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Abstract Precise prediction of blast-induced ground

vibration is an essential task to reduce the environmental

effects in the surface mines, civil and tunneling works. This

research investigates the potential of imperialist competi-

tive algorithm (ICA) in approximating ground vibration as

a result of blasting at three quarry sites, namely Ulu Tiram,

Pengerang and Masai in Malaysia. In ICA modeling, two

forms of equations, namely power and quadratic, were

developed. For comparison aims, several empirical models

were also used. In order to develop the ICA and empirical

models, maximum charge weight used per delay (W) and

the distance between blasting sites and monitoring stations

(D) were utilized as the independent variables, while, peak

particle velocity (PPV), as a blast-induced ground vibration

descriptor, was utilized as the dependent variable. Totally,

73 blasting events were monitored, and the values of W,

D and PPV were carefully measured. Two statistical

functions, i.e., root mean square error and coefficient of

multiple determination (R2) were used to compare the

performance capability of those prediction models. Simu-

lation results show that the proposed ICA quadratic form

can get more accurate predicting results than the ICA

power form and empirical models.

Keywords Blasting � Peak particle velocity � Imperialist

competitive algorithm � Empirical models

1 Introduction

Rock excavation is one of the most important steps in

surface mines, tunneling and civil works. In this regard,

blasting operation is an economical and a common and a

widely utilized method. Nevertheless, a huge amount of

blasting energy is wasted to produce several undesirable

phenomena, such as ground vibration, flyrock, back break

and air overpressure [1–11]. Among the mentioned

environmental issues, ground vibration is considered as

the most unwanted effect produced by blasting which can

cause severe damage to the surrounding structures.

Therefore, accurately approximating the blast-induced

ground vibration is very significant. The several descrip-

tors, including peak particle velocity (PPV), displacement,

acceleration and frequency can be applied to evaluate the

level of ground vibration. Among them, PPV is the most

well-known descriptor for vibration measurement and is

widely used in many studies [12–20]. The effective

parameters on the PPV may be divided into two main

groups including blast design parameters and related

parameters to rock mass properties [21–28]. Blast design

parameters or controllable parameters such as stemming,

spacing, burden, sub-drilling, maximum charge weight

used per delay (W), blast-hole diameter, blast-hole depth
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and specific charge can be changed by the explosive

engineers. Whereas, the related parameters to rock mass

properties or uncontrollable parameters, such as com-

pressive and tensile strength, cannot be changed by the

explosive engineers. Based on the literature [29–31],

W and distance between blasting site and monitoring

stations (D) are the most influential parameters on the

blast-produced PPV. A number of researchers and insti-

tutes have been proposed different empirical models for

the prediction of blast-induced PPV [32–41]. According

to some studies (e.g., [28, 30]), the performance estima-

tion of the empirical models are not good enough, while

the suitable prediction of PPV is necessary. As an

example, several empirical models were used for the

estimation of PPV in the study conducted by Hasanipanah

et al. [42]. Their results indicate that the accuracy of the

empirical models is not good enough. Recently, applica-

tion of such models like artificial intelligent (AI) in

approximating problems in science and engineering areas,

especially in the field of mining and civil [43–50], has

been highlighted by various scholars. For predicting PPV,

many researchers used AI techniques as their main

methodology. Monjezi et al. [30] employed several

empirical models and artificial neural network (ANN) for

the prediction of blast-produced PPV at Shur river dam,

in Iran. As a result, it was found that the ANN indicates a

better prediction capability than empirical models. Sup-

port vector machine (SVM) and empirical models were

proposed for the prediction of PPV in the study conducted

by Khandelwal [51]. He used 150 datasets which were

collected from Sinagreni Collieries Company Limited

(SCCL), India. He concluded the SVM has superior fitting

specification for PPV prediction compared to the used

empirical models. A comprehensive study for the pre-

diction of blast-produced PPV by fuzzy logic (FL) and

empirical models were presented by Ghasemi et al. [28].

Their datasets were obtained from Sarcheshmeh copper

mine, in Iran. They demonstrated that FL provided more

accurate predictions in comparison with empirical models.

In the other study of the AI methods, Armaghani et al.

