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Abstract A model of shunting inhibitory cellular neural
networks with mixed delays is proposed. Applying appro-
priate differential inequality techniques, several sufficient
conditions are derived to ensure the existence and expo-
nential stability of weighted pseudo-anti-periodic solutions
for the proposed neural networks. Moreover, numerical
examples are provided to show the validity and the
advantages of the obtained results
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1 Introduction

During the 1990s, Bouzerdoum and Pinter [1-3] proposed
shunting inhibitory cellular neural networks (SICNNs) to
describe a new class of biologically inspired cellular neural
networks (CNN5s) in which shunting inhibition mediates the
synaptic interactions among neurons. Therefore, SICNNs
have shown great potential as information processing
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systems [4-11]. Recently, the exponential stability of the
anti-periodic solutions can describe the global dynamics of
delay systems since the convergence rate can be estimated
[12—14], and a lot of research work is focused on this topic
of SICNNs with mixed delays [15-20]. In particular, the
following dynamical system:

(1) = —d(xz(1) = Y CHOF (xua(t = ta(1)))x(0)

CEN, (i)
-2

400
Bg'l(f)/ 0(u) G (xa (t — u))dux;;(2)
BueN, (i) 0

+ 1;(1),
(1.1)

has been used to describe SICNNs with mixed delays
involving time-varying delays 7;(¢) and unbounded dis-
tributed  delay kernels  g;(u), jeEN=
{11,12,...,mn}, C; designates the cell at the (i, j) position
of the lattice. The ¢ neighborhood N,(i,j) of Cj; is given as

where

N,(ij) = {ck,:max(|k—i|,|l—j|)§g,1gkgm,lglgn}

0=rq.

x(t) = {xi(0)} = (xn1(2), x12(2), - - -, X (1)) corresponds
to the state vector, dij(t) represents the rate of decay, and
F and G are the signal transmission functions. The detailed
biological accounts on the coefficients Cl’.‘j’ (¢) and Bg’ (f) can
be found in [21].

As mentioned by Al-Islam et al. [22], the research of
weighted pseudo-anti-periodic differential equations has
academic significance in both dynamical theory and its
practical application. Moreover, weighted pseudo-period-
icity and weighted pseudo-anti-periodicity were first
introduced in [22] to generalized the well-known notions of
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periodicity and that of anti-periodicity, respectively. In
addition, in view of the biological mechanism of system
(1.1), it is interesting and desirable to construct neural
network models which are capable of producing weighted
pseudo-anti-periodic solution. Nevertheless, the weighted
pseudo-anti-periodic problem for SICNNs with mixed
delays has not been adequately studied. For the above
reasons, in this paper, we aim to provide a criterion to
guarantee that all state vectors of (1.1) converge to a
weighted pseudo-anti-periodic solution with a positive
exponential convergence rate.

2 Preliminary results

To further our discussion, U designates the set of locally
integrable functions (weights) 1 : R — (0, 4o00) satisfying

0= [ " ux)dx (1 > 0).

V4

722130”([_%7 7)) = +oo, where p([—y,

Define the following notations:
el ={lxl}, llxll = max ], 7 = sup|Q(r)],
ijeN teR
0" =inf|0(1),
U {,ULM € [Ua inf ,u(x) = Ho > 0}7
xeR

and

Ul :—{,u|,u € [Ugc,limsupM < + o0,

x| —=+00 :u(x)

p([=(x + o), x+a])

lim su
P u([=2 )

— 00

< + o0, VocelR}.

Furthermore, let BC(R, R"™") denote the bounded continu-
ous function set, which is a Banach space with the supre-
mum norm ||f]|, := sup,cg ||f(¢)||. Also, denote

0<T< 4 o0, APT(R,R™) :=

{we BCR,R™)|w(r+T) = —w(r) for all € R},

and

0 mny __ mn
PAP(R,R™) = {qo € BC(R,R )|yEr+n007'u([ D

/ uoloolar=o}.

A function W € BC(R,R™) is called weighted pseudo-
anti-periodic if it can be expressed as

W:Q1+Q27
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where Q) € APT(R, R™) is the T-anti-periodic component
and 0, € PAPH(R,R™) is the ergodic perturbation. In
particular, fixed p € UL, (PAPT*(R,R™), ||.||,.) become
a Banach space and APT(R,R™) is a proper subset of
PAPTH(R, R™) [22].

