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Abstract In this paper, a fuzzy logic artificial intelligence

technique is delineate to predict the material removal rate

(MRR) and average surface roughness (Ra) during abra-

sive-mixed electro-discharge diamond surface grinding

(AMEDDSG) of Nimonic 80A. Though, Nimonic 80A

superalloy is extensively used in aerospace and automotive

industries due to its high corrosion, fracture toughness,

oxidation, and temperature resistance characteristics, being

a difficult-to-cut material, its machining is a challenging

job. The hybrid machining processes like AMEDDSG can

be competently used for machining of Nimonic 80A. The

face-centered central composite design is used consum-

mate the experiments and then experimental data are used

to establish fuzzy logic Mamdani model to predict the

MRR and Ra with respect to changes in the input process

parameters viz. wheel RPM, abrasive concentration, pulse

current and pulse-on-time. The results of confirmation

experiments reveal an agreement between the fuzzy model

and experimental results with 93.89 % accuracy implying

that the established fuzzy logic model can be precisely used

for predicting the performance of the AMEDDSG process.

An increase in wheel RPM, pulse current, and pulse-on-

time from their low level to high level contributes to

increased MRR by 83.89, 71.01, 17.02 %, respectively.

Also, an increase in wheel RPM contributes to reduced Ra

values by 5.96 %. Abrasive concentration increase from 0

to 4 g/L improves MRR by 24.03 %. The 17.10 %

improvement in surface finish is achieved by increasing

abrasive concentration from 0 to 8 g/L.

Keywords Fuzzy Logic � Nimonic 80A � Abrasive �
Electro-discharge � Grinding
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MRR Material removal rate

Ra Average surface roughness
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ECDM Electrochemical discharge machining

EDDCG Electro-discharge diamond cutoff grinding

EDDFG Electro-discharge diamond face grinding
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EDM Electro-discharge machining

HSS High speed steel

WC–Co Tungsten carbide–cobalt

ANN Artificial neural network
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ANFIS Adaptive neuro-fuzzy system

DC Direct current

RSM Response surface methodology

PMDC Permanent magnet direct current

SiC Silicon carbide

MF Membership function

RMSE Root-mean-square error

VL Very low

L Low

M Medium

H High

VH Very high

E Excellent

G Good

A Average

B Bad

R Rough

COA Centroid of area

IEG Inter-electrode gap

1 Introduction

The traditional machining processes find many problems

such as excessive heat generation in cutting zone and high

friction between tool–chip interface tendency for BUE

formation while machining of advanced engineering

materials like superalloys, carbides, ceramics, and com-

posites [1, 2]. These advanced materials are also known

as difficult-to-cut materials. Various non-traditional

machining processes have been developed since last few

decades to overcome machining challenges imposed by

difficult-to-cut materials. Though, these processes are

capable to machine workpiece irrespective of its hardness,

they suffer low cutting rate [3]. Therefore, different

researchers proposed a variety of compound hybrid

machining processes (HMPs) such as electro-discharge

grinding (EDG), electro-discharge diamond grinding

(EDDG), electrochemical discharge grinding (ECDG),

and electrochemical discharge machining (ECDM), to

overcome possible limitation of individual machining

process and to exploit enhanced advantages due syner-

gistic utilization two or more machining processes [1, 3].

Among these HMPs, EDDG became popular for

machining of hard and electrically conductive materials.

In EDDG, the synergistic action of (a) mechanical abra-

sion due to diamond abrasives and (b) electro-discharge

erosion due to sparking between bonding materials of

wheel and workpiece results in high MRR approximately

10 times more as compared to EDM process [1]. The

EDDG has been classified as per configuration used into

(1) electro-discharge diamond cutoff grinding (EDDCG),

(2) electro-discharge diamond face grinding (EDDFG),

and (3) electro-discharge diamond surface grinding

(EDDSG).

To overcome low MRR and surface integrity allied

issue in electro-discharge machining, Koshy et al. [4]

proposed EDDG. In last few years, many research studies

describing the effects of various input process parameters

on machining of metals, nonmetals, ceramics, composites,

metal matrix composites, etc., have been published.

Chaudhary et al. [5] claimed that in EDDG of high speed

steel (HSS), the MRR increases with an increase in both

current and pulse-on-time while same decreases with

increase in voltage and duty factor. They demonstrated

that normal grinding forces decrease with an increase in

current, duty factor, and voltage. Yadav et al. [6] also

carried EDDG of HSS found that wheel speed and current

as the most significant factors effecting the process per-

formance. Singh et al. [7] performed the EDDFG on

tungsten carbide–cobalt (WC–Co) composite and found

that MRR increases with increase in current and wheel

speed while it decreases with increase in pulse-on-time.

