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Abstract Air overpressure is one of the most undesirable

destructive effects induced by blasting operation. Hence, a

precise prediction of AOp has vital importance to minimize

or reduce the environmental effects. This paper presents the

development of two artificial intelligence techniques,

namely artificial neural network (ANN) and ANN based on

genetic algorithm (GA) for prediction of AOp. For this

purpose, a database was compiled from 97 blasting events

in a granite quarry in Penang, Malaysia. The values of

maximum charge per delay and the distance from the blast-

face were set as model inputs to predict AOp. To verify the

quality and reliability of the ANN and GA-ANN models,

several statistical functions, i.e., root means square error

(RMSE), coefficient of determination (R2) and variance

account for (VAF) were calculated. Based on the obtained

results, the GA-ANN model is found to be better than ANN

model in estimating AOp induced by blasting. Considering

only testing datasets, values of 0.965, 0.857, 0.77 and 0.82

for R2, 96.380, 84.257, 70.07 and 78.06 for VAF, and

0.049, 0.117, 8.62 and 6.54 for RMSE were obtained for

GA-ANN, ANN, USBM and MLR models, respectively,

which prove superiority of the GA-ANN in AOp predic-

tion. It can be concluded that GA-ANN model can perform

better compared to other implemented models in predicting

AOp.

Keywords Blast-induced air overpressure � ANN � GA �
GA-ANN

1 Introduction

Blasting is one of the most important operations in open-

cast mines, civil and tunneling projects. The main goal of

the blasting operation is rock fragmentation. Nevertheless,

more than 85 % of energy released by blasting dissipates
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through the ground and leads to some undesirable effects,

such as ground vibration, air overpressure (AOp) and fly-

rock [1–3]. As AOp is recognized/identified as a significant

environmental issue, precise prediction of AOp is impor-

tant to reduce/minimize the detrimental effects of blasting

operations. In a blast, the pressure wave that causes AOp is

generated by the displacement of air as a result of the

movement of the rock from the face [4].

As highlighted in some studies, the level of AOp

depends on different parameters divided into two main sets,

i.e., controllable and uncontrollable (e.g., [5–7]). Control-

lable parameters, such as type of explosive material, total

weight charge, maximum charge weight used per delay

(MC), blast-hole diameter and depth, distance from the

blast-face (DI), powder factor, delay interval in rows,

burden, spacing, stemming and sub-drilling, can be chan-

ged by the blasting engineers, However, uncontrollable

parameters, like rock mass properties, are out of control of

blasting engineers. As mentioned by many researchers

[5, 8], MC and DI are the most important factors effecting

AOp. In the literature, it is tried to predict AOp using

empirical models [9–13]. One of the most common

empirical models is presented by the United States Bureau

of Mines (USBM) [9]. The USBM equation has been

extensively used as a generalized predictor equation for the

prediction of AOp [5, 6, 8].

AOp ¼ K � DI

MC0:33

� �n

ð1Þ

where MC and DI are maximum charge weight used per

delay and distance from the blast-face in terms of kg and

m, respectively. Moreover, K and n are site constant and

can be calculated by regression analysis. As an example,

Mohamad et al. [14] employed USBM model for AOp

prediction in a quarry site, Malaysia.

Apart from empirical methods, the use of artificial

intelligence (AI) methods for AOp prediction has recently

been highlighted by various researchers. As AI methods

demonstrate superior prediction ability/capability com-

pared to empirical models, these methods have been widely

used for problem solving in geotechnical and rock engi-

neering fields [15–20].

ANN was proposed to predict AOp in the study con-

ducted by Sawmliana et al. [21]. To test the ANN model,

USBM empirical model was also utilized. In their study,

datasets were collected from four different mines in India.

Finally, they found that ANN model can predict AOp better

than USBM models. Khandelwal and Kankar [6] proposed

support vector machine (SVM) and empirical models for

prediction of AOp. They used 75 datasets to construct the

proposed models. They demonstrated that SVM can be

performed for AOp prediction with a greater degree of

confidence in comparison with empirical model. In the

other study of AI methods, Mohamed [22] investigated the

results of blast-induced AOp at Assiut Cement Company

(ACC) plant and quarries, Egypt. They developed fuzzy

logic, ANN and empirical models for AOp prediction.

