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Abstract The hospital location and service allocation is

one of the most important aspects of healthcare systems.

Due to lack of studies on covering location-allocation and

scheduling problems with respect to the uncertain budget,

this paper develops a bi-objective hybrid model to locate

hospitals and allocate machines and services scheduled.

The costs of establishing facilities are assumed to be

uncertain, while a robust counterpart model is employed to

overcome the uncertainty. Covering the demand of each

service is limited as well. Moreover, hospitals have a

limited space to the specialized equipment like CT scan

and MRI machines, while there is a cost constraint on

hospitals and the specialized equipment. The aim of this

paper is to find a near-optimal solution including the

number of hospitals and the specialized equipment, the

location of hospitals, the assignment of demand of each

service and the specialized equipment to hospitals, the

determination of allowable number of each service of

hospitals, the determination of demand that should be

transferred from one hospital to another (patient transfer),

and schedule services. As the proposed model, minimizing

the total costs and the completion time of demand

simultaneously, is an NP-hard problem, it is impossible to

solve its large-scale version with exact methods in a rea-

sonable time. Thus, a hybrid algorithm including simulated

annealing optimization and the Benders decomposition is

employed to solve it. The CPLEX optimizer verifies the

presented algorithm to solve the proposed model. The

sensitivity analysis is performed to validate the proposed

robust model against of uncertain situations while the

Monte Carlo simulation is used to analyze the quality and

the robustness of solutions under uncertain situations. The

results show that the uncertainty used in the proposed

model properly formulates real-world situations compared

to the deterministic case. Finally, the contributions and the

future research are presented.

Keywords Location-allocation and scheduling problem �
Hospital location and service allocation � Healthcare
systems � Annealing optimization � Benders
decomposition � Robust optimization

1 Introduction

Healthcare systems have a vital role in total costs of every

country’s economy. Moreover, locating hospitals with

regard to allocating services is one of the main healthcare

problems. Over the past few decades, the operation

research approaches like the facility location problem have

been used to model many healthcare problems [1]. Rahman

and Smith [2] considered a location-allocation problem of

the healthcare system in developing nations, while some

studies [3–11] carried out several major reviews of the

location problems. These problems locate facilities and

allocate services to facilities. In the past few years, the

location-allocation models have been employed for a wide
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range of problems such as healthcare, manufacturing, for-

estry, and logistics providing many extensions. The cov-

ering problem is one of the most important developments

of the location-allocation models. Farahani et al. [10]

presented a review of covering problems in logistics.

In a case study at the division of angiography and

interventional radiology at the Brigham and women’s

hospital in Boston, Baum et al. [12] presented a model

consisting of scheduling, revenue management, and fair-

ness to find an optimal daily scheduling of physicians

regarding mixed integer optimization. In an unfavorable

economic scenario, clinical pathways for patients should be

clearly defined by healthcare organizations to increase the

quality of care services [13]. Considering patterns in clin-

ical pathways, Huang et al. [14] developed a probabilistic

problem with occurrences in clinical pathways and treat-

ment activities for a Chinese hospital. The emergency care

plays an important role in the transportation of casualties to

hospitals to save people’s life. To overcome the demand

surge regarding a case study consisting of an expected

earthquake in Istanbul, Salman and Gül [15] formulated a

bi-objective location problem to find a near-optimal solu-

tion including the location and size of emergency service

facilities in which the total cost of establishing new facil-

ities and the total travel and waiting time of casualties over

the search-and-rescue period were minimized. Regarding

the strategic planning of hospital networks, Mestre et al.

[16] proposed a location-allocation problem with uncertain

demand for a case study based on the Portuguese National

Health Service.

Many patients find it hard to receive hospital treatments

due to the imbalance between demand and supply in an

outpatient specialty care. Since the need for a health ser-

vice should be accessible to all, one of the policies is to

open outreach clinics which are closer to patients’ resi-

dences. Regarding care delivery scheme, Li et al. [17]

presented an integrated multi-site care networks to find a

near-optimal solution including appointment locations for

patients and travel assignments for physicians in case

studies of Veteran Affairs Care Networks.

Uncertainty is the most important reason not to take

advantage of some formulated problems. Stochastic and

fuzzy approaches are two well-known methods to over-

come uncertain situations under real-world conditions,

while the robust optimization (RO) has been recently used

like the bloodmobile routing problems [18], hub location

problems [19], and layout problem [20]. RO presents a

solution including the deterministic variability to enable

formulated problems to be effective against uncertainty.

Gülpınar et al. [21] employed the robust optimization to

solve a facility location problem in which the demand was

assumed to have a normal distribution. Regarding RO in

disaster relief problems, Paul and MacDonald [22]

developed a stochastic facility location-allocation model in

which the timing and severity of potential event were

uncertain. However, Table 1 presents a comparison the

proposed model with the literature.

The location-allocation models, unable to be solved by

exact methods, are an NP-hard problem [23]. One of the

popular methods to optimize NP-hard problems is to

employ meta-heuristic optimization algorithms like genetic

algorithm (GA) [24], multi-objective genetic algorithm

[25], imperialist competitive algorithm (ICA) [26], Tabu

search [27] and path-relinking algorithm [28], hybrid Tabu

search [29], particle swarm optimization (PSO) [30], har-

mony search algorithm (HSA) [31], non-dominated sorting

genetic algorithm-II (NSGA-II) [32], simulated annealing

(SA) [33], cuckoo-inspired algorithms [34], and hybrid

firefly algorithm [35].

Regarding mentioned issues, this paper develops a bi-

objective covering location-allocation problem with the

uncertain budget, in which patient services were scheduled.

There is a constraint on hospitals space to the specialized

equipment like CT scan and MRI machines while covering

demand of each service is limited. The aim of the proposed

model is to find a near-optimal solution including (1) the

number of hospitals and the specialized equipment, (2) the

location of hospitals, (3) the assignment of demand of each

service, and the specialized equipment to hospitals, (4) the

determination of allowable number of each service of

hospitals, (5) the determination of demand that should be

transferred from one hospital to another (patient transfer),

and (6) scheduling patient services.