They experimentally show that at optimum settings better

surface finish can be achieved at higher MRR. Shrivas-

tava and Dubey [8] optimized process parameters in

EDDFG process while machining of copper–iron–graphite

metal matrix composite (MMC) using genetic algorithm.

The genetic algorithm-based optimized parameters yiel-

ded in improved process performance. Agrawal and

Yadava [9] performed the EDDSG on Al–10 wt%SiC and

Al–10 wt%Al2O3 MMCs and reported the effects of

various input machining parameters on MRR and surface

roughness value. They developed the artificial neural

network (ANN)-based model for prediction of process

performance. Increasing in wheel speed from 900 to

1400 rpm while machining Al–SiC and Al–Al2O3 com-

posites, the MRR found be increased by 6 and 7 times,

respectively, and surface roughness decreased by 0.5 and

2.2 times, respectively. In addition, the prediction capa-

bility of ANN for EDDG has also been demonstrated.

Unune et al. [10, 11] developed and compared perfor-

mance of ANN and RSM models in prediction of MRR

and Ra during EDDSG of Inconel 718. They found that

mixing of abrasives/powders in dielectric fluid during

EDDG enhances the MRR and improves the surface finish

[12, 13]. Modi and Agrawal [13] claimed that addition of

powder/abrasives improves the machining performance of

EDDG on Ti–6Al–4V. The addition powder attributed to

enhanced plasma channel of EDM suitable for improved

MRR and surface finish. Recently, Unune et al. [14]

demonstrated use of abrasives/powder for mixing in
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dielectric to improve the MRR in machining of Nimonic

80A by EDDG and named process as AMEDDG. They

used cutoff grinding configuration in their work and

experimentally show that addition of abrasives in dielec-

tric promotes the machining rate. While they do not

discuss the effects of mixing abrasives in dielectric while

performing AMEDDG on the average surface roughness

of machined surfaces. There are very few studies avail-

able in the literature regarding the abrasive- or powder-

mixed dielectric in EDDG process; however, the main

objectives of these studies were to experimentally inves-

tigate the effects of powder/abrasive in AMEDDG. Rare

work on developing the model/expert system found in the

literature to represent the relationship of the MRR and

surface roughness values with input machining parameters

related to AMEDDG.

Appropriate choice input machining parameters in

AMEDDG is a challenging task owing to the contribution

of various parameters and their complex relationships.

Development of model for prediction of AMEDDG per-

formance using traditional methods like mathematical or

analytical may not provide accurate results. Contradictory,

soft computing techniques are popular and effective tech-

nique to explain real-world complex problems where pro-

cess input–output relationships are nonlinear. Soft

computing techniques apply similar approach as that of the

human mind for computational purposes and have capa-

bility to learn in a situation of uncertainty and inaccuracy

[15–17]. Soft computing techniques offer suitable solutions

while acknowledging the uncertainty and inaccuracy

existing in machining. Soft computing methods such as

fuzzy logic, ANN, genetic algorithm, simulated annealing,

and particle swarm optimization have attracted minds of

investigators owing to their capabilities to deal with non-

linear, multi-dimensional, and complex engineering prob-

lems [18, 19]. Fuzzy logic plays an important role to model

input–output relationships. It is mainly efficient for solving

problems when accurate mathematical models are not

available. It often applied when process knowledge of

experts is critical in outlining objective function and

decision variable [16, 20]. Therefore, in this work, authors

selected fuzzy logic technique to model AMEDDG process

and used it for prediction of performances in machining of

Nimonic 80A superalloy.

Fuzzy logic, being a technique for identifying, classi-

fying, and recognizing systems, is extensively applied for

monitoring and diagnostics of machines [15, 16]. The

neuro-fuzzy and neural network models with highly accu-

rate prediction capabilities in complex EDM process were

reported by Pradhan and Biswas [14]. Khanlou et al.

[20, 21] established neural networks, fuzzy logic, and

adaptive neuro-fuzzy system (ANFIS) to predict the sur-

face roughness during sandblasting and acid etching pro-

cess. Suganthi et al. [22] reported application of ANFIS

and ANN techniques in modeling of a hybrid micro-

WEDM and micro-EDM process. They show that ANFIS

model outperforms ANN model in predicting multiple

responses in micro-EDM operations. It is reported that the

tedious trial and error method in developing optimal net-

work architecture of ANN model is not required in fuzzy

logic-based modeling. Recently, Marani Barzani et al.

