB � XAÞ2
q

VinA;B

ð3:2Þ

In Equation, T indicates mass of the customer,

ðYB � YAÞ2 þ ðXB � XAÞ2 is the distance between two

customers and VinA;B shows the velocity between two

customers.

Using GELS algorithm in these conditions, an appro-

priate reserve factor should be defined. The reserve factor

is equal to the number of reserved customers for cars in the

future. The set of assigned customers to the cars is a

Table 3 Benchmark data sets of Christofides et al. [33] and Fisher [34]

Instance C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 F11 F12

N 50 75 100 150 199 50 75 100 150 199 120 100 120 100 71 134

C 160 140 200 200 200 160 140 200 200 200 200 200 200 200 30.000 2210

L N/A N/A N/A N/A N/A 180 144 207 180 180 N/A N/A 648 936 N/A N/A

e N/A N/A N/A N/A N/A 10 10 10 10 10 N/A N/A 10 10 N/A N/A

in 5 10 8 12 6 5 10 8 12 16 7 10 7 10 4 7

N number of costumer, C vehicle capacity, L maximum tour length, e service time, in minimum number of used vehicles

Table 4 Benchmark data sets of Li et al. [1]

Instance A B N C Kmin

O1 20 10 200 900 5

O2 40 6 240 550 9

O3 28 10 280 900 7

O4 40 8 320 700 10

O5 36 10 360 900 8

O6 40 10 400 900 9

O7 44 10 440 900 10

O8 40 12 480 1000 10

(A, B) depot coordinate, N number of costumer, C vehicle capacity,

Kmin minimum number of used vehicles
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solution. This method can be used to represent a solution in

the form of two (n*n) matrices which are equal to the

number of cars and customers. Every row and column

indicates one of the customers in the group, and the number

in each row and column indicates the number of cars that

belong to customers. When algorithm is completed, the

reserved cars for the customers with the reservation factors

are presented.

In order to improve the results of GELS, we run record-

to-record algorithm in the form of one-point and two-point

and then obtained solutions are saved. In the next step, the

GELS algorithm would run on the obtained solution and

therefore the obtained results are as an initial solution of

the GELS algorithm. By applying GELS algorithm, one-

point and two-point operations are carried out on the

obtained solution again, which is different from the ordi-

nary displacements. Every time after running the

algorithm, the velocity and time matrices are updated if

they are improved. In each step, for every row and column

of velocity matrix, the maximum value of matrix is

selected and then if the assigned machine to that customer

is changed, we exchange those machines. Then by con-

sidering the changes, the cost of the current solution (CU)

must be calculated again. If the cost of current solution

(CU) is better than the cost of candidate solution (CA), it

would be replaced; otherwise, it would not be updated in

the table and a new GELS algorithm run again on the

candidate solution (CA), and a new solution is tested on the

other candidate masses, and then mass and velocity values

are updated. The previous solution is called the current

solution (CU) and the newly obtained solution which is

compared to the current Solution (CU) named candidate

solution (CA).

The algorithm ends when the assigned speed is zero

or the number of iterations reaches the maximum value

determined by the problem [28]. In the following

tables, we simply explain the steps of our algorithm

(Table 1) and the pseudo-code of OVRP_GELS in

detail (Table 2).

3.4 An overview of the main contributions

We propose GELS algorithm to solve the OVRP with

minimum number of vehicles, traveling distance and travel

time of the vehicle that has the following contributions:

1. The main difference between the proposed algorithm

and the previous works like GA and PSO algorithms

that start from an initial population and then generate

the next populations is that the GELS algorithm starts

from an initial or current solution (CU) and, in the next

step, the secondary or candidate solution (CA) is

generated based on the neighbors, customers and

vehicles that can satisfy the problem constraints.

2. The GELS algorithm has high rate to reach the final

solution and is a strong local and also efficient

algorithm for the problem and is comparable with

other algorithms.

3. To improve results, we combine the GELS and record-

to-record algorithms.

