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Abstract Weirs are a type of hydraulic structure used to

direct and transfer water flows in the canals and overflows

in the dams. The important index in computing flow dis-

charge over the weir is discharge coefficient (Cd). The aim

of this study is accurate determination of the Cd in trian-

gular labyrinth side weirs by applying three intelligence

models [i.e., artificial neural network (ANN), genetic pro-

gramming (GP) and extreme learning machine (ELM)].

The calculated discharge coefficients were then compared

with some experimental results. In order to examine the

accuracy of Cd predictions by ANN, GP and ELM meth-

ods, five statistical indices including coefficient of deter-

mination (R2), root-mean-square error (RMSE), mean

absolute percentage error (MAPE), SI and d have been

used. Results showed that R2 values in the ELM, ANN and

GP methods were 0.993, 0.886 and 0.884, respectively, at

training stage and 0.971, 0.965 and 0.963, respectively, at

test stage. The ELM method, having MAPE, RMSE, SI and

d values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at

the training stage and 0.89, 0.0063, 0.0089 and 0.88,

respectively, at the test stage, was superior to ANN and GP

methods. The ANN model ranked next to the ELM model.

Keywords Weir � Discharge coefficient � Artificial neural
network � Extreme learning machine � Genetic
programming

1 Introduction

Weirs are among the most important hydraulic structures.

They pass the floods from dams’ reservoirs, divert water

from canals and could be used as discharge-measurement

devices in the channels. The safety of channels which

transfer water and the security of dams are very closely

related to the sufficiency of weir’s capacity. Most of the

damages made to the water-transporting channels and even

dam floodways are due to the weirs which don’t have

enough capacity [1, 2]. When the flow level increases

behind the weirs and reaches a level higher than the weir’s

crest, the flow passes over it. The velocity profile is curved

and nonlinear when the flow passes over the weir and if

discharge decreases in the channel, the flow over the weir

decreases too [3]. As a result, a strong, safe and highly

efficient weir structure must be selected with regard to the

sensitivity of its function. This structure has to be ready for

exploitation at any time. Selecting the discharge coefficient

(Cd) of the weirs is generally one of the most important

matters, which has an important role in decreasing struc-

tural and financial damages caused by floods. Proper

understanding of the function of weirs can significantly

decrease their construction expenses.

The most important types of weirs include sharp-crested,

broad-crested, ogee, labyrinth, shafts, side weirs, stepped

weirs and siphon weirs [4–6]. In the last decade, different

researchers have used new methods, called soft computing

or intelligence methods, which are desirably efficient and

accurate, to solve complicated problems related to
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discharge capacity of the weirs, based on the hydraulic

parameters of flow and geometry of the weirs. The key

hydraulic parameters in this respect are Froude number

upstream of the weir, flow depth, crest height and weir

height. Emiroglu et al. [7], Subramanya and Awasthy [8],

Swamee et al. [9], Bagheri and Heidarpour [10], Kisi [11],

Bonakdari et al. [12], Emiroglu et al. [13] and Kisi et al.

[14] are among the many researchers who calculated Cd of

labyrinth weirs by using soft computing methods.

Huang et al. [15] introduced extreme learning machine

(ELM) algorithm for single-layer feed-forward artificial

neural network (ANN). This algorithm’s problem-solving

capability is due to use of an algorithm built on gradient

descent like the back propagation, which applies in ANN.

ELM is highly trained to reduce the time needed for

training a neural network. Researchers have observed that

by utilizing ELM, the learning process is significantly

faster and produces reliable generalization performance

[16]. Several researchers [17–22] have used ELM to solve

data problems in different scientific fields.

The aim of the present research is precise determination

of Cd in a triangular labyrinth weir through three methods

of ANN, ELM and genetic programming (GP). Afterward,

the resulting Cds will be plotted and compared with some

experimental results, which were found in the literature.

Finally, some well-known statistical criteria are used to

select the best estimation method.