The proposed model is an NP-hard problem; thus, exact

methods are unable to solve its large-scale version in a

reasonable time [49]. To optimize the proposed model,

minimizing the total costs and the completion time of the

demand (total patient services) simultaneously, this paper

employs a hybrid algorithm including the SA optimization

and the Benders decomposition while a robust counterpart

model is employed to overcome the uncertainty about costs

of establishing hospitals and buying specialized equipment.

In compared with the standard SA, the provided solutions

by the hybrid algorithm are compared with the lower and

upper bounds presented by the CPLEX solver.

To mention the main contributions, this paper combines

and develops approaches presented by these studies

[50–53] so that the models presented by Feizollahi and

Modarres-Yazdi [53] and Syam and Côté [51] are devel-

oped to consider the second objective minimizing the

completion time of the total patient services (group

scheduling). Moreover, we extend the models provided by

Kim and Kim [52] and Shariff et al. [50] to uncertain

budgets. In brief, the main innovations are to consider the

second objective in the mathematical model, to investigate

the uncertainty about budgets, to formulate an integrated
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model including the covering location-allocation and

scheduling problems, and to employ a robust optimization

and a hybrid algorithm including SA optimization and the

Benders decomposition.

The remainder of this paper is organized as follows. The

next section provides the mathematical model. The pro-

posed hybrid algorithm and comparison results are pre-

sented in Sects. 3 and 4. Finally, conclusion and future

research are provided in Sect. 5.

2 A bi-objective covering location-allocation
and scheduling model

This section presents a bi-objective hybrid model, a mixed

integer nonlinear programming, for hospital location with

machines and service allocation under uncertain budget

regarding scheduling patient services.

2.1 Notations and assumptions

In this paper, to locate new hospitals and allocate machines

and demand to hospitals, respectively, regarding limited

budget, it is assumed to be s potential locations for hos-

pitals providing a variety of services and m locations with

certain demand. Moreover, each demand consists of n dif-

ferent services provided by one or more hospitals in order

to determine allowable number of each service of hospitals.

It is assumed to be c types of specialized equipment

(machines). As there is the limited budget in real-world

applications, a hospital is unable to have all types of spe-

cialized equipment such as CT scan and MRI machines.

Thus, the question is which kind of and how many

machines are installed in each hospital regarding the lim-

ited budget and space? Meaning that if buying four MRI

machines is allowable, only four hospitals are able to have

them. While a hospital does not have all types of machines,

what scheduling patient services (SPS) is since it is pos-

sible to transfer a patient from a hospital to another

hospital?

According to budget constraints, the costs of purchasing

and installing of machines, and the fixed and variable costs

of establishing hospitals are assumed to be uncertain with

an ambiguous distribution. Moreover, demand is able to be

assigned to one or more machines while visiting machines

is not allowed more than once while hospitals have to cover

demand at least Lj
i percent.

In this paper, there are the following notations to for-

mulate the proposed model.

Sets and indexes

I; i Set and index of patient services,

i 2 I; i ¼ 1; . . .; n

J; j Set and index of patient locations,

j 2 J; j ¼ 1; . . .;m

L; l Set and index of hospital locations,

l 2 L; l ¼ 1; . . .; s

Table 1 Comparison the proposed model with the literature

Model Facility

constraint

Solving approach Objective function

Haji-abbas and Hosseininezhad [36] L-A Parameter GAMS Cost and missed customer

Fischetti et al. [37] L-A Parameter CPLEX Cost

Habibzadeh Boukani et al. [38] Hub location Parameter GAMS Cost

Meraklı and Yaman [39] Hub location – CPLEX Cost

Arabzad et al. [40] L-A Parameter LINGO Cost and deterioration rate

Yang et al. [41] L-A Parameter CPLEX Waiting time

Álvarez-Miranda et al. [42] L – CPLEX Cost

Mestre et al. [16] L-A – CPLEX Cost

Zahiri et al. [43] L-A – GAMS Cost

Rahmati et al. [44] L-A – NSGA-II & NRGA Time and cost

De Rosa et al. [45] L Parameter CPLEX Profit

Rezaei-malek et al. [46] L-A – Genetic Cost

Gülpınar et al. [21] L – GAMS Cost

Yan et al. [47] Scheduling – CPLEX Time

Fazel-Zarandi and Beck [48] L-A Parameter Tabu search Cost

The proposed model Hybrid L-A and scheduling Variable CPLEX, Benders, and SA Time and cost

L-A Location-allocation
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K; k Set and index of machine types,

k 2 K; k ¼ 1; . . .; c

Parameters

cjl Transportation cost per unit between jth patient

location and lth hospital

mjl Distance between jth patient and lth hospital

qll0 k Cost per unit of transferring patient from lth hospital

to l0th hospital for kth machine

dij Demand of ith patient service of jth patient location

Lij Lower bound to cover demand of ith patient service

of jth patient location

Ai
l

Lower bound of ith patient service for lth hospital to

establish

el Fixed cost to establish lth hospital

gil Variable cost to establish lth hospital per unit of ith

patient service

rlk Purchasing and installing costs of kth machine in lth

hospital

B1 Maximum budget to establish lth hospital

B2 Maximum budget to purchase and install machines

f ikk0 1 if k0thmachine is required after kth

machine to provide ith patient service

0 otherwise

8
><

>:

f ik 1 if kth machine is the first machine to provide

ith patient service

0 otherwise

8
><

>:

nll0 Transferring time between lth hospital and l0th

hospital

tik Unit processing time of ith patient service by kth

machine

Decision variables

Zi
jl Number of ith patient service of jth patient location

assigned to lth hospital

Wi
ll0 k Number of ith patient service transferred from lth

hospital to l0th hospital for kth machine

Ylk
1 if kth machine instralled in

lth hospital

0 otherwise

8
><

>:

Xl 1 if lth hospital is opened

0 otherwise

�

Hi
i0 lk 1 if ith patient service provided before i0th

patient service by kth machine in lth hospital

0 otherwise

8
<

:

Ti
lk

Completion time of ith patient service by kth

machine in lth hospital

Depended variables

Silk 1 if ith patient service transferred to

lth hospital for kth machine

0 otherwise

8
<

:

Cmaxi Completion time of the last patient service i

2.2 The proposed mathematical model

Regarding mentioned assumptions, the proposed mixed

integer nonlinear programming model is as follows.