[52] investigated the results of blast-produced PPV at ISB

granite quarry, in Malaysia. They developed ANN,

empirical models and adaptive neuro-fuzzy inference

system (ANFIS) for approximating PPV. Finally, it was

revealed that ANFIS can estimate PPV better than ANN

and empirical models. Recently, Amiri et al. [31] pro-

posed a hybrid model of ANN and K-nearest neighbors

(KNN) for forecasting of the PPV. In their studies, ANN

and the United States Bureau of Mines (USBM) models

were also applied. They showed that ANN-KNN model is

more suitable for forecasting of the PPV compared to the

ANN and USBM models. In this study, imperialist com-

petitive algorithm (ICA) is proposed to get a precise and

reliable equation for the predicting the PPV in three

quarry sites, namely Ulu Tiram, Pengerang and Masai,

Malaysia. For comparison purposes, the most well-known

empirical models were also developed. The rest of the

present research is organized as follows. Detail of the

studied cases is given in Sect. 2. In Sect. 3, the ICA is

shortly described. Then, developments of empirical tech-

niques as well as ICA in estimating PPV will be dis-

cussed in Sects. 4 and 5, respectively. Evaluation of the

developed models (Sect. 6) will be given before conclu-

sions of the study (Sect. 7).

2 Field investigation

In this section, the studied cases and collection of datasets

are shortly explained. Three granite quarry sites, i.e., Ulu

Tiram, Pengerang and Masai near, in Malaysia, were

considered in the present research work (see Fig. 1). The

Ulu Tiram, Pengerang and Masai sites are located 18, 62

and 25 km of Johor City, at 103�4902000E, 104�705800E and

103�52027.7900E Longitudes as well as at 1�3604100N,
1�2205800N and 1.5�29042.1600N Latitudes, in order. In these

sites, drilling and blasting methods is used in order to

fragment the rock mass. In the drilling process, Wagon

Drill Machine is mainly used, and the blast-hole diameters

are 75, 115 and 150 mm. Also, in the blasting process,

ANFO was utilized as the main explosive material.

Moreover, fine gravels are used to stem the blast-holes and

the benches height in the The Ulu Tiram, Pengerang and

Masai sites are 10–15, 10–30 and 5–30 m, respectively.

Ground vibration is the most undesirable phenomena pro-

duced by blasting operations in the mentioned sites.

Therefore, accurate prediction of blast-produced ground

vibration is very significant. For this aim, 73 blasting

events were monitored, and the values of W, D and PPV in

kg, m and mm/s, respectively, were measured. In the other

words, W and D were considered as independent parame-

ters, and PPV was considered as dependent or target

parameter. Table 1 and Figs. 2, 3 and 4 show the range and

the frequency distributions of the W, D and PPV in this

research, respectively.

3 Imperialist competitive algorithm

The imperialism competitive algorithm (ICA) which was

developed by Atashpaz-Gargari and Lucas [53] is consid-

ered as one of the global search population-based algo-

rithms to optimize science and engineering problems.

Similar to some other optimization algorithms like genetic

algorithm (GA) and particle swarm optimization (PSO),

ICA starts with a random initial population called
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countries. After creating N countries (also named as

Ncountry), some of them with the lowest costs or objective

functions, for instance, root mean square error (RMSE), are

chosen as the imperialists (Nimp). Therefore, colonies or

Ncol are defined as the remaining countries. All colonies are

distributed among the empires in accordance with the ini-

tial power of them. So, it is clear that the more powerful

imperialists (lowest RMSE) can attract more colonies. In

ICA, there are three algorithm operators, i.e., assimilation,

revolution and competition [53]. Colonies attract to the

Fig. 1 Studied cases in this research

Fig. 2 Frequency histogram of the measured D Fig. 3 Frequency histogram of the measured W

Table 1 Used parameters and

their range
Parameter Symbol Unit Min Max

Maximum charge weight used per delay W kg 148 367

Distance between blasting sites and monitoring station D m 85 298

Peak particle velocity PPV mm/s 0.08 6.40
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imperialists through assimilation operator. With the help of

revolution operators, some sudden changes in the locations

of the countries will happen. Through these two operators,

for a colony, there is a possibility to reach a state better

than its imperialist state.

In the last ICA operator or competition, imperialists try

to adopt more number of colonies. During competition,

there is a competition among all empires to obtain the

colonies of other empires. All of the empires have at least a

chance to adopt one colony of the weakest empire based on

their power. After a few decades, the weak empires will be

gradually collapsed, and on the other hand, more powerful

empires increase their power. The mentioned procedures

will be continued until all of the empires (except the most

powerful ones) collapse or a termination criterion is met.

Here, termination criteria can be defined as root men

square error (RMSE) or maximum number of decade. It

should be noted that in ICA, the maximum number of

decades (Ndecade) works like the number of iteration (Nite)

in PSO algorithm. Figure 5 illustrates a flowchart of ICA

algorithm. Nevertheless, the focus of this paper is not to

cover ICA mathematical formulation. More details in this

regard can be found in the previous studies (e.g.,

[7, 54, 55]).