[22, 23] proposed fuzzy logic model for prediction of

surface roughness of machined Al–Si–Cu–Fe die casting

alloy using different additives turning. They used fuzzy

logic and Pareto-ANOVA techniques to predict and opti-

mize the best combination of machining parameters to

enhance surface roughness.

From the literature review, no work is available which

attempts the modeling of AMEDDG to predict the

machining performance. It was realized that fuzzy logic

modeling technique provides an accurate and precise

prediction of machining performance, and the developed

fuzzy logic model can be directly used for industrial

applications. Therefore, this study attempts to present a

fuzzy logic model to predict the MRR and average sur-

face roughness in machining of Nimonic 80A by

AMEDDSG process. The four input machining parame-

ters, namely, wheel RPM, abrasive concentration, pulse

current and pulse-on-time with five levels of each, were

chosen to perform the experiments. The experiments were

designed according to face-centered central composite

design of response surface methodology (RSM). RSM

provides the interface between mathematical and statisti-

cal methods used to model and optimize the response

variables. The RSM technique enables a synchronized

experimental study of the individual factors and the

interaction effects of the factors designed for assessing the

significance of the parameters [24]. The experimental

procedure, fuzzy logic model design, and validation are

discussed in following sections.

2 Experimental procedure

2.1 Workpiece material

The workpiece material used was the Nimonic 80A alloy

which was treated and aged to a nominal bulk hardness of

44 HRC. A fresh workpiece of size 10 mm 9 10 mm

9 30 mm was selected for each trial. The microstructure of
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the Nimonic 80A alloy is shown in Fig. 1, where inho-

mogeneous grain size structure is observed. The chemical

composition of Nimonic 80A was determined using an

optical spectrometer (LECO GDS500A) and shown in

Table 1.

2.2 Experiment setup

The photograph of AMEEDSG setup fabricated on Elec-

tronica ENC-35 electro-discharge machine is shown in

Fig. 2a. The AMEDDSG setup (see, Fig. 2b) basically

consists of permanent magnet direct current (PMDC)

motor, bronze-bonded diamond grinding wheel, V-belt and

pulley, acrylic container, alternating current reversible

synchronous motor, etc. An automatic feeding arrangement

is used to switch the direction by an alternating current

reversible synchronous motor to achieve surface grinding

of the workpiece. The motor is attached to lead screw of

the machine table, and by changing direction of rotation of

the motor, the reciprocating action of machine table is

achieved. Brass-bonded diamond grinding wheel of

100 mm diameter was selected to perform electro-dis-

charge diamond grinding action on the workpiece. The

thickness of grinding wheel was 10 mm. The silicon car-

bide (SiC) abrasives with average grain size of

120–150 lm were chosen to mix in different concentra-

tions in dielectric fluid EDM oil.

Mechanism of machining involves the mechanical

abrasion of workpiece resulting owing to grinding action

and spark erosion of workpiece due to electric discharge

action. Further, the addition of abrasives/powder in the

dielectric fluid results in reduced breakdown stability of

dielectric fluid. Thus, the gap contamination promotes the

ignition and increases the gap size. A chain of discharges

takes place widening and enlarging the plasma channel

resulting in rapid erosion of workpiece [25]. It is observed

that the addition of abrasive helps to promote material

removal rate and process stability of EDDG [14].

Fig. 1 Microstructure of Nimonic 80A showing inhomogeneous

grain size structure

Table 1 Chemical composition of Nimonic 80A

Element Weight percent Elements Weight percent

Ni 76.73 Ti 1.91

Cr 18.25 Al 1.05

Fe 0.54 C 0.04

Cu 0.11 Si 0.2

Co 0.73 Mn 0.2

Fig. 2 a Photograph and b schematics of abrasive-mixed electro-discharge surface grinding (AMEDDSG) setup
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2.3 Experimentation

Table 2 shows the number of factors and levels used in the

experiments. The input machining parameters selected

include wheel RPM, abrasive concentration, pulse current,

and pulse-on-time. Additionally, five levels were chosen

for each input machining parameter. The MRR and the

average surface roughness (Ra) were selected as response

variables. The experiments were planed according to face-

centered central composite design of response surface

methodology.