We define the following initial condition:
{)C,'I‘(S)} = {(pij(s)}v s € (7007 0]7 {¢lj} € BC(Ra Rmn)
(2.1)
Ojj €

For klije N, it will be supposed that

BC([0,+00),R) , |o;i(s)|e’ is integrable on [0, +o0) for
k>0, d;Cl, By cCR,R), I € PAPT*(R,R),
T € Cl( , [0, +OO)), and
dij(S =+ T) :dij(s), ’L'kl(S —+ T) = ‘Ck[(S), ‘E;(I(S) < I,VS S R,
(2.2)
Cl(s) =i (5) + G2 (s), B(5) = B (5) + B (5), Vs € B,
(2.3)
where  Ci" Bi" € BC(R,R),C”,B}/” € PAP}(R,R)
satisfy
i, e,
Ci"'(s + T)F(u) = C;" (s)F(~u), Vs,u € R, (2.4)
and
Bj"(s +T) = —Bj"(s), G(u) = —G(~u) y "
, S, u €
( or B (s +T) = B (s), G(u) = G(—u))
(2.5)

For ij € N, the following assumptions will be adopted:
(So) there exist d; € BC(R, (0, +00)) and K;; > 0 such
that

e J st <Kje"

f: j&/(“)d

(S1) F and G are global Lipschitz with Lipschitz constants
F and LY, and

" VhseER, t—s5>0.

sup |[F(u)| := Mp< 4+ 0o, sup|G(u)| :=Mg< + 0.
uck ucRk

($2) ne U
arbitrary closed subinterval of [0, 400
positive constants y; and J such that

> |Cf;’<r>|(MF+LF1175)..

CEN, (i)

L (/ )

BueN,(

+o00
+ / |oz-j(u)\LGdu , ijEN,
Jo 1-90

and F(o) = sup, g & S‘&)“ ) is bounded on
). (S3) there exist

[eleks

7y =sup { — di(1) + Ky {
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It
where [ = maxijeN{K'-f’}, and

y di;‘
0 = max
ijEN
{ D cueNi(ii) WM+ Y gen, i BY T o Loy ()| duMg } -
7
Lemma 2.1 Assume that f € PAPT*(R,R), p¢€

CY(R, R) is T— periodic, p(s) >0 and p'(s) <1, Vs € R.
Then, f(s — p(s)) € PAPTH(R, R).

Proof Let

f=h+e,heAP"(R,R), ¢ € PAP;(R,R).

Clearly, h(t — p(t)) € APT(R,R). In view of (S,), we get

w()  u(t—=p(t) +p(1)

= < sup,er,- 41 Fla),
u(t — p(1)) u(t—p(1)) €lp~, p*] (o)
for all r € R.
Letting f = sup,cp 1—7[1),@ X SUP,elp-, pt] F(ax) and s =1 —

p(t) give us

1 1
m[ lo(t = p(£))|pu(t)dt

e M GG ey

= >/ L B ey
Sﬁm / (H;;))\ (5)|u(s)ds
Sﬁﬂ([_(itaf;?’x)](;r pﬂ)u([—(ﬁpi% x+p+]),[?:j;+> ol
<t /+p]>/<> [P0

which, together with the fact that

! sl
lim / o(s)|u(s)ds =0,
r=too (= +p%), x4+ 071 Joapn)
implies that
Iim — nde =0,

and o(t— p(1)) € PAPS(R, R).
This proves Lemma 2.1. O

Lemma 2.2 If ¢ € PAP)(R,R), then, [," |a;(s)||oo(t —

s) | ds € PAPL(R, R).

Proof Obviously, one can obtain

o [ ([ ot - s )a
- /0+°°|Gij(s)|<m/_rr|(p(t—s)|,u(t)dt)ds_

Let M? = supycg |@(0)] and o = [ |ay(s)|ds, we get

[ i e
S/O+ |0z]()|<m/r ()d)dSM(p:UMm

For any sequence {r,}, satisfying

liI+Il rp=+400, 1, >0, n=12...,
we denote
1
fu(s) = |oii(s 7/ o(t—s)|ut)dt, n=1,2,....
) =104 gy [ Vol =9Ik
Then,
lir+n fu(s) =0, and |[f,(s)| <M?®|g;(s)|, for all s€

[0, +00), n=1,2,....