Objectives

MinCost ¼
Xn

i¼1

Xs

l¼1

Xm

j¼1

cjlmjlZ
i
jl

� �
 

þ
Xn

i¼1

Xs

l¼1

Xm

l0¼1

Xc

k¼1

qll0k W
i
ll0 k

� �
!

Total Costsð Þ

ð1Þ

MinTime ¼
Xn

i¼1

Cmaxið Þ
 !

Completion time of patient treatmentð Þ
ð2Þ

Subject to

Xs

l¼1

Zi
jl � dijL

i
j; 8j 2 J; i 2 I ðCovering constraintÞ ð3Þ

Xm

j¼1

Zi
jl �Ai

lXl; 8l 2 L; i 2 I ðPatient service constraintÞ

ð4Þ
Xc

k¼1

Ylk � cXl; 8l 2 L ðMachines constraintÞ ð5Þ

Xn

i¼1

Xm

j¼1

Zi
jl �MXl; 8l 2 L ðEstablishment constraintÞ

ð6Þ
Xn

i¼1

Xm

l0¼1

Wi
ll0k �MYlk; 8l 2 L; k 2 K

ðTransference constraintÞ
ð7Þ
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Xs

l0¼1

Wi
ll0k ¼

Xn

i¼1

Xm

j¼1

f ikZ
i
jl þ

Xs

l0¼1

Xc

k0¼1

f ik0kW
i
l0lk0 ;

8i 2 I; l 6¼ l0; l 2 L; k 6¼ k0; k 2 K

ð8Þ

Silk �
Xs

l0¼1

Wi
l0lk �MSilk; 8i 2 I; k 2 K; l 6¼ l0; l 2 L ð9Þ

Xs

l¼1

elXl þ
Xn

i¼1

Xs

l¼1

Xm

j¼1

gilZ
i
jl �B1 ðBudget constraintÞ ð10Þ

Xc

k¼1

Xs

l¼1

rlkYlk �B2 ðBudget constraintÞ ð11Þ

Hi
i0lk þ Hi0

ilk ¼ SilkS
i0

lk; 8i 6¼ i0; i& i0 2 I; k 2 K; l 2 L

ð12Þ

Ti0

lk � Ti
lk þM 1� Hi

i0lk

� �� �
� ti0k

Xs

l0¼1

Wi
l0lk;

8i 6¼ i0; i& i0 2 I; j 2 J; l 6¼ l0; k 2 K; l 2 L

ð13Þ

Ti
l0k0 � Ti

lk � nll0 þ tik0
� �

Wi
ll0k0 �M 1� f ikk0 S

i
lkS

i
l0k0

� �
;

8i 2 I; k 6¼ k0; k& k0 2 K; l 6¼ l0; l& l0 2 L
ð14Þ

Cmaxi � Ti
lk �M 1� Silk

� �
; 8i 2 I; k 2 K; l 2 L ð15Þ

Zi
jl;W

i
ll0k;Cmaxi; T

i
lk � 0; Ylk; S

i
lk;Xl;H

i
i0lk ¼ 0 or 1; ð16Þ

where Eqs. (1, 2), the objective functions of the model,

minimize the total costs and the completion time of the

demand, simultaneously. There is the conflict between

the first objective and the second objective, which

means that Eq. (1) tries to minimize the patient cost for

treatment while Eq. (2) seeks to reduce the completion

time of the patient treatment. The second objective

provides a solution including the transfer of patients

from a hospital to another one leading to increase the

patient’s costs. Equation (3) is the lower bound to

cover demand of ith patient service of jth patient

location. Regarding Eq. (4), a hospital to be established

has a lower bound for ith patient service meaning that

constructing lth hospital is not allowable in jth location

that does not have at least Ai
l patient services. The

number of machines is controlled by Eq. (5). M is a

big number in Eqs. (6, 7) to encourage transferring and

assigning more patient services to opened hospitals.

Equations (8, 9) check the number of patients trans-

ferred among hospitals. Equations (10, 11) present an

upper bound to establish hospitals and purchase

machines. According to the scheduling patient services

problem, Eqs. (12–14) check sequencing of patients in

hospitals. Equation (15) determines the completion time

of the last patient service which is equal to the total

time of patient treatment. Equation (16) defines the

type of variables.

2.3 The proposed robust mathematical model

Over the past few years, the robust optimization (RO) has

been used to overcome uncertain situations under real-

world conditions in problems like the layout problem [20],

the bloodmobile routing problems [18], and the hub loca-

tion problems [19]. The RO provides a solution including

the deterministic variability to enable the formulated

problems to be effective against uncertainty [54]. Among

approaches presented in the RO, this paper uses the robust

methodology provided by Bertsimas and Sim [55] to pro-

vide solutions ensuring deterministic and probabilistic

guarantees.