The MRR was calculated by determining the difference

in the weight of un-machined and machined workpiece

using electronic digital balance with the readability of

1 mg and dividing this weight difference by density of

material and machining time. Taylor Hobson Surtronic-25

profilometer was used to measure Ra perpendicular to feed

direction of the grinding wheel. Each measurement was

repeated five times, and the mean value of these mea-

surements (Table 3) is used for response analysis. The

surface roughness values measured after each experiment

along with the standard deviation are listed in ‘‘Appendix’’.

The experimental conditions and measured responses

are shown in Table 3.

Figure 3 shows the surface morphology of

AMEDDSG processes Nimonic 80A with and without

abrasive-mixed dielectric at constant machining param-

eters viz. wheel RPM = 1000 rpm, pulse current = 6 A,

and pulse-on-time = 17 ls. It is observed that, the

abrasive-mixed dielectric results in smooth and narrower

surface cavities as abrasives attributes enlarged and

widened plasma channel [14]. Thus, it can be inferred

that the AMEDDSG will lead to better machining

performance.

3 Fuzzy logic

Fuzzy logic is an incessant translation from true to false

conditions, as opposed to the distinct true–false conver-

sion seen in binary logic. A degree of a subset’s probable

ability to fit another subset can be represented in fuzzy

logic. A wide range of applications and extensive scope

offered by fuzzy logic gives it the upper hand over other

statistical methods. In engineering practices, fuzzy logic

exploits this continuous subset membership conversion to

modify crimped numeric problems into fuzzy linguistic

zones. Fuzzy logic uses traditional language to state

variables and fuzzy linguistic rules to define associations

as contrasting to employ with numeric variables and

mathematical functions. Unlike the mathematical expres-

sion, fuzzy logic offers to use accumulated experience

and knowledge based on practice rather than theory form.

By sustaining the physical inference and effects of all

variables, fuzzy logic simulates the complex and nonlin-

ear systems.

It was observed that little work is available in the lit-

erature which attempts the modeling of AMEDDG to

predict the machining performance. Therefore, fuzzy logic

modeling technique which provides an accurate and precise

prediction of machining performance used develop the

fuzzy logic model which can be directly used for industrial

applications. The relationship between the input parameters

(wheel RPM, abrasive concentration, pulse current, and

pulse-on-time) with the output parameter (MRR and

average surface roughness) was mentioned for rule con-

struction. Fuzzy linguistic variables and fuzzy expression

for input and output parameters are presented in Table 4.

Five membership functions (MFs) were utilized for each

variable as input: very low (VL), low (L), medium (M),

high (H), and very high (VH). The same (MFs) were used

for MRR; however, for average surface roughness excel-

lent (E), good (G), average (A), bad (B), and rough

(R) were utilized as MFs. The membership function and

associated linguistic variables were identified based on

exploiting knowledge of authors in the field of EDDG. The

range of linguistic variables associated with individual

membership functions was adjusted manually in MATLAB

software.

3.1 Membership functions for inputs and outputs

The performance of four different combinations of MF

shapes for input and output was examined and based on the

Table 2 Factors and levels

used in the experiments
Control factors (symbol) Symbol Level

VL L M H VH

Wheel RPM (RPM) A 700 850 1000 1150 1300

Abrasive concentration (g/L) B 0 2 4 6 8

Pulse current (A) C 2 4 6 8 10

Pulse-on-time (ls) D 17 20 23 26 29

VL very low, L low, M medium, H high, VH very high
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Table 3 Experimental conditions and results

Sr. no. Wheel RPM

(RPM)

Abrasive

concentration (g/L)

Pulse current

(A)

Pulse-on-time

(ls)
Material removal

rate (mm3/min)

Average surface

roughness (lm)

1 700 4 6 23 8.80 3.47

2 1000 4 6 23 8.97 3.22

3 1300 4 6 23 15.34 3.30

4 850 6 8 26 7.29 4.05

5 1150 2 8 20 11.74 3.42

6 850 6 8 20 7.13 3.18

7 1000 0 6 23 5.34 4.98

8 1000 4 6 29 7.43 4.90

9 1150 6 8 26 12.41 3.25

10 850 6 4 26 7.03 3.42

11 850 6 4 20 7.83 2.85

12 1000 4 6 17 11.59 3.02

13 1150 2 4 26 6.87 3.69

14 1150 2 8 26 9.92 4.02

15 1000 8 6 23 12.36 3.09

16 1000 4 10 23 8.86 3.91

17 850 2 4 26 5.63 5.10

18 1000 4 6 23 8.97 3.23

19 1000 4 6 23 8.97 3.24

20 1150 6 4 20 13.48 3.12

21 1000 4 6 23 8.97 3.20

22 1000 4 2 23 6.08 3.16

23 1150 6 8 20 15.82 3.51

24 1150 6 4 26 13.15 3.10

25 850 2 8 20 6.19 3.84

26 1000 4 6 23 8.97 3.25

27 850 2 4 20 6.37 3.04

28 1000 4 6 23 8.97 3.26

29 1150 2 4 20 6.78 3.14

30 850 2 8 26 9.20 5.32

Fig. 3 Surface morphological images of AMEDDSG processed Nimonic at a 0 g/L, i.e., without abrasive-mixed electric b with 4 g/L abrasive-