According to the Lebesgue dominated convergence theo-
rem, we have

+00

R O e o= () ) s =0,

which entails that

tim s [ ([ o9l = sutons o

+00 1 r
=1 i — t— t)dt |ds = 0.
Jin [ ool (i [ ot - lutoar)as
Thus, [ |o;(s)|@(t — s)ds € PAP)(R,R). This com-
pletes the proof. O

Lemma 2.3 Let x;; € PAPT*(R,R) for all ij € N. Then,
xi(1) Gy (1) F (xua(r — wu(1))) € PAPTH(R, R),
and
(o)
x5 (0BY(1) / 05 (u)Glxut — u))du € PAPTH(R, ),
0

ij,kl € N.
Proof From Lemma 2.1, we get
xu(t — w(t)) € PAPT*(R,R), ij,kl € N.

Furthermore, let

@ Springer
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x;i(t) = xg.(t) +xj; (1), where xg. € APT(R,R),
xj € PAPG(R,R),ij € N,

and

xu(t — ta(t)) = xg" (1) + x5 (r), where
e APT(R, R),xi" € PAPL(R,R),ij € N.

Then, for all + € R, we obtain
x;(t )Ckl( 1F (xu(t—w(1)))
—x(n) [l (1) +CYf (ﬂ(z)] (x’;ih< )+ (1)
_ xz (1) Cklh (xlg h kl h (xg,h ( t)>

+x5(1)CH (0F (x "”%r))

+x(0CH 0 [F ("0 +57 () = F (<)) |- men.

Clearly, (2.4) gives us
i+ TIF (a4 (4 7)) = i+ TYF (=24 ()
kL, kL,
= Cij" (I)F( Xkl (t))>
for all r € R,
and

x@(t)c’i’=h(t)F(x’;§h( )) cAPT(R,R),iji,kl€N.  (2.6)

y y

Now, we choose constants o/ ﬁ and 17"’ such that

ij
kl,h kl,h kl,h
o = sup oy ()F (23" () )1, B = sup I ()F (1)) |
te
i = suplLqu( )Gyl (1)]-

Consequently,
0< tim ——— [ e wr (4"
()0 [F (345" (0) + 4412 (1)) = F (345" (0)) | [y

. 1 "
< tim s [ 0P (47 0) 6§ 0 utor
L) C O] 4y (1) | (o) e

mﬁ/ ,

kl lim

kl(/)

A i ey LG 0o
1 r
o o,
1 rHTw#([ r, r])/r Xl ‘ﬂ(t)d’
and

@ Springer

OSrETmm i x;ﬁ(t)Cg»l’h(t) (klh )‘ﬂ
<P ,Emom / o utoyar
0.

This, together with (2.6), leads to
xii (1) Cl (1) F (i —

Next, for ij, kI € N, we get

w080 [ " 63(0) G (e — u))du

(1)) € PAPT*(R,R), ij,kl € N.

OB [ oG - w)dnf (0B 1)

/000 al-j(u)G(x,i’l(t — u))du

FxOB0) [ oG- )

5B [ oy[GUE e~ w + (e - )

—G(xy(t—u))]du,V t € R. (2.7)
It follows from (2.5) and Lemma 2.2 that
xZ(t)B§l7h(t)/OOUU(M)G(xZ,(t—u))du cAPT(R,R), (2.8)

0

and
+oo
/0 oy (w)||x);(t—u)|du € PAPY(R,R),ij,kleN.  (2.9)

Hence,

. 1 " k, /
0< lim —— . ?(f
<m0 [ e

+x4'f(t)3§'(t)/0wfffj(u)[ (et — u) + 5 (1 — ) = G iy (t — w)) | dul u(r)de

<suply () [ ”“a,./.@)(;(x“(t )a tim s [ B )

r—+oo il

x“t u) du

+B} *xfL GrL+xu // |3 (w0)| x5y (£ — )| dup(t)dt
=0,
and
0< lim — | klh
rHJroo,u —=r, r

x /0 03(u)G (a1 — u))dulu(r)dr

< supl () / )G (=)t
/IX,, ) ()
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which, together with (2.7) and (2.8), imply that
oo
x,-j(t)Bf;-Z(t)/ o;i(1)Gxp(t — u))du € PAPT*(R,R),
0
ij,kl € N.