4 Prediction of PPV by empirical models

In the present paper, the most conventional empirical

models are utilized for forecasting of the blast-produced

PPV, as listed in Table 2. In this Table, PPV, W and D are

in terms of mm/s, kg and m, respectively. Also, K, n, a,

b are site constants and can be determined from the mul-

tiple regression analysis.

The total datasets were considered, and then, the site

constants were calculated using SPSS version 16 (SPSS

2007). Table 3 summarizes the values of site constants for

the used empirical models in this paper. The performance

of the empirical models is evaluated in Sect. 6.

5 Prediction of PPV by ICA

The present section describes model development proce-

dure of ICA in estimating PPV, considering two model

inputs, i.e., D and W. In this regard, two ICA models, i.e.,

power and quadratic are proposed for forecasting of the

Fig. 4 Frequency histogram of the measured PPV

Fig. 5 ICA algorithm
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blast-produced PPV. As the first stage, in order to develop

a model with lower errors, it is well established to nor-

malize the prepared database before modeling. Therefore,

all 73 datasets should be normalized considering the fol-

lowing equation which its range is between 0 and 1:

Xn ¼
X � Xmin

Xmax � Xmin

ð1Þ

where Xn and X are the normalized and measured values,

respectively. Also, the minimum and maximum of mea-

sured dataset are Xmin and Xmax, respectively. As mentioned

before, two functions of power and quadratic were applied

for forecasting of the blast-produced PPV and then using

ICA, their coefficients were found. The general forms of

power and quadratic functions are presented in Eqs. (2) and

(3), respectively:

y ¼ axb ð2Þ

y ¼ ax2 þ bxþ c ð3Þ

where a, b and c are constants. Note that, b in power

function is any nonzero real number. By this introduction,

power function type of the problem of this study can be

shown as follows:

PPVP ¼ x1 þ x2D
x3 þ x4W

x5 ð4Þ

In addition, quadratic function of the PPV problem can

be formed based on the following equation:

PPVP ¼ x1 þ x2D
2 þ x4W

2 þ x5DW ð5Þ

In the above equations, W and D are set as independent

parameter of the system, while PPV is considered as

dependent parameter.

Here, the role of ICA in determining the optimal values

of coefficients will be highlighted. In fact, based on the

lowest values of fitness function, ICA attempts to find the

fittest model or models to the available data. Of course, this

is possible through minimizing errors between the mea-

sured values of PPV and the predicted ones. Hence, the

used fitness function for solving problem of this study can

be defined as follows:

f xð Þ ¼
Xm

i¼1

ðPPVmeasured � PPVpredictedÞ2 ð6Þ

where f xð Þ is defined as the fitness function, PPVmeasured

and PPVpredicted are measured PPVs and predicted ones by

the system, respectively. It should be mentioned that the

minimum value of the above equation in the solution of

this study. An ICA code was written by the authors in

MATLAB environmental software, and all modeling

stages were conducted using MATLAB version

7.14.0.739 [56]. In order to achieve the aim of this study,

the optimum ICA parameters should be designed and

subsequently utilized. To do this, some of the previous

investigations have been reviewed to identify the range of

ICA parameters.

According to the original study of ICA [53], parameters

like b, h, f, number of country (Ncountry), number of decade

(Ndecade) and number of imperialism (Nimp) are the most

effective ones on ICA performance. Review of the litera-

ture (e.g., [53, 57, 58]) showed that the best values of b, h
and f are considered as 2, p/4 and 0.02, respectively.

Therefore, the mentioned values were used in constructing

all ICA models. In case of Ncountry, many values such as 40,

56, 135 and 250 were recommended in the studies carried

out by Ahmadi et al. [57], Marto et al. [59], Hajihassani

et al. [55] and Armaghani et al. [60], respectively, for

solving engineering problems. Ndecade of 800, 500 and 400

were suggested by Armaghani et al. [7, 60, 61], respec-

tively. Moreover, Hajihassani et al. [55], Marto et al. [59]

and Armaghani et al. [60] recommended values of 11, 9

and 25, respectively, as Nimp for solving geotechnical

problems. It seems that there is a need to design these

parameters through trial-and-error procedure. Hence, many

ICA models were built using different values of Ncountry,

Ndecade and Nimp. The optimal values of Ncountry, Ndecade and

Nimp for both power and quadratic ICA models are shown

in Table 4. As presented in this Table, there is no much

difference between the obtained ICA results of power and

quadratic functions. Considering the obtained ICA

parameters in this study, the proposed power and quadratic

equations for approximating PPV values resulting from

Table 2 Used empirical models in this research

Empirical models Equation

USBM [32] PPV ¼ k � Dffiffiffiffi
W

p
h in

Langefors-Kihlstrom [33]
PPV ¼ k �

ffiffiffiffi
W

D
2
3

q� �n

Roy [40]
PPV ¼ nþ k � Dffiffiffiffi

W
p
h i�1

� �

Rai-Singh [41] PPV ¼ k � Da �Wb � e c�Dð Þ

Table 3 Calculated values of site constants

Empirical equation Site constants

k n a b c

USBM 63.72 -1.44 – – –

Langefors-Kihlstrom 15.05 1.81 – – –

Roy 36.94 -1.26 – – –

Rai-Singh 0.16 – -0.31 0.97 -0.006
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blasting operations in Ulu Tiram, Pengerang and Masai

sites are shown in Eqs. (7) and (8), respectively.