4 Computational experiments

4.1 Benchmark data sets

We test the proposed on a set of well-known benchmarks

by Christofide et al. [33], Fisher [34], Li et al. [1]. In the

Fisher model, there are 14 problems C1–C14 [33]. The

customers of both sets are in the interval of 50–199, in the

Table 6 Comparison of the proposed method with PSO based on the

number of vehicles used in the best found solution

Instance The input PSO [17] OVRP_GELS

C V Best val. T Best val. T

A-n32-k5 32 5 487.306 0.82 411.563 0.45

A-n33-k5 33 5 424.543 0.89 406.457 0.64

A-n33-k6 33 6 462.433 0.90 415.349 0.78

A-n34-k5 34 5 508.516 0.92 425.538 0.72

A-n36-k5 36 5 519.455 0.88 432.863 0.73

A-n37-k5 37 5 486.243 0.81 443.957 0.67

F-n45-k4 45 4 463.986 0.90 422.323 0.69

F-n72-k4 72 4 177.453 0.96 114.118 0.81

P-n19-k2 19 5 168.569 0.97 125.548 0.86

P-n20-k2 20 5 170.278 0.97 136.563 0.72

P-n21-k2 21 2 163.877 0.93 128.860 0.73

P-n22-k2 22 5 167.191 0.962 132.436 0.75

P-n40-k5 40 5 349.552 0.88 316.659 0.71

P-n45-k5 45 5 391.809 0.92 318.347 0.68

P-n50-k7 50 5 407.727 0.91 309.348 0.65

Bold Indicates the solution that minimizes the number of vehicles

with least distance traveled

C number of costumer

V minimum number of used vehicle

Best val. indicates the number of vehicles used in the best found

solution

T CPU time of the best run of the algorithms and proposed algorithm

are presented, respectively

PSO Particle swarm optimization from Mirhassani and Abolghasemi

[17]; using C programming language

OVRP_GELS open vehicle routing problem Using the gravitational

emulation local search algorithm; Pentium-IV at 2.06 GHz with 6GB

of RAM using C#.Net language
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Cartesian coordination and Euclidean distance. Among

them, for C6–C10, C13 and C14 the constraint on path

length (L) and service time (e) is considered for all cus-

tomers. Table 3 displays characteristics of 16 problems in

the works of Christofide et al. [33] and Fisher [34]. Com-

pared to VRP model, the maximum path length is a mul-

tiple of 0.9.

In addition, the set of large-scale data proposed by Li

et al. [1] are also considered. The second case includes

eight problems O1–O8 with 200–480 customers, and there

is no constraint for path length. Every problem is geo-

metrically symmetry, and the customers are placed in a

circular manner around depot. Table 4 shows the charac-

teristics of these eight problems.

Table 7 Comparison of proposed method with eight state-of-the-art methods in this domain based on time used to solve the problem

Instance ORTR [1] HES [36] IVND [39] BBMOOVRP [38] BLSA [37] ITS [10] ITS [11] Clonal selection

algorithm [20]

OVRP_GELS

Time Time Time Time Time Time Time Time Time (s)