mixed dielectric
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least root-mean-square error (RMSE), the Gaussian-shaped

membership functions were chosen for input parameters

while triangular-shaped membership functions were chosen

for output parameters as shown in Fig. 4. The mean value

of RSME values for MRR and Ra for different combination

of MF shapes are shown in Table 5

The equation used for calculation of RMSE is:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

e2

v

u

u

t ð1Þ

The Gaussian fuzzy membership function frequently

describes imprecise, linguistic relations as illustrated by:

kAn Xð Þ ¼ exp
� Cn � Xð Þ2

2r2n

 !

ð2Þ

where Cn and rn are the center and width of the nth fuzzy

set An, respectively.

The triangular membership function for output was

defined using three parameters;
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where a, b, and c define the triangular fuzzy triplet and

determine the x coordinates of the three corners of the

underlying triangular membership function.

3.2 Fuzzy logic rules

In this study, the fuzzy rule base containing a set of IF–

THEN statements for 25 rules with four inputs, wheel RPM

(A), abrasive concentration (B), pulse current (C), and pulse-

on-time (D) with two outputs as MRR (E) and average

surface roughness (F) are considered. Twenty five rules were

recognized founded on the experimental settings shown in

Table 3 and presented in Table 6 which are as follows:

By following to the maximum–minimum compositional

process, the fuzzy logic of these rules results fuzzy output.

Assuming that A, B, and C are the three input parameters

of the fuzzy logic unit, the membership function of the

fuzzy logic output is stated as [25]:

kX0Y0 Eð Þ Fð Þ ¼ kL1 Að Þ ^ kM1
Bð Þ ^ kN1

Cð Þ ^ kO1
Dð Þ½

^ kX1
Eð ÞkY1 Fð Þ _ . . .kL3 Að Þ ^ kM3

Bð Þ
^ kN3

Cð Þ ^ kO3
Dð Þ ^ kX3

Eð ÞkY3 Fð Þ
�

ð4Þ

where ^ is the maximum and _ is the minimum operation.

Membership functions come in different forms including

triangular, trapezoidal, gaussian, and sigmoid.

3.3 Defuzzification

A defuzzification process was also performed in this study.

Defuzzification transform fuzzy set data into numeric data

and for this purpose, a defuzzification method, called as

centroid of area (COA) method [26], is used to transform

fuzzy inference output into numeric value. The COA

defuzzification method was used due to its wide acceptance

and capability to produce more accurate results [25].

4 Results and discussion

In this study, the MRR and average surface roughness

predicted by fuzzy logic in relation to changes in the

process parameters are shown in Figs. 5 and 6, respec-

tively. Figure 5a shows the MRR predicted by fuzzy logic

for varying wheel RPM and abrasive concentration. It can

be observed that interaction effect for higher wheel RPM

(1300 RPM) at the middle value of abrasive concentration

(4 g/L) gives highest MRR. Similar observation can also

be seen for interaction effect of wheel RPM and pulse

current (Fig. 5b) and for interaction effect of wheel RPM

and pulse-on-time (Fig. 5c). The low values of wheel

RPM, pulse current, abrasive concentration, and pulse-on-

time are not recommended for higher cutting rate. It can

be observed that combination of higher abrasive concen-

tration and higher pulse current is best suited for high

MRR (Fig. 5d). It can be observed that low value of

Table 4 Fuzzy linguistic and variables characteristics

Parameter Linguistic variable Range

Wheel RPM (A) Very low (VL), low (L), medium (M), high (H), and very high (VH) 700–1300 (RPM)

Abrasive concentration (B) Very low (VL), low (L), medium (M), high (H), and very high (VH) 0–8 (g/L)

Pulse current (C) Very low (VL), low (L), medium (M), high (H), and very high (VH) 2–10 (A)

Pulse-on-time (D) Very low (VL), low (L), medium (M), high (H), and very high (VH) 17–29 (ls)

MRR (E) Very low (VL), low (L), medium (M), high (H), and very high (VH) 5–18 (mm3/min)

Average surface roughness (F) Excellent (E), good (G), average (A), bad (B), and rough (R) 2.8–5.8 (lm)
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pulse-on-time is appropriate for interactive effect with a

higher value of both abrasive concentration and pulse-on-

time (Fig. 5c, d).