2 Materials and methods

In this study, three models (ELM, ANN and GP) were

designed to estimate Cd of a triangular labyrinth weir. Some

brief explanations of these three models are given here.

2.1 Artificial neural network

As a notion, based on human brain’s function, an artificial

neural network (ANN) is commonly employed to solve

complicated problems in a wide range of sciences. In

general, an ANN consists of some linked nodes (so-called

neurons) and three kinds of constructed layers including an

input layer, some hidden layers and an output layer. Each

layer is made up of a number of neurons. The number of

hidden layers does not follow a fixed rule. However, when

the number of neurons in hidden layers is extremely high,

an unacceptable long time is taken by the network to train

for each value [23–25]. For this reason, by taking into

account various numbers of neurons within the hidden

layers, different models have been developed through trial

and error. The model with the best results will be chosen as

the ultimate ANN model. MATLAB software was used to

run the ANN model for this study.

2.2 Genetic programming (GP)

GP can be seen as an evolutionary technique, and it is a

very challenging task to devise a theory for it. GP was not

commonly used as a search technique in the 1990s. Later

on, GP led to the evolution of computer programs and

commonly has been demonstrated in the memory. Hence, it

is represented as a tree structure (Fig. 1). We are able to

easily assess and estimate trees in a recursive form. As we

know that every node of a tree has an operator function

mode and each terminal node contained with an operand

which comforts evolution as well as evaluation of mathe-

matical statements [26, 27]. Therefore, GP traditionally

prefers making use of programming languages which nat-

urally represent tree structure. Non-tree representations

have also been proposed and prosperously executed, like

linear GP, which is consistent with more traditional

imperative languages [28, 29]. The majority of non-tree

representations possess structurally ineffective codes (in-

terns). Such noncoding genes may appear without use since

they do not exert any influence on the performance of any

individual. However, research studies have shown faster

convergence with program representations (like linear GP

and Cartesian GP) which render such noncoding genes

possible, compared to tree-based program representations

which do not possess any noncoding genes. The two pri-

mary operators applied in evolutionary algorithms are

crossover and mutation. In a crossover operator, which is

applied in an individual, one of its nodes is simply sub-

stituted with another node that has been chosen out of

another individual in the population. In the case of a tree-

based representation, switching a node implies that the

whole branch is replaced, and therefore, this causes higher

performance and improves capability of the crossover

operator [28, 29]. Expressions’ appearance, which has been

retrieved from crossover, is entirely different from their

initial parents. However, mutation, which can affect an

individual in the population, will be able to replace a whole

node in the chosen individual. Moreover, mutation is

exclusively able to replace the node’s information just to

Fig. 1 An example of GP expression tree
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keep and retain integrity so that make operations to be fail-

safe or furthermore kind of information which is kept by

node has to be taken into account. For example, mutation

has to know and distinguish binary operation nodes

[28, 29]. Otherwise, the operator must be able to make

enough efforts to deal with missing values.

2.3 Extreme learning machine (ELM)

ELM is one of the neural network models which has

stepped into the spotlight in the recent years. This model

has been utilized in a wide range of applications in the

preceding decade, owing to its simplicity [30]. Huang et al.

[15] proposed an ELM algorithm tool to train single-layer

feed-forward neural network (SLFN) architecture. ELM

determines random input weight and analytically defines

the SLFN’s output weight. Since ELM benefits from a

faster learning computational analysis and a greater gen-

eralized capability, it does not need much intervention

during analysis, and therefore, it runs faster than common

algorithms. ELM is also able to determine the entire net-

work parameters and hereby minimizes trivial intervention.

It can be seen as an effective algorithm with numerous

merits such as ease of use, quick learning speed, higher

performance and adaptability for varying nonlinear acti-

vation and kernel functions. ELM is designed in a way that

L hidden neurons constitute SLFN [15]. It is composed of

L distinct samples of zero error. Hidden nodes are assigned

random values. On the other hand, output weights are

computed through pseudo-inverse of H, with minimum

error, even in cases which the number of exclusive samples

(N) is larger than the number of neurons (L). Random

values can be conveyed to the hidden node parameters of

ELM ai and bi. These two above-mentioned parameters

should not be tuned within the training stage.