C1 6.2 98 5.78 0.08 25 16. 1 14.9 1.769 1.769

C2 31.3 143 17.62 0.32 68 28.3 26.7 1.274 1.274

C3 39.5 330 44.74 0.55 103 2 12.5 218.4 2.845 2.845

C4 128.6 613 132.61 2.05 190 542.7 531.5 2.936 2.936

C5 380.6 1272 314.88 3.07 355 268.6 253.1 2.261 2.261

C6 10.3 215 8.69 0.10 – 68.3 61.4 – 1.831

C7 32.2 367 16.04 0.22 – 18.6 17.9 – 1.382

C8 53.2 510 33.40 0.45 – 562.8 553.1 – 1.568

C9 195.1 933 83.44 1.45 – – – – 2.347

C10 363.5 1678 228.27 3.18 – – – – 2.764

C11 121.6 318 84.89 1.01 85 – – – 1.271

C12 32.9 363 34.13 1.17 39 – – – 1.385

C13 120.3 890 87.08 1.15 – – – – 2.937

C14 62.9 411 31.42 1.35 – – – – 1.841

F11 19.5 264 12.24 – 93 – – – 2.124

F12 158.2 753 133.90 – 301 – – – 2.548

O1 365.3 452 – 2.51 612 – - – 1.342

O2 439.6 613 – 3.05 774 – – – 2.174

O3 492.8 736 – 3.17 681 – – – 2.301

O4 573.6 833 – 3.27 957 – – – 2.576

O5 766.5 1365 – 3.42 1491 – – – 3.187

O6 977.2 1213 – 4.06 1070 – – – 3.362

O7 935.4 1547 – 4.21 1257 – – – 4.127

O8 1126.8 1653 – 4.41 1512 – – – 6.119

ORTR Record-to-record travel solution from Li et al. [1]; Athlon 1 GHz computer with 256 MB of RAM using Linux

HES Hybrid evolution strategy from Repoussisa et al. [36]; PIV 2.8GHz PC using C?? language

IVND Integrates a variable neighborhood descent from Chen et al. [39]; Pentium-IV 2.93G with 1G of RAM using C?? language

BBMOOVRP Bumble bees mating optimization for the open vehicle routing problem from Marinakis and Marinaki [38]; Intel Core 2 DUO CPU

T9550 at 2.66 GHz using Fortran 90 and was compiled using the Lahey f95 compiler, Linux 9.1

BLSA Broad local search algorithm from Zachariadis and Kiranoudis [37]; Intel T5500 processor 1.66 GHz using Visual C# language

ITS Improved tabu search from Huang and Liu [10]; 2.26 GHz processor with 1G of RAM using Matlab language

ITS Improved tabu search from Huang and Liu [11]; 2.26 GHz processor with 1G of RAM using Matlab language

Clonal selection algorithm clonal selection algorithm from Pan and Fu [20]; Pentium-IV at 1.6 GHz with 256 MB of RAM using Matlab 6.5

language

OVRP_GELS Open vehicle routing problem using the gravitational emulation local search algorithm; Pentium-IV at 2.06 GHz with 6 GB of

RAM using C#.Net language

–, No value is calculated for this case
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4.2 Computational results

The results of simulation for solving the OVRP are pre-

sented in this section. C#.NET programming language is

used to implement the programs, and also programs ran on

a computer with 2.06 GHz Pentium-IV CPU and 6GB

RAM. The proposed algorithm (OVRP_GELS) is com-

pared to 11 different algorithms including: clonal selection

algorithm [20], improved tabu search (ITS) [10], improved

tabu search (ITS) [11], diploid hybrid PSO with DE

(DHPD) [16], hybrid combination out of a stochastic

combined variable neighborhood search and a simple (1 ?

1)-evolutionary strategy ((hybrid (1 ? 1) ES) [35], record-

to-record travel solution (ORTR) [1], hybrid evolution

strategy (HES) [36], broad local search algorithm (BLSA)

[37], bumble bees mating optimization for the open vehicle

routing problem (BBMOOVRP) [38], integrates a variable

neighborhood descent (IVND) [39], particle swarm opti-

mization (PSO) [17]).

Considering the mentioned steps in the previous sec-

tion, results are shown in Tables 5, 6 and 7. It is worthy

to mention that solving the vehicle routing problem

using the gravitational emulation local search (GELS)

algorithm is completely novel and has no similar case on

internet. Also the preformed simulation using the GELS

algorithm is the first simulations performed so far. The

performed comparisons demonstrate the advantages of

the proposed algorithm (OVRP_GELS) in terms of time,

(a) Problem (C1) (b) Problem (C2) (c) Problem (C3)

(d) Problem (C4) (e) Problem (C14) (f) Problem (F11)

(g) Problem (F12)

Fig. 2 The routes generated for seven problems by OVRP_GELS.