Figure 6a shows the average surface roughness pre-

dicted by fuzzy logic for varying wheel RPM and abrasive

concentration. It can be observed that abrasive concentra-

tion has a significant effect on average surface roughness

value. Higher values of abrasive concentration are more

suitable for better surface finish. The middle values of

wheel RPM are more appropriate for lower Ra values.

Overall, the interaction effect wheel RPM around

1000–1100 RPM and powder concentration of 4–8 g/L

result in lower Ra values. Figure 6b shows the Ra values

predicted by fuzzy logic for varying pulse current and

Fig. 4 Input Gaussian membership function for a for wheel RPM, b for abrasive concentration, c pulse current, d pulse-on-time, and output

triangular membership function for e material removal rate and f average surface roughness

Table 5 RMSE for different combination of MF shapes

Inputs Outputs RMSE

Triangular shaped Gaussian shaped 0.9196

Gaussian shaped Triangular shaped 0.8732

Triangular shaped Triangular shaped 0.9175

Gaussian shaped Gaussian shaped 0.8817
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wheel RPM. It can be noted that too low or too high values

of pulse current are not suitable for better surface finish at

low wheel RPM. However, the interaction effect shows that

lower values of pulse current and middle values of wheel

RPM are more suitable for lower average surface rough-

ness values. Similarly, the lower values of pulse-on-time

and middle values of wheel RPM are appropriate for better

surface finish (Fig. 6c). It can be perceived from Fig. 5d,

the interaction effect of abrasive concentration middle

value (5 g/L) and pulse current middle value (5 A) is best

suited for lower average surface roughness values. A

similar observation can be seen for interaction effect of

abrasive concentration and pulse-on-time. At last, it can be

seen that interaction effect of lower values of both pulse

current and pulse-on-time is appropriate for lower Ra val-

ues. The detailed discussion on individual parametric

effects on response variable is included in Sect. 4.2.

4.1 Investigating fuzzy logic model accuracy

and error

The accuracy of the developed fuzzy model and error rate

were determined by performing nine new experiments, and

then the developed fuzzy model used to predict the values

of MRR and average surface roughness at same conditions

(Table 7). The difference among actual experimental

results and predicted values determined to denote errors

using Eq. (5), where ei denotes a specific error, Vm is the

actual measured value, and Vp is the predicted value. The

percentage for individual errors was obtained by dividing

the absolute difference of the predicted by the measure

value.

ei ¼
Vm � Vp

�

�

�

�

� �

Vm

� 100 % ð5Þ

Table 6 Rules used for fuzzy

logic model
Rule number IF statements (input parameters) Then statements (response variables)

A B C D MRR Ra

1 VL M M M L G

2 M M M M L E

3 VH M M M VH G

4 L H H H L A

5 H L H L L E

6 M VL M M VL R

7 M M M VH L R

8 H H H H M E

9 L H L H VL G

10 V H L L VL E

11 M M M VL M E

12 H L L H VL A

13 H L H H M A

14 M VH M M M A

15 M M VH M M A

16 L L L H VL R

17 M M M M M E

18 H H L L H E

19 M M VL M VL E

20 H H VL M VL E

21 H H H L VH G

22 H H L H H E

23 L L H L VL G

24 L L L L VL E

25 L L H H M R

VL very low, L low, M medium, H high, VH very high, E excellent, G good, A average, B bad, R rough
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Accuracy is calculated by finding the proximity of the

predicted value to the measured value. In Eq. (6), A is the

accuracy of the model and N is the total number of datasets

tested. The accuracy of the model is the average individual

accuracy.

A ¼ 1

N

X

n

i¼1

1�
Vm � Vp

�

�

�

�

� �

Vm

� �

� 100 % ð6Þ

The new experiment’s input machining conditions along

with measured MRR and Ra values and fuzzy logic pre-

dicted MRR and Ra values are listed in Table 7. Based on

measured and predicted values of MRR and Ra, the error

percentage and the accuracy of the fuzzy logic model were

determined. The average percentage error for MRR and Ra

was 9.73 and 2.49 %, respectively. The small error directs

that MRR and Ra results predicted by the fuzzy logic model

were very close to the actual experimental values. It can be

noted that developed fuzzy logic model gives an accuracy

of 90.27 and 97.51 % in the prediction of MRR and Ra,

respectively. The overall average accuracy found to be

93.89 % directs that proposed model can be successfully

used to predict the MRR and surface roughness of

machining Nimonic 80A using AMEEDSG process.