According to their result, fuzzy logic and ANN can esti-

mate AOp with higher level of accuracy in comparison

with empirical models. A comprehensive study to predict

AOp in Miduk copper mine, Iran, was presented by

Hasanipanah et al. [23] using empirical, fuzzy inference

system (FIS), ANN, and adoptive neuro-fuzzy inference

system (ANFIS) models. They concluded that the perfor-

mance of ANFIS is better compared to other proposed

models in this field.

In the recent years, genetic programming (GP) and gene

expression programming (GEP) techniques have been

examined for estimating the blasting side effects. Dindar-

loo [2] employed GEP and ANN methods to estimate blast-

induced ground vibration. In his study, the blast-hole

diameter, No. of holes, hole depth, burden, spacing,

stemming, maximum charge per delay, horizontal distance

and radial distance were utilized as the model inputs. The

results showed that GEP can be introduced as a reliable

tool to predict blast-induced ground vibration and its

results were more precise than ANN model. In the other

study, GEP was used to predict peak particle velocity by

Shirani Faradonbeh et al. [3]. They used nonlinear multiple

regression (NLMR) to check the performance of the GEP.

Finally, it was demonstrated that the GEP is more suit-

able for peak particle velocity estimation in comparison to

the NLMR model.

Although ANN is a powerful tool for approximating

many engineering problems, it has some drawbacks such

as slow learning rate and getting trapped in local minima

(e.g., [24, 25]). To overcome these difficulties, evolu-

tionary algorithms (EA) such as imperialist competitive

algorithm (ICA), particle swarm optimization (PSO) and

genetic algorithm (GA) can be used to optimize weights

and biases of ANN. For instance, ICA was used to opti-

mize the ANN in the study conducted by Jahed Arma-

ghani et al. [13]. They showed that the performance

prediction of ICA-ANN model was better than ANN.

Among the mentioned EAs, GA is the one which has

been widely studied and applied to solve geotechnical

engineering problems [14, 19, 25]. Therefore, in the

present study, ANN and a hybrid ANN-GA are used to

develop an accurate and applicable model for predicting

the AOp values gathered from a granite quarry in Penang,

Malaysia. In fact, the GA algorithm is used to optimize

the weights of ANN.
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2 Materials and methods

2.1 Artificial neural network

Artificial neural network (ANN) imitates the process of

transferring information in the human brain. ANN is gen-

erally a function approximation tool that is applicable in

the situations in which the contact nature between out-

put(s) and input(s) is complicated and nonlinear [26].

Among ANN types, the most widely employed is multi-

layer feed forward ANN that consists of a number of layers

(output layers, hidden layers, and input layers). Three are a

connection between these layers through several hidden

nodes via various connection weights [27]. For the

achievement of a pleasing outcome, some learning algo-

rithms should be used to train ANNs. There are many types

of learning algorithms; among them, back-propagation

(BP) algorithm is the most commonly used one [28]. The

basis of BP is a gradient descendent optimization proce-

dure, where often there is a minimized root mean squared

error (RMSE) between the desired and predicted values.

RMSE is generally described as the average root mean

squared error between the desired and predicted outputs.

Essentially, the input layer, in BP ANN, receives raw data,

and then it passes the data to the hidden nodes via the

connection weights. Each hidden node’s output is identified

after performing a transfer function, commonly the sig-

moidal function, to the hidden node’s net input. Each

hidden node’s net input is formed by addition of the con-

nection weights received by the node to the bias (a

threshold value). For other layers and hidden nodes, a

parallel process continues till the output is produced. Then,

the error is calculated through making a comparison

between the generated output (predicted output) and the

desired output (targets). In cases where RMSE is less than

the calculated error, the network must back-propagate and

adjust the connection weights till it can meet the stopping

criteria.