Theorem 1 According to Liang et al. [22], if we assign a

certain SLFN which represent infinitely differentiable in

any interval of R, so it has an activation function g(x) as

well as RBF hidden nodes or L additive nodes; as a result,

two exclusive input vectors are produced for any continu-

ous probability distribution. Henceforth, it shows that

{xi|xi 2 Rn, i = 1, …, L}and{(ai, bi)}i=1
L are the two input

vectors, respectively, so that is the hidden layer’s output

matrix which is invertible for probability one; its output

matrix H is invertible; then, we have kHb - Tk = 0

[15, 19, 22].

Theorem 2 Pursuant to Liang et al. [22], the condition

that ‘‘any small positive value e[ 0’’ is an assumption we

make and an activation function g(x): R ? R which serves

infinitely differentiable in any interval, then this condition

is true L B N such that for N arbitrary distinct input vectors

{xi|xi 2 Rn, i = 1, …, L} for any {(ai, bi)}i=1
L randomly

generated based on any continuous probability distribution

kHN9LbL9m - TN9mk\ e with probability one [19, 22].

Equation (1) is a kind of a linear system; based on

aforementioned items, the ELM’s hidden node parameters

should not be tuned during the training and these param-

eters can easily be assigned random values. Output weights

could be assessed as follows:

b ¼ HþT ð1Þ

where H? represents the Moore–Penrose generalized

inverse of the hidden layer output matrix H. Various

approaches such as orthogonal projection, iterative and

singular value decomposition (SVD) can be utilized for its

computation [19]. Only when H? is non-singular and

H? = (HTT)-1HT, then we can employ the orthogonal

projection method. Since searching and iterations are used,

orthogonalization and iterative methods have restrictions.

ELM implementation utilizes SVD to calculate Moore–

Penrose generalized inverse of H for it can be employed

under any conditions. Therefore, we can conclude that

ELM serves as a batch learning method [19].

2.4 Experimental model

The experimental model of Kumar et al. [4] has been used

in this research to predict the discharge coefficient of the

weirs. The experimental model was a 12-m-long rectan-

gular channel with a width of 0.28 m and a height of

0.41 m. A triangular weir has been used in this experiment

(Fig. 2). The weir is placed at 11 m away from the channel

entrance. Point gages, with ±0.1 m measurement preci-

sion, are used above the weir to measure the water height.

A number of pores are installed in the channel wall and in

the weir in order to create a nape flow. Grid walls and

preventive flows were installed in the upstream of the

channel in order to prevent and reduce the formation of

vortexes and water-surface disturbance.

The hydraulic parameters of Kumar et al. [4] experiment

are listed in Table 1. Table 2 shows the range of the

parameters which were used in this study. Number of input

data in training mode of the three models was 86 and in the

test mode was 37.

2.5 Statistical indices

In order to verify the accuracy of the estimated Cds by

ANN, ELM and GP models, different statistical criteria

including coefficient of determination (R2), root-mean-

square error (RMSE), mean absolute percentage error

(MAPE), SI and d are used, as defined in the following

equations:
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R2 ¼
Xn

i¼1

xi� xð Þ yi� yð Þ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

xi� xð Þ2
Xn

i¼1

yi� yð Þ2
s" #2

ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi � yið Þ2
s

ð2Þ

MAPE ¼ 1

n

Xn

i¼1

xi � yij j
xi

ð3Þ

SI ¼ RMSE

x
ð4Þ

d % ¼
PN

i¼1 ðyi � xiÞj j
PN

i¼1 yi
� 100 ð5Þ

where yi and xi are predicted (by models) and observed

(experimental) Cd values, respectively, and y and x are

average predicted and observed Cd values, respectively.