Figure 7a, b compares the predictions from the fuzzy

logic model with the actual measured MRR and average

surface roughness after machining of the workpiece. It can

be perceived that predicted values are in good agreement

with measured values. Thus, the proposed fuzzy logic

model is capable of predicting both MRR and average

surface roughness values for given range of input

parameters.

4.2 Parametric study using fuzzy logic model

To investigate the effects of individual process parameters,

the developed fuzzy logic model is used for predicting the

output responses by varying the individual input process

parameter and keeping other parameters constant.

4.2.1 Effect of wheel RPM

Figure 8 illustrates the effect of varying wheel RPM on

MRR and Ra value at constant input parameters viz.

abrasive concentration = 4 g/L, pulse current 4 A, and

pulse-on-time 23 ls. It is observed that MRR increases

with increase in wheel RPM while Ra decreases with

increase in wheel RPM. As the wheel RPM increases,

the more number of diamond abrasive will come in

contact with the workpiece. Also, as the wheel RPM

increases, small amount of the material will be removed

by each diamond abrasive particle [14, 27]. Therefore,

an increase in wheel RPM will attribute to increase in

MRR and decrease in Ra value. Also, at higher wheel

RPM, the improved flushing condition and debris

extraction from inter-electrode gap (IEG) create more

favorable conditions for stable spark, and hence,

improved MRR and surface finish will be achieved [28].

It is observed that the increased wheel RPM from 700 to

1300 RPM results in improved MRR from 6.95 to

12.78 mm3/min, i.e., 83.89 % improved MRR. Also,

average surface roughness was observed to reduce from

3.928 to 3.694 lm, i.e., 5.96 % improvement in surface

finish, when wheel RPM is varied between 700 to 1300

RPM.

4.2.2 Effect of abrasive concentration

The effect of varying abrasive concentration on MRR and

Ra is shown in Fig. 9 at constant input parameters viz.

wheel RPM = 800 RPM, pulse current 4 A, and pulse-on-

time 23 ls. It is seen that the MRR increases with increase

in abrasive canceration from 0 to 4 g/L but decreases after

level of 4 g/L. Improved sparking condition could be

attained by mixing the abrasives/powder in the dielectric

fluid as it results in bridging the IEG. The bringing effect

leads to increased discharge frequency due to multiple

discharges taking place within single pulse [24, 29]. Thus,

rapid sparking will erode workpiece fast. However, after an

optimum level (4 g/L), the high abrasive concentration

leads to discharge interference and therefore leading to

decreased MRR. MRR is improved from 5.93 to 7.36 mm3/

min, i.e., by 24.03 % when abrasive concentration in the

dielectric is varied from 0 to 4 g/L. It can also be observed

that increase in abrasive concentration results in decreased

Ra values. This is due to the fact that the bridging effect

results in plasma channel to become large and wide and,

therefore, a decreased spark discharge density causes

smooth and narrower surfaces cavities in EDM action. The

average surface roughness is observed to be reduced from

4.049 to 3.357 lm, i.e., 17.10 % improved surface finish,

when varying abrasive concentration in dielectric from 0 to

8 g/L.

bFig. 5 Predicted material removal rate by fuzzy logic in relation to

parameters change. a Wheel RPM and abrasive concentration,

b wheel RPM and pulse current, c wheel RPM and pulse-on-time,

d abrasive concentration and pulse current, e abrasive concentration

and pulse-on-time, f pulse current and pulse-on-time
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Fig. 6 Predicted average surface roughness (Ra) value by fuzzy logic

in relation to parameters change. a Wheel RPM and pulse-on-time,

b wheel RPM and pulse current, c wheel RPM and pulse-on-time,

d abrasive concentration and pulse current, e abrasive concentration

and pulse-on-time, f pulse current and pulse-on-time
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4.2.3 Effect of pulse current

The effect of varying pulse current on MRR and Ra is

shown in Fig. 10 at constant input parameters viz. wheel

RPM = 900 RPM, abrasive concentration = 4 g/L, and

pulse-on-time 23 ls. It is observed that both MRR and Ra

values increase with an increase in pulse current [28].