2.2 Genetic algorithm (GA)

Genetic algorithm (GA) which was introduced by Holland

[29] can be employed as a technique for stochastic search

and optimization [14]. GA imitates the evolution process of

biological species and the mechanism of natural selection

[14]. The stochastic optimization is referred to a technique,

wherein solution space is searched by producing potential

solutions through a random number generator. For the

purpose of advancement, GA only should evaluate the

value of objective function in case of each decision vari-

able. The reason is that GA needs no definite information

to guide the search [30]. However, similar to other artificial

intelligence (AI) techniques, GA is not able to ensure

constant times for the optimization response. Furthermore,

the difference between the longest and the shortest time of

response for the optimization is larger in comparison with

that of the traditional gradient methods. As a result, GA is

limited to being used in real-time application [31].

GA comprises individuals who are candidate solutions

that mature steadily in a way to be converged to an optimal

solution. There are two terms in GA: the population size

that is the total number of solutions and generation that

refers to each iteration of the optimization process. Ter-

mination of the optimization process in GA is done by the

definition of some stopping criteria, e.g., meeting the

desired fitness or achieving the maximum number of

generations.

In GA, reproduction, cross-over, and mutation are three

basic genetic operators that should be performed to form

the next generation. Through the reproduction operator, the

best chromosomes are chosen, on the basis of their scaled

values regarding the given criteria of fitness, and then the

chosen chromosomes are transferred directly to the next

generation. In the cross-over operator, offspring (i.e., new

individuals) are created by the combination of definite parts

of the individuals (parent). This operator is of several

types; two of them are two-point cross-over and single-

point cross-over. Through the cross-over procedure, the

algorithm selects two parents and a random cross-over

point. Then, an inverse process needs to be done for the

formation of the second offspring [24]. Through the

mutation operator, a random change is appeared in a

chromosome’s elements (allele). In the binary system,

mutation refers to flipping a bit’s values where 0 becomes 1

and 1 becomes 0. Those small random changes occurred in

a chromosome’s allele cause genetic diversity and make

GA capable of searching a wider space.

2.3 Hybrid GA-based ANN

Literature suggests that GA can efficiently increase the

ANN performance and minimize its drawbacks as well

[32–35]. According to Chambers [36], the most consider-

able benefit of GA is its capability in avoiding being

trapped in local optima, and using GA or a hybrid GA

offers the chance of freely selecting the most suitable ob-

jective functions.

Owing to the multidirectional search in GA, the ANN

models can be converted to a global minimum, hence

improving the ANNs’ prediction capability [37]. In fact, an

ANN model that is based on GA is trained with GA

algorithm rather than the BP algorithm. Therefore, instead

of random generation, the biases and network connection

weights are optimized using GA. Algorithm of a combi-

nation GA-ANN model is shown in Fig. 1. For better

understanding of GA incorporated in ANN, it is
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recommended to find more related studies in the literature

(e.g., [25, 33, 38, 39]).

3 Study area and data collection

The purpose of this research is to predict precisely the

blast-induced AOp at a granite quarry in Penang state,

Malaysia (see Fig. 2). The mentioned site is coated by two

main granite pluton, including Pluton Penang south and

north. Generally, granite is the main rock type observed in

the studied site. In the north Pluton Penang, granite Tan-

jung Bunga, granite Feringgi and mikrogranit are three

main units. While, muscovite-biotite granite is the main

unit in the south Pluton Penang. Weathering zones of III,

IV and V with strength range of (50–70 MPa) were

observed in the studied site. Rock mass rating (RMR)

ranging from 40 to 65 was observed generally in different

places of the studied site. Moreover, mean values of 0.5

and 1.5 m were measured for joint spacing and joint trace

length, respectively.

The aim of the blasting operation in these sites is to

produce aggregates for various construction works with

capacity range of 500,000–700,000 tons per year. Ammo-

nium nitrate fuel oil (ANFO), dynamite, and fine gravel

were used as the main explosive material, initiation and

stemming material, respectively. In the drilling process, the

blast-holes diameters were 76 and 89 mm.