Fig. 2 Plan of the experimental channel used in Kumar et al. [4]

Table 1 Hydraulic parameters used to estimate Cd in this study

L Weir crest length (m)

F Froude number

B Channel width (m)

h Vortex angle (rad)

w Crest height (m)

H Hydraulic head over the weir crest (m)

y = (h ? w) Hydraulic head behind the weir (m)

Table 2 Parameters used to

estimate average discharge

coefficient (Kumar et al. [4])

F L/h L/w h/b h (�) (sin h 9 w)/l y/(sin h 9 w) Cd

Min 0.608 3.88 2.68 0.028 30 4.37E-17 1.13 0.54

Max 3.261 135.25 11.76 0.260 180 0.28 1.40E?16 0.906

986 Neural Comput & Applic (2018) 29:983–989

123



3 Results and discussions

Figure 3 presents plots of the estimated values of discharge

coefficient (Cd) by ELM, GP and ANN models versus

calculated experimental values. As shown in this figure, the

estimated results confirm fairly well with the experimental

values almost in all the three models. It seems from this

figure that the ELM model’s estimated Cd values are much

closer to the experimental Cd values than the ANN and GP

models.

Figure 4 indicates that in the training mode, more than

90, 70 and 65 % of the Cd data are estimated with a relative

error smaller than 1.5 % in the ELM, ANN and GP models,

respectively. In the ELM model, almost 100 % of the Cd

data are estimated with an error of\2.5 %. This situation

happens in 5.5 % error for ANN and GP models.

In the test mode, the ELM, ANN and GP models’ pre-

dictions are much closer to each other and are much better

than their predictions in the training mode. But again, it

could be said that in general, the ELM model acts better

than the ANN and GP models (Fig. 5).

Tables 3 and 4 are presented to investigate the accuracy

of estimating the Cd values through using different statis-

tical indices using the training data and test data,

respectively. It can be observed that the values of R2,

RMSE, MAPE, SI and d are accurate for the three ELM,

ANN and GP models. In addition, considering these tables,

it could be observed that average relative error is almost

1 % for all three models. For ELM model, R2 is 0.993 and

0.971 in the training and test modes, respectively, and

therefore, this model is the best for prediction of Cd values.

The ANN and GP models are ranked next to ELM model.

Taking a look at Tables 3 and 4 reveals that the MAPE,

Fig. 3 Comparison of

estimated Cds with experimental

results in training and test

modes

Fig. 4 Error distribution for the three models (training mode)
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RMSE, SI and d indices for ELM model are also much

smaller than the values for ANN and GP models.

Table 5 shows the predicted Cd values by ELM model

and their comparison with the experimental ones. It could

be seen in the table that the predicted values do not follow

a specific trend; sometimes, it overpredicts and sometimes

it under-predicts the Cd values. The point to be noted,

however, is that this model predicts relatively well under

different hydraulic conditions in such a manner that max-

imum relative error by this model is approximately 2.27 %.

4 Conclusions

Weirs are one of the methods for controlling floods in dam

reservoir and diverting and measuring the flow in channels.

Discharge capacity over the weir crest is an important

hydraulic parameter in this respect. In this research, dis-

charge coefficient of weir has been predicted using three

intelligent models of extreme learning machine (ELM),

genetic programming (GP) and artificial neural network

(ANN). To that end (L/h) (L/w) (h/b) (sin h), (sin h) 9 w/L,

and (y/(sin h) 9 w), dimensionless parameters were used to

train and test the designed models. Results of the ELM,

ANN and GP models were compared with some experi-

mental results. Five statistical indices of R2, RMSE,

MAPE, SI and d were used to compare the predicted and

experimental Cd values. The examinations indicated that

with an R2 of 0.993 in the training mode, an R2 of 0.971 in

the test model, and minimum MAPE value of 0.81 % in

training mode and 0.89 % in the test mode, the ELM model

presents the best results in comparison with the rest of the

models. The ANN model also presented relatively good

results, similar to those of the ELM model.
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