With the aim of reducing the number of vehicles, the algorithm

generates the best response. a Problem C1 (n ¼ 50, solution value ¼
406.994), b problem C2 (n ¼ 75, solution value ¼ 543.676),

c problem C3 (n ¼ 100, solution value ¼ 630.099), problem C4 (n ¼
150, solution value ¼ 729.864), problem C14 (n ¼ 100, solution value

¼ 549.372), problem F11 (n ¼ 71, solution value ¼ 159.725),
problem F12 (n ¼ 134, solution value ¼ 694.419)
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minimum number of vehicles and minimum travelled

distance.

Tables 5, 6 and 7 demonstrate the results of the

proposed algorithm (OVRP_GELS) compared to other

well-known algorithms that solved the OVRP in dif-

ferent kinds from easy to difficult problems. As high-

lighted in Table 5, the proposed algorithm

(OVRP_GELS) could obtain more optimum and more

acceptable solutions. OVRP_GELS has also been able

to reduce the number of vehicles in difficult problems

in an efficiently manner. One of the great and exclusive

advantages of the proposed algorithm (OVRP_GELS) is

the time factor. As it is clear from the time column in

Tables 6 and 7, proposed algorithm could be able to

achieve the final solution in a shorter time compared to

other algorithms.

Run times by the OVRP_GELS and those of other

algorithms are compared in Table 7. As it seen, the pro-

posed algorithm could solve the problems in a reasonable

time and also compete with other algorithms. OVRP_-

GELS has acceptable computational time for large-scale

test problems which is 1.342 s for 200 customers and 6.119

seconds for 480 customers that approved the superiority of

the proposed algorithm. No time value is calculated for two

algorithms DHPD [16], hybrid (1 ? 1) ES [35], so we did

not compare them in Table 7.

Figure 2 shows the solving seven OVRPs from small to

medium sizes. As you can see, the proposed algorithm

(OVRP_GELS) is able to obtain desire outputs compared

to other algorithms. It also can reach final answer in least

time that is one of superiorities of the proposed algorithm

(OVRP_GELS) than compared ones.

4.3 Large-scale test problems and computational

results

InOVRP, there are eight large-scale problems that donot have

any traveling distance constraint; therefore, their solution is

difficult and time consuming. In this paper, we considered

large-scale vehicle routingproblemwhich is solvedbyLi et al.

[1]. We selected eight problems with 200–480 customers and

without traveling distance constraint. Every problem is geo-

metrically symmetry, and customers are arranged in a circular

way around depot. Every problem shows a geometrical

symmetry that allows us to provide one solution. The obtained

solutions by OVRP_GELS and solutions of other algorithms

are provided in Table 8. In every problem,OVRP_GELSuses

less number of vehicles (Kmin). In Table 8, BLSA [37] has no

value for Kmin.

Figure 3 shows solving of eight large-scale OVRPs. As

it is seen, the proposed algorithm (OVRP_GELS) is able to

Table 8 Comparison of

proposed method with four

state-of-the-art methods in this

domain based on their Kmin and

fitness

Instance ORTR [1] HES [36] BBMOOVRP [38] BLSA [37] OVRP_GELS

Kmin Fitness Kmin Fitness Kmin Fitness Fitness Kmin Fitness

O1 5 6018.52 5 6018.52 5 6021.11 6018.52 4 6038.585

O2 9 (10) 4584.55 9 4583.70 9 4557.38 4557.38 7 4421.855

O3 7 7732.85 7 7733.77 7 7735.14 7731.00 6 7206.972

O4 10 7291.89 10 7271.24 10 7267.18 7253.20 9 7244.135

O5 8 (9) 9197.61 8 9254.15 8 9198.25 9193.15 7 9267.282

O6 9 (10) 9803.80 9 9821.09 9 9798.19 9793.72 8 9796.370

O7 10 (11) 10,374.97 10 10,363.40 10 10,351.18 10,347.70 9 9929.649

O8 10 12,429.56 10 12,428.20 10 12,418.57 12,415.36 9 12004.09

Bold Indicates the solution that minimizes the number of vehicles with least distance traveled.