In the considered blasting events in these sites, some of

the controllable blasting parameters, including spacing,

total charge, MC, stemming, blast-hole diameter, burden,

blast-hole depth, number of blast-hole, powder factor and

DI, were measured. Additionally, Vibra ZEB seismograph

was installed to measure the AOp values. The minimum

distance between blast points and surrounding residential

area was 400 m. Hence, the distances between the blast

Fig. 1 Combination of GA-

ANN [39]

Fig. 2 A view of study area
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points and utilized seismograph were ranging from 250 to

579 m. It is worth noting that all AOp values were recorded

in front of the quarry bench and approximately perpen-

dicular to it. In total, more than 120 blasting operations

were investigated and several outlier data were removed to

establish a good database consisting of 97 datasets before

performing the analyses.

To propose a predictive model for prediction of AOp, a

suitable database with the most effective model inputs is

required. For this purpose, most of the previous investi-

gations into the field of AOp prediction were reviewed

[5, 6, 9–11, 22, 40, 41] and it was found that the factors

with the deepest impact on AOp are MC and DI. Hence,

they were selected as model inputs to estimate AOp values.

Table 1 summarizes the range of measured parameters to

predict AOp in this study. In addition, Fig. 3 shows the

graphical summary of input and output data utilized for this

research. In the following section, an attempt is conducted

to predict AOp proposing both ANN and GA-ANN models.

4 Model development for AOp estimation

4.1 ANN

This part describes modeling procedure of ANN technique

in approximating air overpressure resulting from blasting.

As an initial stage, as stated by Khamesi et al. [42], the

prepared database should be normalized to make the

analysis easier. Normalization can be performed using the

following formula:

Xnorm ¼ X�Xminð Þ= Xmax � Xminð Þ ð2Þ

where X and Xnorm are the measured and normalized val-

ues, respectively. Xmax and Xmin are the maximum and

minimum values of the X.

In the next stage, all datasets should be divided into

training and testing. Various percentages ranging from 20

to 30 % of whole datasets have been suggested by previous

researchers for testing datasets [43–45]. Hence, in the

Table 1 The range of measured

parameters in this study
Parameter Unit Category Min Max Mean SD

Maximum charge per delay kg Input 48.6 350.3 181.48 70.72

Distance from the blast-face m Input 250 579 395.27 84.9

AOp dB Output 89.03 138.9 110.05 12.66

Fig. 3 A graphical summary of input and output data
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present study, 19 datasets or 20 % of whole datasets were

utilized for model evaluation. Obviously, another 78

datasets were used for developing the predictive models.

Designing network architecture and selecting an ANN

training algorithm are considered as the most important

factors in ANN modeling [46]. In this study, Levenberg–

Marquardt (LM) was chosen for ANN training as recom-

mended by some investigators (e.g., [47]). In addition,

many researchers such as Hornik et al. [48] reported that

any complex problem can be solved using only one hidden

layer. Consequently, one hidden layer was used in the

modeling of all ANN models in the current paper. Sonmez

et al. [49] highlighted the high impact on the number of

hidden node (Nh) on the ANN performance. Previous

researchers introduced equations to determine Nh as shown

in Table 2. As it can be seen in this table, the upper limi-

tation for the number of hidden node is 2Ni ? 1, where Ni

is the number of input parameters. With Ni equal to 2 and

No equal to 1 and also equations of Table 2, ranging from

1 to 5, can be considered for Nh. Through a trial-and-error

procedure, several ANN models were built and their results

based on the coefficient of determination (R2) are presented

in Table 3. Note that the ultimate modeling aim is to obtain

higher values of R2 for a specific ANN model. R2 of 0.871

and 0.857 were obtained for training and testing datasets of

the model No. 5. So, an architecture of (2� 5� 1) was

selected for predicting AOp by ANN model. Evaluation of

ANN model No. 5 will be given later.

4.2 GA-ANN

For approximating AOp in this study, several parametric

investigations were carried out to find optimum GA

parameters. In hybrid systems, as recommended by

Momeni et al. [25], the mutation probability was set to

25 % of the population size. Moreover, recombination

percentage was used as 9 and 1 % of the population size.

The single-point cross-over was used with 70 % possibil-

ity. Although there are various techniques to choose cross-

over operations, the tournament selection technique was

performed to create two offsprings from two parents [25].