PPVP ¼ 0:0049D�6:35 þ 0:00075W1:56 � 1:74 ð7Þ

PPVP ¼ 2:68� 8:2� 10�6 � D2
� �

þ 4:14� 10�5 �W2
� �

þ 6:3� 10�5DW
� �

ð8Þ

It is worth noting that the obtained coefficients in

Eqs. (7) and (8) were computed using the actual datasets,

not the normalized ones. More details regarding the per-

formance of the proposed ICA power and ICA quadratic

equations for the prediction of PPV will be given in

Sect. 6.

6 Analysis and results

In the present study, two ICA models namely power and

quadratic as well as several empirical models were pre-

sented for predicting of the blast-produced PPV in three

site quarries in Malaysia. In this regard, the total datasets

(73 data) were considered, and the W and D were set as

independent parameters, while PPV was set as dependent

parameter. The performance of the developed predicting

models is carried out using two statistical functions, i.e.,

root mean square error (RMSE) and coefficient of multiple

determination (R2).

RootMean Square Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

xi � xp
� �2h is

ð9Þ

Table 4 Obtained values of the ICA parameters

Parameter Value

Power form Quadratic form

Ncountry 250 300

Ndecade 300 400

Nimp 20 25

Table 5 Statistical functions results for the predictive models

Model Statistical functions

R2 RMSE

USBM 0.875 0.56

Langefors-Kihlstrom 0.879 0.55

Roy 0.894 0.51

Rai-Singh 0.897 0.5

ICA power form 0.93 0.41

ICA quadratic form 0.94 0.37

Fig. 6 Measured versus predicted PPVs by a USBM, b Langefors-Kihlstrom, c Roy, and d Rai-Singh equations

462 Neural Comput & Applic (2018) 29:457–465

123



R2 ¼
Pn

i¼1 xi � xmeanð Þ2
h i

�
Pn

i¼1 xi � xp
� �2h i

Pn
i¼1 xi � xmeanð Þ2

h i ð10Þ

where n denotes number of datasets and represents the

predicted and measured PPV values. For an excellent

model, the values of RMSE and R2 should be close to 0 and

1, respectively. Table 5 summarizes the obtained statistical

function values for the predictive models. Furthermore, the

relationships between the predicted and measured PPVs are

plotted in Figs. 6 and 7. The R2 were obtained as 0.875,

0.879, 0.894, 0.897, 0.93 and 0.94 for USBM, Langefors-

Kihlstrom, Roy, Rai-Singh, ICA power form and ICA

quadratic form, respectively. The RMSE was also obtained

as 0.56, 0.55, 0.51, 0.5, 0.41 and 0.37 for USBM, Lange-

fors-Kihlstrom, Roy, Rai-Singh, ICA power form and ICA

quadratic form, respectively. As a result, the ICA quadratic

form possessed superior predictive ability than the ICA

power form and empirical models.

7 Conclusions

Ground vibration is the most important environmental

effect caused by blasting in Ulu Tiram, Pengerang and

Masai quarry sites in Malaysia. Hence, accurate prediction

of blast-produced ground vibration is critical in these sites.

This research explores the possibility of using the ICA to

create a model for predicting the PPV. In this regard, two

equations namely power and quadratic optimized by ICA

were proposed. For comparison aims, several empirical

models, i.e., USBM, Langefors-Kihlstrom, Roy and Rai-

Singh were also utilized. In order to achieve the aim of this

study, 73 blasting events were considered and the most

effective parameters on the PPV were measured. For

modeling,W and D were used as the independent variables,

while PPV was used as the dependent variables. The

RMSE and R2 were used for evaluating the accuracy and

performance of the models. Finally, the results indicated

the superiority of quadratic form over the other predictive

models in the current study. The R2 were 0.875, 0.879,

0.894, 0.897, 0.933 and 0.945 for the USBM, Langefors-

Kihlstrom, Roy, Rai-Singh, power and quadratic forms,

respectively. As a conclusion, ICA can be introduced as an

acceptable and reliable algorithm in forecasting the PPV.
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