Regarding the budget constraints, the costs of purchas-

ing and installing of machines rlkð Þ, and the fixed and

variable costs of establishing hospitals (el and gil, respec-

tively) are assumed to be uncertain with an ambiguous

distribution. In the RO provided by Bertsimas and Sim

[55], Ji is the set of coefficients aij, j 2 J that are subject to

parameter uncertainty, i.e. ~aij, j 2 J taking values accord-

ing to a symmetric distribution with the mean equals to the

nominal value aijin the interval aij � âij; aij � âij
� �

. Ci is a

parameter taking values in the interval 0; Jij j½ �, adjusting
the robustness against the level of conservatism of the

solution. However, three uncertain parameters of the pro-

posed model in Eqs. (10, 11) (rlk, el, and gil) are

el : el � êln
1
l el þ êln

1
l

� �
ð17Þ

gil : gil � ĝiln
i2
l gil þ ĝiln

i2
l

� �
ð18Þ

rlk : rlk � r̂lkn
3
lk rlk þ r̂lkn

3
lk

� �
ð19Þ

then, the protection function b1 x�ð Þ to the first budget

constraint shown in Eq. (10) is

b1 x�ð Þ ¼ max
Xs

l¼1

Xlêln
1
l þ

Xm

j¼1

Xn

i¼1

Xs

l¼1

Zi
jlĝ

i
ln

i2
l

 !

ð20Þ

s.t,

Xs

l¼1

n1l �C1 ð21Þ

Xs

l¼1

Xn

i¼1

ni2l �C2 ð22Þ

0� n1l � 1; 8l 2 L ð23Þ

0� ni2l � 1; 8l 2 L; i 2 I ð24Þ

As Eq. (20), a Knapsack problem, is bounded and fea-

sible, its dual version is bounded and feasible as well. Thus,

Min ¼ C1Q1 þ C2Q2 þ
Xs

l¼1

Pl þ
Xs

l¼1

Xn

i¼1

Pi2
l ð25Þ
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s.t,

Q1 þ P1
l �Xlêl; 8l 2 L ð26Þ

Q2 þ Pi2
l �

Xm

j¼1

Zi
jlĝ

i
l; 8l 2 L; i 2 I ð27Þ

Q1;Q2;P
i2
l ; and Pi2

l � 0; 8l 2 L; i 2 I ð28Þ

Similarly, to provide a robust optimization for the sec-

ond budget constraint shown in Eq. (11), we have,

Min ¼ C3Q3 þ
Xs

l¼1

Xc

k¼1

P3
lk ð29Þ

s.t,

Q3 þ P3
lk � Ylkr̂lk; 8l 2 L; k 2 K ð30Þ

Q3 and P3
lk � 0; 8l 2 L; k 2 K ð31Þ

Therefore, Eqs. (25–31) are replaced with Eqs. (10, 11)

to provide a robust proposed model.

To recapitulate briefly, this section proposed a bi-ob-

jective covering location-allocation problem with the

uncertain costs, in which patient services were scheduled.

Covering the demand of each service and the hospitals

space to the specialized equipment like CT scan and MRI

machines was limited. The robust optimization is employed

to overcome the uncertainty of costs. The aim of the pro-

posed model, minimizing the total costs and the completion

time of demand (total patient services) simultaneously, is

to provide a near-optimal solution including (1) the number

of hospitals and specialized equipment, (2) the location of

hospitals, (3) the assignment of demand of each service and

specialized equipment to hospitals, (4) the determination of

allowable number of each service of hospitals, (5) the

determination of demand that should be transferred from

one hospital to another (patient transfer), and (6) schedul-

ing patient services. The main contributions of this paper

were presented in the end of Sect. 1.

As the proposed robust model is an NP-hard problem,

exact methods are unable to solve its large-scale version in a

reasonable time. As a result, this paper uses a hybrid algo-

rithm including the SA optimization and the Benders

decomposition while solutions are compared with the lower

and upper bounds presented by the CPLEX solver. Thus, the

next sections present the solution algorithm and results.

3 Solution algorithm: a hybrid SA
and the Benders decomposition algorithm

Over the past few decades, meta-heuristic approaches have

been presented as powerful tools to optimize the complex

problems like NP-hard and NP-complete with regard to the

computational complexity theory. In optimization methods,

meta-heuristic algorithms have presented solutions with

minimal errors compared with the exact methods. However,

the exact methods in discrete programming are unable to

solve large-scale problems, but some methods have been

developed to overcome this fundamental weakness like the

decomposition approaches. Moreover, with the advent and

advancement of modern technology like quantum comput-

ers, decomposition approaches are able to solve problems

not being solved in a reasonable time before. Note that the

acceptability of meta-heuristic approaches is not weakened

as they use the same computers as well.

The proposed problem, a bi-objective model, combines

two important problems in the operation research called the

covering location-allocation problem and the scheduling

problem while there are several constraints on it. The

proposed model is an NP-hard problem and being unable to

be solved with exact methods or complete enumeration

algorithms like branch and bound. This paper proposes a

hybrid algorithm including the SA and the Benders

decomposition. The Benders decomposition reduces the

complexity of the proposed model. Solutions obtained by

the proposed hybrid algorithm are compared with CPLEX

solver. The proposed hybrid algorithm decomposes the

presented model into two main models solved by SA and

the Benders decomposition, respectively.

As the presented model has two conflictive objectives

[Eqs. (1, 2)] unable to be optimized separately, the linear

scalarization [56], sometimes called the weighted sum

method, is employed to solve in which one scalar objective

(F) [Eq. (32)] is obtained by merging the two weighted

objective functions,

MinF ¼ x1 Costþ x2 Time ð32Þ

where x1 and x2 are weighting coefficients for decision

makers. Note that this paper uses an equal weight of

x1 = x2 = 0.5 for each objective function.

However, the proposed methodology for solving the

presented model in this paper is illustrated graphically after

a brief description about SA and Benders decomposition.

3.1 Benders decomposition

The Benders method [57] decomposes a hard mathematical

model into the master problem and the subproblem

rewritten the dual version, and then it tries to optimize

them to find the optimal solution as follows.

1. Calculate the lower bound by solving the master

problem including one or more variables (here Hi
i0lk);

2. Obtain the optimality cut for adding to the master

problem by inserting obtained variables in step (1)

(here Hi
i0lk) into dual subproblem;
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3. Calculate the upper bound by summing the function

objective 1 and 2;

4. Checking the stopping criterion with the sum of the

lower and the upper bounds, which means that going to

step (1) if the stopping criterion is not satisfied.