To determine the best population size, several GA-ANN

models were constructed with population sizes (Spop)

ranging from 25 to 600 as presented in Table 4. In Table 4,

generally, increment in Spop causes the increase in R2

values. Based on obtained results from training and testing

datasets (0.935 and 0.948, respectively), model No. 9 with

Spop = 350 can provide higher performance capacity

compared with other models.

To investigate the number of generation (Gmax), a series

of analyses were carried out. In these analyses, a value of

1000 was fixed for the number of generation. Several

models were built in this regard on the GA-ANN network

(see Table 4). The results showed that the best Gmax for all

models was obtained as 400. Hence, a value of 400 was

used as Gmax of hybrid GA-ANN model to predict AOp. It

is worth mentioning that the analysis of this part was

conducted based on the results of RMSE. The last step of

modeling is related to constructing 5 GA-ANN models

based on 5 randomly selected datasets. R2 values of 0.955,

0.944, 0.940, 0.961 and 0.960 were obtained for trains 1–5,

Table 2 The proposed equations to determine Nh

Heuristic Reference

� 2� Ni þ 1 Hecht-Nielsen [50]

(Ni ? N0)/2 Ripley [51]

2þN0�Niþ0:5N0� N2
0
þNið Þ�3

NiþN0

Paola [52]

2Ni/3 Wang [53]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � N0

p
Masters [54]

2Ni Kaastra and Boyd [55]

Kannellopoulas and Wilkinson [56]

Ni, number of input neuron; N0, number of output neuron

Table 3 Results of the ANN models for estimating AOp

Model no. Nodes in hidden layers Network result based on R2

Train Test

1 1 0.611 0.550

2 2 0.655 0.692

3 3 0.709 0.761

4 4 0.822 0.842

5 5 0.871 0.857

Table 4 Effects of different Spop on network performance

Model no. Spop Network result based on R2

Train Test

1 25 0.795 0.750

2 50 0.811 0.820

3 75 0.815 0.799

4 100 0.832 0.842

5 150 0.855 0.869

6 200 0.889 0.879

7 250 0.901 0.911

8 300 0.922 0.935

9 350 0.935 0.948

10 400 0.907 0.942

11 450 0.918 0.940

12 500 0.899 0.915

13 550 0.921 0.944

14 600 0.931 0.930
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respectively, while these values were 0.960, 0.951, 0.948,

0.965, and 0.963 for tests 1–5, respectively. These values

indicate that run number 4 is the best one among these five

constructed models in estimating AOp. More explanation/

evaluation in this regard will be given in the next section.

5 Prediction of AOp using USBM and MR models

5.1 Prediction of AOp using USBM

In the present paper, the USBM as one of the most common

empirical models is applied for predicting the AOp. For this

work, datasets were classified into training and testing

datasets, in ratio 80–20 %, in order. In the other words, 78

and 19 datasets were used to develop the USBM and to test

the developed USBM model. It should be noted that in

USBM developing model, the same datasets were applied in

the analyses of ANN and Ga-ANN. Based on training data-

sets, the developed USBM model is formulated as follows:

AOp ¼ 577:46� DI

MC0:33

� ��0:38

ð3Þ

where AOp, DI and MC are in terms of dB, m and kg, in

order. Considering Eq. 3 and testing datasets, the accuracy

of the developed USBM model can be determined. More

information regarding the performance of the developed

USBM model will be given in Sect. 6.

5.2 Prediction of AOp using MLR model

Multiple linear regression (MLR) is one of the common

statistical tools to fit a linear equation between two or more

independent variables and a dependent variable. This

model is extensively utilized for solving different engi-

neering problems by many researchers [57, 58].