Increased pulse current causes more spark energy acting

on the workpiece and, therefore, melting and softening of

a large amount of the material. However, an increase in

pulse current leads to the formation of bigger craters on

workpiece surface resulting in decrease surface finish. It

is observed that the increased pulse current from 2 to 10

A results in increased MRR from 5.86 to 10.02 mm3/min,

i.e., 71.01 % improved MRR. Though, MRR improved by

varying pulse current, but average surface roughness is

observed to deteriorate from 3.442 to 4.045 lm, i.e., by

17.51 %, when pulse current is varied between 2 and 10

A.

4.2.4 Effect of pulse-on-time

The effect of varying pulse-on-time on MRR and Ra is

shown in Fig. 11 at constant input parameters, viz., wheel

RPM = 700 RPM, abrasive concentration = 4 g/L, and

pulse current 4 A. It is observed that MRR and Ra

increase with increase in pulse-on-time. It is observed that

when pulse-on-time is increased from 17 ls to 25 ls, it
results in increased MRR from 5.93 to 6.95 mm3/min,

i.e., 17.02 % improved MRR. Higher pulse-on-time

allows same heat energy to act on material for more

amount of time. Therefore, more amount of material will

be melted and softened by erosion action; therefore,

increased MRR will result. However, bigger craters will

be formed at larger pulse-on-time. The average surface

roughness is observed to increasing from 3.108 to

Table 7 Error and accuracy of the fuzzy logic model prediction

Expt. Parameters (inputs) Outputs

Wheel

RPM

(RPM)

Abrasive

conc. (g/L)

Pulse

current

(A)

Pulse-on-

time (ls)
Material removal rate (mm3/min) Average surface roughness (lm)

Measured Pred.

(fuzzy)

Error

(%)

Accuracy

(%)

Measured Pred.

(fuzzy)

Error

(%)

Accuracy

(%)

1 600 2 6 20 10.18 7.89 11.40 88.60 4.3 3.591 0.15 99.85

2 600 8 12 29 10.96 10.78 4.56 95.44 5.19 3.591 3.35 96.65

3 800 8 4 20 7.84 6.75 6.55 93.45 4.51 3.543 2.31 97.69

4 1000 4 12 20 12.03 10.91 14.24 85.76 3.63 3.215 4.05 95.95

5 1000 8 6 26 11.82 10.78 14.36 85.64 3.95 4.098 3.47 96.53

6 1200 2 12 23 12.28 13.40 4.24 95.76 3.06 3.088 1.94 98.06

7 1200 6 6 29 12.11 15.45 4.07 95.93 3.92 3.504 0.71 99.29

8 1400 0 12 26 16.11 6.75 15.53 84.47 3.64 3.591 3.25 96.75

9 1400 6 8 20 15.26 9.89 12.63 87.37 1400 3.379 3.14 96.86

Accuracy of model for MRR = 90.27 Accuracy of model for Ra = 97.51

Overall accuracy = 93.89

Fig. 7 Comparison of fuzzy logic model prediction with the mea-

sured results for a MRR and b average surface roughness
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4.004 lm, i.e., deteriorating by 28.84 %, when pulse-on-

time is varied between 17 and 25 ls.

5 Conclusion

In the present study, an artificial intelligent approach of

fuzzy logic modeling is developed to predict the effects

of different input machining parameters on the MRR

and Ra value during AMEDDSG process for Nimonic

80A superalloy. The developed fuzzy logic model is

validated by conducting confirmation experiments, and

an accuracy of 93.89 % is achieved in predicting MRR

and Ra. Following important conclusions were drawn

after fuzzy logic-based parametric analysis.

1. The MRR increases while Ra value decreases with

increase in wheel RPM, due to improved flushing

conditions at IEG. The MRR observed to be

increased by 83.89 % and Ra decreased by

5.96 % when wheel RPM is varied from 700 to

1300 RPM.

2. The MRR increases (by 24.03 %) with an increase in

abrasive concentration from 0 to 4 g/L and decreases

for any further increase in abrasive concentration in the

dielectric fluid. The abrasive addition plays a signif-

icant role in decreased Ra values, thereby improved

surface finish. The 17.10 % improvement in surface

finish is achieved by increasing abrasive concentration

from 0 to 8 g/L.

3. The MRR increases with increase in both pulse

current and pulse-on-time by 71.01 and 17.02 %,

respectively. However, an increase in both pulse

current and pulse-on-time deteriorates the surface

finish.
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Fig. 8 Effect of wheel RPM on MRR and Ra

Fig. 9 Effect of abrasive concentration on MRR and Ra

Fig. 10 Effect of pulse current on MRR and Ra
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