3.2 Simulated annealing (SA) optimization

Meta-heuristic algorithms are classified into two groups

according to their search policy which are single-based

search like the Tabu search [27] and the SA [58], and

population-based search like the genetic algorithm [26], the

particle swarm optimization [59], and the harmony search

[31]. Employing meta-heuristic algorithm depends on the

type of problems. As the proposed solution methodology

presents one point to start optimizing the proposed model,

this paper employs the SA to find the near-optimal solution

in the proposed hybrid algorithm.

Regarding statistical mechanics called the Metropolis

algorithm, the SA is developed [60]. Kirkpatrick et al. [61]

and Černý [62] proposed the first version of SA indepen-

dently. A method including heating and controlled cooling

of a material to make a strong crystalline structure called

the annealing process in metallurgy inspired researchers to

develop SA algorithms. Cooling slowly a high-temperature

material leads to a strong crystal. The SA imitates these

energy changes to solve the models.

To begin the SA, an initial solution is presented ran-

domly after defining the temperature parameter

(T = 1000, reduced slowly in every iteration), and then the

following cycle is repeated (here It = 10,000) until the

termination criterion is obtained.

Regarding an initial solution (sol), the operators, called

insertion, reversion, and swap [58] first create a random

neighbor (sol
0
) while their cost functions, f(sol), and f(sol

0
),

are calculated. In minimization problems, a random

neighbor, sol
0
, is accepted as a new solution if f(sol

0
) -

B f(sol); otherwise, sol
0
can be accepted with the proba-

bility of P based on the Boltzmann distribution shown in

Eq. (33) [61].

p ¼ exp � f ðsol0Þ � f ðsolÞð Þ=Tð Þ ð33Þ

Note that this paper uses a trial and error method to

calibrate and tune the parameters of the SA.

3.3 CPLEX

To employ IBM ILOG CPLEX optimizer, constraints

shown in Eqs. (12) and (14) should be rewritten in linear

formation as,

Hi
i0lk þ Hi0

ilk ¼ S0ii0lk; 8i 6¼ i0; i& i0 2 I; k 2 K; l 2 L ð34Þ

Silk þ Si
0

lk � 1� S0ii0lk; 8i 6¼ i0; i& i0 2 I; k 2 K; l 2 L ð35Þ

2S0ii0lk � Silk þ Si
0

lk; 8i 6¼ i0; i& i0 2 I; k 2 K; l 2 L ð36Þ

Ti
l0k0 � Ti

lk � nll0 þ tik0
� �

Wi
ll0k0 �M 1� f ikk0S

i
lkl0k0

� �
;

8i 2 I; k 6¼ k0; k& k0 2 K; l 6¼ l0; l& l0 2 L
ð37Þ

Silk þ Sil0k0 � 1� Silkl0k0 ;
8i 2 I; k 6¼ k0; k& k0 2 K; l 6¼ l0; l& l0 2 L

ð38Þ

2Silkl0k0 � Silk þ Sil0k0 ;
8i 2 I; k 6¼ k0; k& k0 2 K; l 6¼ l0; l& l0 2 L

ð39Þ

3.4 The proposed hybrid algorithm including SA

and Benders decomposition

In the proposed hybrid algorithm, the formulated model is

divided into two parts solved by the SA and the Benders

decomposition, respectively. In brief, considering the near-

optimal value of decision variables, the Benders decom-

position finds Hi
i0lk and Ti

lk when the SA determines

Zi
jl;W

i
ll0k; Ylk; and Xl shown in Fig. 1. The proposed algo-

rithm includes several steps illustrated as follows.Step 1

After tuning parameters of SA (iteration = 1000 and

T = 30,000), the SA solves the following model shown in

Eqs. (40–50) derived from the proposed model to deter-

mine Zi
jl;W

i
ll0k; Ylk; and Xl variables.

MinCost ¼
Xn

i¼1

Xs

l¼1

Xm

j¼1

cjlmjlZ
i
jl

� �
þ
Xn

i¼1

Xs

l¼1

Xm

l0¼1

Xc

k¼1

qll0kW
i
ll0k

� �
 !

TotalCostsð Þ
ð40Þ

Subject to

Xs

l¼1

Zi
jl � dijL

i
j; 8j 2 J; i 2 I ðCovering constraintÞ

ð41Þ
Xm

j¼1

Zi
jl �Ai

lXl; 8l 2 L; i 2 I ðPatient service constraintÞ

ð42Þ

, ,

i
jl

i
ll k lk l

Z
W Y X′

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

Fig. 1 Solution representation

for SA
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Xc

k¼1

Ylk � cXl; 8l 2 L ðMachines constraintÞ ð43Þ

Xn

i¼1

Xm

j¼1

Zi
jl �MXl; 8l 2 L ðEstablishment constraintÞ

ð44Þ
Xn

i¼1

Xm

l0¼1

Wi
ll0k �MYlk; 8l 2 L; k 2 K

ðTransference constraintÞ
ð45Þ

Xs

l0¼1

Wi
ll0k ¼

Xn

i¼1

Xm

j¼1

f ikZ
i
jl þ

Xs

l0¼1

Xc

k0¼1

f ik0kW
i
l0lk0 ;

8i 2 I; l 6¼ l0; l 2 L; k 6¼ k0; k 2 K

ð46Þ

Silk �
Xs

l0¼1

Wi
l0lk �MSilk; 8i 2 I; k 2 K; l 6¼ l0; l 2 L ð47Þ

Xs

l¼1

elXl þ
Xn

i¼1

Xs

l¼1

Xm

j¼1

gilZ
i
jl �B1 ðBudget constraintÞ

ð48Þ
Xc

k¼1

Xs

l¼1

rlkYlk �B2 ðBudget constraintÞ ð49Þ

Zi
jl;W

i
ll0k � 0; Ylk; S

i
lk;Xl ¼ 0 or 1; ð50Þ

Step 2 By getting the near-optimal values of Zi
jl;W

i
ll0k; Ylk;

and Xl variables by the SA in Step 1, the Benders

decomposition method tries to determine Hi
i0lk and Ti

lk to

optimize the following model shown in Eqs. (51–56).