This proves Lemma 2.3.

Lemma 2.4 Define a nonlinear operator Q by setting

(09)(1) :{/;e—ﬁ'dU(L«>d,,

x|= Y CHE)F(guls—u(s)@y(s)-

CkIEN, (l,])

- Z )Bf;.l(s)/o OCUy(“)G(¢k1(5_”))d”90i/(s)

BUGNq(i.j

+1;(s)

ds} ,@ € PAPTH(R,R™).

Then, Q maps PAPT*(R, R™) into itself.

Proof With the application of the verification in Lemma
2.1 of [21], we can easily obtain that Q¢ € BC(R, R™) .
From Lemma 2.3, we obtain that there are H; €
APT(R,R) and ®; € PAP;(R, R) such that

= > CHOF(pu(t — () @y(0)

CueN: (i)
u +o00
= Y B0 [ oGl - )iy + 1500
B €N, (iy) 0
= H;(t) + ®;(t) € PAP"*(R,R), ij € N.
Arguing as in the verification of Lemma 2.2, one can show

+o00 N
li e |y (1 —
tim s [ ey = waunoyo

X ij € N.
Then,

0< lim
7H+oo'u —-r, r

//m SO ) dspur)dr

t
<K; rggnmﬂ / , / )09 @y (s) (o)
i tim o [ o
p— 07

and the fact that

imply that

(QQ))U([): /t e_fldz/(u)duHU( )dS

oo

+/t eff:d;/-(u)du

o0

®;;(s)ds€ PAP"*(R,R),ij €N,

and Q maps PAPT#(R,R™) into itself. This ends the
proof.

3 Main results

Theorem 3.1 Let (So), (S1), (S2) and (S3) hold. Then,
system (1.1) has exactly one weighted pseudo-anti-periodic
solution x*(t) € PAPT*(R,R™), and all state vectors of
(1.1) and (2.1) converge to x*(t) with a positive exponential

convergence rate A € (0, min{rc, I}_’li]{]l c?”})
jeN

Proof Set

t r
o’ = {/ eifs d”<w>dwll~j(s)ds}
and

51 mn
r={oflo-o'llo< 125 o Parmeam ).

Then,
+
0 Py pp— f—
™l Smgg{Ku }—1, (3.1)
ij
and
0 0 ol
[@lle SNe—=0"lloc+ 10" oo <7—=+1
1-96
, (3.2)
=——V TI.
-0 7€

Consequently, (S3) entails

@ Springer
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1(Q¢),;(1) —
‘/ [ Z Cz_‘kf](s)F(‘Pkl(S — tu(s))) ()

CrEN, (i)

</J,,(f)|

~ Y B / woij(u)G(wkl(s—u))dusoij<s>]ds

Bu€eN, (i)

t o~
<y [ LIS oMol
v CueN, (i)

n Z 1B S)|/ |gl/(u)|duMG]ds|(p||

Bk,EN ij)
Y G tMe+ Y BY Y[ |oy(u)|duMg
Cu€N; (i) Bu€N, (i)
> Ajj L} _ Hq)Hao
ij

< ol ij € N
<{-5 UEN

which implies that Q is a mapping from I" to I'.
Furthermore, according to (Sp), (S1), (S2) and (S3), one
can easily to see that

‘(Q(/))i/(t) - (QW),,(I)‘
< / eff"”‘“”“[ ST ISP (s — Tuls))
- CrEN, (i)

= F((s — ()l py(s)]-
+FWuls = wa())ll@y(s) — ¥y(s)l)

+ Z B3 (5) (/Omlaij(u)G(wkz(Su))

BueN, (i)