In the presented paper, the accuracy of the ANN, GA-

ANN and USBM models was also compared with the MLR

model. Generally, the MLR can be described as follows:

Y ¼ P0 þ P1X1 þ � � � þ PnXn ð4Þ

where Xi i ¼ 1; . . .; nð Þ and Y are independent and depen-

dent variables, respectively. Also, Pi i ¼ 0; 1; . . .; nð Þ

present regression coefficients. Like USBM model, 78

and 19 datasets were used to develop the MLR and to test

the developed MLR model, in order. It should be noted

that in MLR developing model, the same datasets per-

formed in the analyses of ANN, GA-ANN and USBM

were applied. In the first step, 78 datasets were considered

and the MLR was constructed using SPSS v16 software

[59] as follows:

AOp ¼ 125:3þ 0:1�MCð Þ � 0:08� DIð Þ ð5Þ

Considering Eq. 5 and testing datasets, the accuracy of

the developed MLR equation can be determined. More

information regarding the performance of the MLR equa-

tion will be given in Sect. 6.

6 Discussion and conclusion

As mentioned above, blast-induced AOp is one of the most

undesirable by-products of blasting operation, so precise

prediction of AOp is crucial. This article adopts two AI

models, i.e., ANN and ANN-based GA models for pre-

diction of AOp at a granite quarry in Penang state,

Malaysia. In this regard, 97 blasting events were monitored

to measure the input and output parameters and then to

construct the ANN and GA-ANN models. In modeling,

MC and DI were set as two input parameters, while AOp

was set as the output parameter. Moreover, in these models,

80 and 20 % of whole datasets were randomly selected as

training and testing datasets, respectively. In other words,

78 datasets were used to construct the ANN and GA-ANN

models, while the remained 19 datasets were used to verify

and test the models. Trial-and-error method was utilized to

select the best ANN and GA-ANN models. Based on

obtained results, 2� 5� 1 architecture was selected as the

best ANN model. Also, In GA-ANN model, the values of

350 and 400 were selected for the Spop and Gmax, respec-

tively. The performance of the models has been compared

using several statistical indexes, i.e., variance account for

(VAF), R2 and RMSE.

R2 ¼ 1�
PN

i¼1 y� y0ð Þ2PN
i¼1 y� ~yð Þ2

ð6Þ

Table 5 Performance

prediction of the developed

models in predicting AOp

Developed model Training Testing

R2 VAF (%) RMSE R2 VAF (%) RMSE

USBM 0.687 68.73 7.04 0.774 70.07 8.62

MLR 0.69 68.9 7.09 0.82 78.06 6.54

ANN 0.871 87.069 0.088 0.857 84.257 0.117

GA-ANN 0.961 95.888 0.050 0.965 96.380 0.049

Neural Comput & Applic (2018) 29:619–629 625
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Fig. 4 R2 values of the developed USBM model

Fig. 5 R2 values of the developed MLR model

Fig. 6 R2 values of the developed ANN model
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VAF ¼ 1� var y� y0ð Þ
var yð Þ

� �
� 100 ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

y� y0ð Þ2
vuut ð8Þ

In Eqs. 6–8, N denotes the number of datasets, y0 and
y denote the predicted and measured PPV values, respec-

tively. The R2, RMSE and VAF equal to 1, 0 and 100 (%)

indicate the best approximation, respectively. Table 5

gives the results of the statistical indices for GA-ANN,

ANN, USBM and MLR models. It should be mentioned

that values of USBM and MLR models are not normalized

values and are the original one. Comparison results

demonstrate that the GA-ANN model performs better than

the ANN model. Considering only testing datasets, values

of 0.965, 0.857, 0.77 and 0.82 for R2, 96.380, 84.257, 70.07

and 78.06 for VAF, and 0.049, 0.117, 8.62 and 6.54 for

RMSE were obtained for GA-ANN, ANN, USBM and

MLR models, respectively, which prove superiority of the

GA-ANN in AOp prediction. Figures 4, 5, 6 and 7 show

the measured versus predicted values of AOp by USBM,

MLR, ANN and GA-ANN models, respectively. From

these figures, it can be seen that GA-ANN model simulated

the AOp more reliably than ANN model. As a conclusion,

GA-ANN model with R2 of 0.961 and 0.965 for training

and testing datasets is sufficient enough to solve such

problems like AOp resulting from blasting. Considering the

controllable parameters, i.e., DI and MC and using the

developed GA-ANN model of this study, damage(s) due to

AOp in the studied site can be controlled/minimized.
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