Min Time ¼
Xn

i¼1

Cmaxið Þ
 !

Completion time of patient treatmentð Þ
ð51Þ

Subject to

Hi
i0lk þ Hi0

ilk ¼ SilkS
i0

lk; 8i 6¼ i0; i& i0 2 I; k 2 K; l 2 L

ð52Þ

Ti0

lk � Ti
lk þM 1� Hi

i0lk

� �� �
� ti0k

Xs

l0¼1

Wi
l0lk;

8i 6¼ i0; i& i0 2 I; j 2 J; l 6¼ l0; k 2 K; l 2 L

ð53Þ

Ti
l0k0 � Ti

lk � nll0 þ tik0
� �

Wi
ll0k0 �M 1� f ikk0S

i
lkS

i
l0k0

� �
;

8i 2 I; k 6¼ k0; k& k0 2 K; l 6¼ l0; l& l0 2 L
ð54Þ

Cmaxi � Ti
lk �M 1� Silk

� �
; 8i 2 I; k 2 K; l 2 L ð55Þ

Cmaxi;T
i
lk � 0;Hi

i0lk ¼ 0 or 1; ð56Þ

The master problem in the Benders terminology is,

Min Z

Subject to:

Z�
Xs

j¼1

Xc

k¼1

Xs

l¼1

Xn

i0¼1

Xn

i¼1

Ui
i0lkt

i
kH

i
i0lkW

i
jlk

þ
Xc

k¼1

Xs

l¼1

Xs

j¼1

Xn

i¼1

U0i
lkS

i
lkW

i
jlkðnjl þ tikÞ

þ
Xc

k0¼1

Xc

k¼1

Xs

l0¼1

Xs

l¼1

Xn

i¼1

Vi
lkl0k0 f

i
kk0S

i
lkS

i
l0k0W

i
ll0k0 ðnll0 þ tik0 Þ

þ
Xc

k¼1

Xs

l¼1

Xn

i¼1

V 0i
lkðSilk � 1Þ ð57Þ

Hi
i0lk ¼ 0 or 1 8i; i0 2 I; l 2 L; k 2 K ð58Þ

And the dual subproblem (DSP) can be written as,

MaxDSP ¼
Xc

k¼1

Xs

l¼1

Xs

j¼1

Xn

i0¼1

Xn

i¼1

Ui
i0lkt

i
kH

i
i0lkW

i
jlk

þ
Xc

k¼1

Xs

l¼1

Xs

j¼1

Xn

i¼1

U0i
lkS

i
lkW

i
jlkðnjl þ tikÞ

þ
Xc

k0¼1

Xc

k¼1

Xs

l0¼1

Xs

l¼1

Xn

i¼1

Vi
lkl0k0 f

i
kk0S

i
lkS

i
l0k0W

i
ll0k0 ðnll0 þ tik0 Þ

þ
Xc

k¼1

Xs

l¼1

Xn

i¼1

V 0i
lkðSilk � 1Þ ð59Þ

Subject to:

Xn

i0¼1

ðUi
i0lk�Hi0

ilkU
i0

ilkÞ þ
Xc

k0¼1

Xs

l0¼1

ðVi
lkl0k0 � f ik0kS

i
lkS

i
l0k0V

i
l0k0lkÞ

þ U0i
lk � SilkV

0i
lk � 0; 8i 2 I; l 2 L; k 2 K ð60Þ

Xc

k¼1

Xs

l¼1

Xn

i¼1

V 0i
lk � 1 ð61Þ

Ui
i0lk;U

0i
lk;V

i
lkl0k0 ;V

0i
lk � 0 8i; i0 2 I; l; l0 2 L; k:k0 2 K ð62Þ

Note that the Benders decomposition method described

in Sect. 3.1 solves the master problem and the dual sub-

problem with the IBM ILOG CPLEX Optimizer due to

reduction of the model complexity.

Step 3 Repeat Steps 1 and 2 for 1000 iteration while T is

reduced slowly in every iteration.

4 Results

Regarding nine examples in Table 2, in this section, the

optimal results provided by the proposed hybrid algorithm,

including the SA and the Benders decomposition, are

compared with the exact method and a standard version of

SA. Table 2 shows the summarized results. From Table 2,

it can be concluded that the proposed hybrid algorithm has
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the better performance than the standard SA. In this paper,

the approach used in the proposed algorithm, called the

Benders decomposition, helps to algorithm to reduce the

complexity of the proposed model which is an NP-hard

problem. In comparison with the standard SA, the proposed

hybrid algorithm presents the near-optimal solutions with

51 % reduction in CPU time computation (Fig. 2); more-

over, the results are improved 20 % at the same way

(Fig. 3). The main reason to describe these improvements

of the proposed hybrid algorithm than the standard SA is to

employ the Benders decomposition method facilitating

optimization of NP-hard problems.

To verify and validate the solutions provided by the

proposed hybrid algorithm, this paper employs IBM ILOG

CPLEX optimizer. The lower and upper bounds obtained

by CPLEX verifies the performance of proposed hybrid

algorithm for optimizing the presented model, the mixed

integer programming problem. As NP-hard problems are

unable to be solved by exact methods, CPLEX optimizer

can solve only the first four examples so that solving 5th

example is stopped in 7200th second to take the upper

bound. Moreover, CPLEX optimizer is unable to solve the

examples bigger that 8th example and provide a feasible

solution. Regarding the results shown in Table 2 and the

boxplot in Fig. 4, the proposed hybrid algorithm provides

the better results than CPLEX optimizer for large-scale

problems so that optimizing the presented model faster

(28 %), accurate (10 %), and less GAP than it. The sta-

tistical test verifies the performance of the proposed hybrid

algorithm to present the accurate solutions

(P value = 0.006\ 0.05 in Table 3).