= G(y(s—u )‘d”|</’ij(5)|-
+/0 o ()G (W (s — u))|du| pyy(s) — (s )I)}ds

t f o~
— | d;jj(u)du 1
SKI,-/me Jodsw { Z._ |Cf;’(s)\<LFm+MF)
CueN; (i)
Kl oo ¢ 1
£ B[ el Mo ) | asto - vl
y Jo
By eN, (i)
t . - ..
< [ e ey - Dasto - .
. 2
t o~ t
< / eif.\du(mdud(—/ d,;;(u)du)

Vi [ [
SL [ b -y,
J =00

71’] ..
< PR — .
_15133({ <1 2d;)}|¢ Vlloes i € N,

together with the fact that O< max;en{(l —

(3.3)

which,
2%)}<1’ entails that the mapping Q: I’ — T is a con-
traction mapping, and there exists a unique fixed point

¥ ={x;(} el C PAPTH(R,R"), Ox" = x",

@ Springer

which is a weighted pseudo-anti-periodic solution of (1.1).
Finally, with a similar proof in Theorem 3.2 of [21], one

can pick constants A€ (0, min{x, min ey L]; }) and
M > 370" K + 1 such that

PO [eAGHA +LFe’fu( 15)

CrEN, (i)
PO B (/ 030 duM
By €N, (i)

+o00 I
+/ o,-j(u)|LGe)“”du—>} } <0, jeN,
0 1-96

and

sup{/l—c?ij(t) JrK,j[

teR

1)~ 01 < suprmax () — 0

t<0 ijeJ

for all t > 0,

which proves Theorem 3.1.

4 Numerical simulations

Consider SICNNs (1.1) with the following parameters:

m=n=2, F(x)=G(x) :%|arctanx|,d,j(t) =1+ (i+/)cos 1000¢,
1, . 1 .
—|sint| §|smt|
r:q:17{cll}:{BlJ}: 1 1 ’
g|sint| E|sint\
4] . 71 —r
I(t) =———= 0 [sint+p(1)],04(t) = T0¢ LT(t) = (1+smt)
p(t)y=e" for allt>0,p(r)=1 for allz<O0.
(4.1)
Obviously, one can choose
di(t) = 1,T=mx=1, LF =10 = — My = Mg = —,
2 40
Kl] = 61%7 L= 1727
and

I1~027, 6~0.28, u(t)=¢" for all >0,

u(t) =1 for all t<0

such that SICNNs (1.1) with (4.1) satisfy all the hypothesis
mentioned in Section 2. Based on Theorem 3.1, we can
conclude that system (1.1) has exactly one weighted
pseudo-anti-periodic solution x*(f) € PAPT*(R, R*), and
all state vectors of system (l.1) converge exponentially
to x*(¢) as t — 4o0. Here, the exponential convergence
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Fig. 1 Numerical simulations 4r
for the state vectors of SICNNs
(1.1) with (4.1)
3 L
2
1
[a\]
=
Il
Zoor =
-1
-2
_3 I
-4 I
0 5

rate A= 0.02. The time-response curve is given in
Fig. 1, and there are three different groups initial values
with (1.1,-3.1,4.1,-3.1),(-3.2,4.1,-1.1,2.1), x (3.1,
—4.1,1.1,-2).

Remark 4.1 In the real world, there is little purely
periodic phenomenon, and this motivates us to study the
pseudo-almost-periodic and weighted pseudo-almost-pe-
riodic situations. In this work, we show that for the same
assumptions in [21] plus other assumptions that we add to
realize our demonstrations, allows us to show the
dynamic characteristics of (1.1) in a weighted pseudo-
anti-periodic set broader than the anti-periodic set in [21].
Since weighted pseudo-anti-periodic SICNNs with mixed
delays has not been touched in [7-11, 21], our results
improve and extend the corresponding ones in the above
references.

5 Conclusions

In this manuscript, we have investigated shunting inhibi-
tory cellular neural networks with mixed delays. With the
aid of the contraction mapping fixed point theorem, dif-
ferential inequality theory and the Lyapunov functional
method, some sufficient criterion for the existence and
global exponential stability of weighted pseudo-anti-peri-
odic solutions of the system is established. In order to

demonstrate the feasibility of the theoretical results, a
numerical example is given. The established results were
compared with those of recent methods existing in the
literature. We expect to extend this work to other neural
networks models with mixed delays. We will also study
more types of weighted pseudo-almost-periodic solution
problems on delayed neural networks models.
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