N number of costumer

Kmin minimum number of used vehicle; ( ), number of vehicles required if different from Kmin,

Fitness indicates the number of vehicles used in the best found solution

ORTR Record-to-record travel solution from Li et al. [1]; Athlon 1 GHz computer with 256MB of RAM

using Linux

HES Hybrid evolution strategy from Repoussisa et al. [36]; PIV 2.8 GHz PC using C?? language

BBMOOVRP Bumble bees mating optimization for the open vehicle routing problem from Marinakis and

Marinaki [38]; Intel Core 2 DUO CPU T9550 at 2.66 GHz using Fortran 90 and was compiled using the

Lahey f95 compiler, Linux 9.1

BLSA Broad local search algorithm from Zachariadis and Kiranoudis [37]; Intel T5500 processor 1.66 GHz

using Visual C# language

OVRP_GELS Open vehicle routing problem using the gravitational emulation local search algorithm;

Pentium-IV at 2.06 GHz with 6 GB of RAM using C#.Net language
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obtain desire outputs, reduce the number of vehicle in each

problem and reach the final response in a shorter time.

4.4 Statistical analysis: advantages

and disadvantages of GELS

As mentioned earlier, the proposed algorithm (OVRP_

GELS) could obtain more optimum and more accept-

able solutions compare to other methods. Moreover it has

been able to reduce the number of vehicles with less time

consumption efficiently. As shown in Sect. 4.3, the pro-

posed method could perform better in large-scale problems

(in six out of eight problems).

Because of the nature of GELS algorithm which is a

local search algorithm, this method will stock in local

minima in few cases that would be the limitation of this

method. We try to reduce this side effect by using record-

to-record algorithm combined with GELS.

5 Conclusion

In this paper, an optimization algorithm based on gravitational

emulation local search algorithm named OVRP_GELS is pro-

posed to solve the OVRP. The advantages of this algorithm are

as follows: high speed and very low run time and objective

(a) Problem (O1) (b) Problem (O2) (c) Problem (O3)

(d) Problem (O4) (e) Problem (O5) (f) Problem (O6)

(g) Problem (O7) (h) Problem (O8)

Fig. 3 The routes generated by OVRP_GELS for eight problems.

With the aim of reducing the number of vehicles, the algorithm

generates the best response. a Problem O1 (n ¼ 200, solution value ¼
6038.585), b problem O2 (n ¼ 240, solution value ¼ 4421.855),
c problem O3 (n ¼ 280, solution value ¼ 7206.972), d problem O4 (n

¼ 320, solution value ¼ 7244.135), e problem O5 (n ¼ 360, solution

value ¼ 9267.282), f problem O6 (n ¼ 400, solution value ¼
9796.370), g problem O7 (n ¼ 440, solution value ¼ 9929.649),
h problem O8 (n ¼ 480, solution value ¼ 12004.09)
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values. The objective of the OVRP_GELS algorithm is to

reduce the run time and number of vehicles and to find the

shortest path between customers and vehicles. The results of

GELSon several instances are comparedwith existing results of

other eleven algorithms including the clonal selection algorithm

and particle swarm optimization. The results show that

OVRP_GELS algorithm is potentially more efficient when

compared to other algorithms, at least on the tested benchmarks.

The running time of GELS is proposed algorithm is

much lower, and it requires much less computational time

to solve the problem. Since the required time for achieving

the final solution, finding the shortest time and reducing the

number of vehicles is an important factor in solving OVRP;

therefore, less computational time is an obvious advantage

of the proposed algorithm.

The main improvement of the GELS is for small and

average results: the lowest value of 159.725 for problem

F11, the maximum value of 873.691 for problem C10, for

large-scale O2 instance the lowest value of 4421.855 and

the maximum value of 12,004.09 for problem O8.
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