Note that all algorithms are coded by C# and IBM ILOG

in Win8 environment with a PC with core i7 1.7 GHz,

8 GB RAM DDR3.

In the next subsection, the behavior of proposed robust

model is investigated to uncertain conditions.

Table 2 Comparisons of algorithm solutions

Test problems The proposed hybrid

algorithm

The standard SA CPLEX as an exact method

Examples Number of parameters

(k–m–n)

Obj.

fun.

GAP

%

Time

(s)

Obj.

fun.

GAP % Time

(s)

Lower

bound

Upper

bound

GAP % Time

(s)

1 4–3–4 19,301 1 3 26,981 42 535 18,967 18,967 0 9.53

2 4–4–6 30,720 8 3 37,302 32 679 28,230 28,230 0 596

3 5–4–4 17,500 3 4 23,690 40 689 16,880 16,880 0 1600

4 5–5–6 15,055 7 38 21,574 55 161 13,958 13,958 0 7150

5 5–4–9 17,379 18 80 23,114 57 965 14,726 25,924 76 7200

6 6–6–9 24,513 12 150 31,279 43 1013 21,805 40,689 86 7200

7 10–8–12 43,089 15 890 47,932 28 1068 37,385 71,975 95 7200

8 10–12–16 35,262 11 1050 42,799 35 1681 31,726 62,230 94 7200

9 12–14–16 32,512 2970 37,706 3865 – – – –

Average 235,331 37 5188 292,377 332 10,656 183,677 278,853 351 38,156

Obj. Fun. is the results obtained by Eq. (32)

Fig. 2 Comparisons of CPU time Fig. 3 Comparisons of CPU time
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4.1 Considering the robust proposed model

To overcome uncertain situations under real-world condi-

tions, robust optimization (RO) has been employed to

provide the solution including the deterministic variability.

Regarding the budget constraints, the costs of purchasing

and installing of machines (rlk), and the fixed and variable

costs of establishing hospitals (el and gil, respectively) are

assumed to be uncertain with an ambiguous distribution.

To test and verify the proposed robust model against of

uncertain situations, this subsection performs the sensitiv-

ity analysis on protection levels of Ci with respect to

solving 200 instances.

Regarding the first example (k–m–n = 4–3–4), the

uncertain data are chosen from interval set so that el, g
i
l,

and rlk are assumed to have 30 % variability of their

original value. To begin, the protection level of rlkðC1Þ can
be set between 0 and 12 indicating the certain circumstance

and Soyster method [57], respectively. This paper gener-

ates 200 instances for the different values of C1, and then

solves the proposed model. Then, the Monte Carlo simu-

lation is used to analyze the quality and the robustness of

solutions under uncertain situations.

In Table 4 showing the results, Pq is the probability of

obtaining a better solution by Monte Carlo simulation than

the robust solution. The more Pq is obtained, the less the

robust solution has the quality. Pi is the percent of increase

in results provided by the proposed robust model than the

certain model shown in Eqs. (1–16). Pv is the probability of

constraint violation which is robustness of the solution.

Figure 5 shows the robustness of the proposed model,

and Fig. 6 presents the quality of the solution with regard

to different values of C1. From Figs. 5, 6, it can be con-

cluded that the increase in the protection raises the

robustness of the solutions while the quality of near-opti-

mal solutions is decreased.

Fig. 4 Boxplot of the proposed hybrid algorithm and CPLEX

Table 3 T test for the proposed hybrid algorithm and CPLEX

N Mean SD SE mean

The proposed hybrid algorithm 8 25,352 10,073 3561

CPLEX 8 22,960 8584 3035

Difference 8 2393 1753 620

95 % CI for mean difference: (927, 3858)

T test of mean difference = 0; P value = 0.006

Table 4 Sensitivity analysis on protection level of C1, rlk

C1 Obj. Fun. Eq. (32) Pq % Pi % Pv %

0 18,967.12 0 0.00 99.98

1 19,138.37 16 0.89 50

2 19,738.49 38 4.03 38.72

3 20,365.12 56 7.30 29.05

4 20,657.14 72 8.83 19.38

5 20,661.16 74 8.85 13.34

6 20,662.24 76 8.86 7.30

7 20,664.26 77 8.87 4.61

8 20,666.27 81 8.88 1.93

9 20,667.30 89 8.88 1.12

10 20,667.33 89 8.88 0.32

11 20,667.33 89 8.88 0.17

12 20,667.38 100 8.88 0.00

Fig. 5 Robustness of solutions for rlk

Fig. 6 Quality of solutions for rlk
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Regarding Table 4, there is not the considerable varia-

tion in the near-optimal solutions for the protection levels

of 6 to 12. Therefore, to have the probability of violation

less than 10 %, the amount of C1 should be set 6 while the

quality of solutions is reduced 24 %; moreover, the

objective function is raising 8.8 %.

The second part of sensitivity analysis is to consider

el(C2) and gilðC3Þ with the variation of [0 3] and [0 6],

respectively. Table 5 presents the results of the robust

solutions for the fixed and variable costs of establishing

hospitals.

Figure 7 shows the robustness of the proposed model,

and Fig. 8 presents the quality of the solution with regard

to different values of C2 and C2. Similar to Figs. 5, 6, 7 and

8 show that the protection levels and the robustness of the

solutions are increased while the quality of near-optimal

solutions is decreased.

For example, to have the high quality of near-optimal

solutions like 80 %, the protection levels should be C2 = 0

and C3 = 3 while the probability of violation more than

90 % is inevitable. Similarly, to have the increase of less

than 10 %, C2 = 1 and C3 = 2, the probability of violation

will be 60 %.

With regard to Table 5 and Fig. 8, the quality of near-

optimal solutions is reduced after C2 = 2 and C3 = 3

which are an upper bound to the quality. Regarding

Table 5, if C2 = 2 and C3 = 3, the probability of violation

will be less than 10 % while the quality of solutions is

reduced. The objective function is raising 22 % as well.

From the sensitivity analysis on the protection level of

Ci, it can be concluded that the variation in the fixed and

variable costs of establishing hospitals increases more costs

(22 % compared to 8.8 %) to the objective function than

the variation in the costs of purchasing and installing of

machines.

5 Conclusion and the future research

In healthcare systems, the hospital location and the service

allocation play an important role in the total costs. This

paper developed a bi-objective hybrid model including

location-allocation and scheduling problems while cover-

ing the demand of each service was limited. To near real-

world conditions for overcoming uncertain situations, the

budget including the costs of purchasing and installing of

Table 5 Sensitivity analysis on the protection level of C2 and C3, (el
and gil)

C2 C3 Obj. Fun. Eq. (32) Pq % Pi % Pv %

0 0 18,967.13 0 0.0 99.8

0 1 18,967.15 2 0.0 93.8

0 2 18,967.15 4 0.0 91.8

0 3 19,126.17 17 5.8 90.3

0 4 20,126.34 22 5.9 88.9

0 5 20,126.83 22 5.8 88.3

0 6 20,165.16 22 5.9 87.5

1 0 18,968.15 17 0.0 99.2

1 1 20,050.55 22 5.4 75

1 2 21,050.64 27 9.9 67.2

1 3 21,050.75 27 9.9 61.3

1 4 22,038.65 45 13.9 55.5

1 5 22,039.45 45 13.9 53.1

1 6 22,050.06 45 14.0 50

2 0 20,286.30 22 6.5 98.9

2 1 20,358.55 22 6.8 65.6

2 2 21,051.96 27 9.9 54.9

2 3 21,850.56 38 13.2 46.8

2 4 24,040.04 86 21.1 38.8

2 5 24,041.82 86 21.1 35.5

2 6 24,041.83 86 21.1 31.3

3 0 22,286.30 48 14.9 98.4

3 1 23,358.55 72 18.8 50

3 2 24,350.02 98 22.1 34.4

3 3 24,350.54 99 22.1 22.7

3 4 24,350.78 99 22.1 10.9

3 5 24,350.90 100 22.1 6.3

3 6 24,350.94 100.0 % 22.1 0

Fig. 7 Robustness of solutions for el and gil

Fig. 8 Quality of solutions for el and gil
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machines and establishing hospitals was assumed to be

uncertain with an ambiguous distribution. The robust

counterpart model, the robust optimization, was employed

to solve the proposed uncertain model locating hospitals

and allocating machines and services scheduled. In addi-

tion, the specialized equipment like CT scan and MRI

machines had a limited space to install while there was a

cost constraint on hospitals and specialized equipment. It

was also assumed that there were certain disease types like

heart, brain, eye, and cancer. The purpose of optimizing the

proposed model was to find a near-optimal solution

including the location of hospitals, the number of hospitals

and specialized equipment, the determination of allowable

number of each service of hospitals, the assignment of

demand of each service and specialized equipment to

hospitals, the determination of demand that should be

transferred from one hospital to another (patient transfer),

and schedule services.

As the proposed mixed integer programming problem,

minimizing the total costs and the completion time of the

demand simultaneously, was an NP-hard problem, the

exact method was unable to solve its large-scale version.

Thus, the hybrid meta-heuristic optimization, a hybrid

algorithm including the simulated annealing (SA) opti-

mization and the Benders decomposition, was employed to

solve the proposed model. Regarding lower bound and

upper bound, the proposed hybrid algorithm was verified

by CPLEX optimizer to present near-optimal solutions.

Moreover, results were compared with a standard version

of SA. The results showed that the proposed hybrid algo-

rithm presented the better solutions than CPLEX optimizer

and the standard SA in less time. Moreover, the results

showed that the uncertainty used in the proposed model

properly formulated real-world situations compared to the

deterministic case. The main reason to describe these

improvements of the proposed hybrid algorithm was to

employ the Benders decomposition method facilitating

optimization of NP-hard problems. The sensitivity analysis

was performed to verify the proposed robust model against

of uncertain situations while the Monte Carlo simulation

was used to analyze the quality and the robustness of

solutions under uncertain situations.

The main contribution of this paper was twofold. First, in

the proposed mathematical model, innovations were to con-

sider the uncertain budget and employ the robust optimization

to overcome it, formulate the second objective minimizing the

completion time of the total patient services (group schedul-

ing), and develop a hybrid model including the covering

location-allocation and scheduling problems. Second, in the

solution algorithm, this paper proposed a hybrid algorithm

including the SA optimization and the Benders decomposi-

tion. Finally, this paper can be extended as follows.

• Employing other meta-heuristics, population-based

search algorithms, to compare the proposed hybrid

algorithm.

• Using Taguchi method to calibrate parameters of

algorithms.

• Utilizing the Pareto-optimal solution to the bi-objective

model.

• Considering the fuzzy number to parameters to simu-

late more uncertainties.

• Investigating the queuing theory to minimize average

waiting time of demands in the queue.
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62. Černý V (1985) Thermodynamical approach to the traveling

salesman problem: an efficient simulation algorithm. J Optim

Theory Appl 45:41–51

886 Neural Comput & Applic (2018) 29:873–886

123


	A Benders decomposition for the location-allocation and scheduling model in a healthcare system regarding robust optimization
	Abstract
	Introduction
	A bi-objective covering location-allocation and scheduling model
	Notations and assumptions
	The proposed mathematical model
	The proposed robust mathematical model

	Solution algorithm: a hybrid SA and the Benders decomposition algorithm
	Benders decomposition
	Simulated annealing (SA) optimization
	CPLEX
	The proposed hybrid algorithm including SA and Benders decomposition

	Results
	Considering the robust proposed model

	Conclusion and the future research
	Acknowledgments
	References




